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Abstract

The ability to genetically modify pigs has enabled scientists to create pigs that are 
beneficial to humans in ways that were previously unimaginable. Improvements in the 
methods to make genetic modifications have opened up the possibilities of introducing 
transgenes, knock-outs and knock-ins with precision. The benefits to medicine include 
the production of pharmaceuticals, the provision of organs for xenotransplantation 
into humans, and the development of models of human diseases. The benefits to 
agriculture include resistance to disease, altering the carcass composition such that it 
is healthier to consume, improving the pig’s resistance to heat stress, and protecting 
the environment. Additional types of genetic modifications will likely provide animals 
with characteristics that will benefit humans in currently unimagined ways.

Introduction: the pig as a model for human medicine

In our review we will provide a justification for using pigs as models for medicine, 
and then provide a brief overview of the procedures for creating genetically modified 
pigs. Then we will review the genetic modifications that have been published in pig 
and discuss their applications to medicine and agriculture. 
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Swine have become important in biomedical research as they are excellent models for 
cardiovascular disease (Turk and Laughlin, 2004), atherosclerosis (Ishii et al., 2006), 
cutaneous pharmacology (Herkenne et al., 2006), wound repair (Graham et al., 2000), 
cancer (Du et al., 2007), diabetes (Dyson et al., 2006), ophthalmological studies (Shatos 
et al., 2004) and toxicology research, lipoprotein metabolism, and pathobiology of 
intestinal transport, injury and repair, as well as being considered as a potential source 
of organs for xenotransplantation (Lai et al., 2002b). Reviewers at the National Institutes 
of Health (NIH) consider pigs to be a very important model for the human condition as 
evidenced by the fact that for the past 6 years extramural support of research on pigs 
has been well over $100,000,000 (NIH Office of the Director): that compares with the 
entire United States Department of Agriculture competitive grants program via the 
NRI at ~$180,000,000. The NIH considers the pig to be so important that it has helped 
establish the National Swine Resource and Research Center (http://nsrrc.missouri.edu/), 
at the University of Missouri-Columbia, to serve as a genetic resource for the biomedical 
community. While the pig offers many similarities to the human system and condition, 
they offer other advantages as a research model. They have a short generation interval, 
short gestation (114 days), and multiple offspring. Thus for domestic species they 
can reproduce rapidly and provide an ongoing source of research animals. A limiting 
factor for basic research to proceed in any species is access to a sequenced genome. 
Without a sequenced genome that particular species will become a second class-species. 
Fortunately funds have been secured to complete the swine genome (http://www.csrees.
usda.gov/newsroom/news/2006news/swine.html) and the first draft is expected to be 
completed soon (www.piggenome.org ).  Furthermore, the genome of the pig is also 
quite similar to the human, as a phylogenetic approach using swine genome sequence 
data shows that the pig genome is 3x closer to the human than is the mouse (Wernersson 
et al., 2005). Finally, there are some inbred pig strains available.

Methods to make genetically modified pigs

Genetic modification of domestic animals can now be accomplished by a variety 
of methods (Robl et al., 2007). Genetic modification in mammals was initially via 
pronuclear injection. In essence, a DNA construct was injected directly into one of 
the pronuclei of a zygote (Brinster, 1981). This technique was initially established in 
mice, but later applied to a variety of mammals (Wall et al., 1997). The next technique 
is that of oocyte transduction. Mature oocytes arrested at metaphase II of meiosis are 
first isolated. Then a replication incompetent retrovirus is injected between the zona 
pellucida and the oocyte plasma membrane. After an opportunity is provided for the 
retrovirus to infect the oocyte and integrate into the chromosomes, then the oocyte is 
fertilized. This procedure is highly efficient as integration occurs only if the nuclear 
envelop is absent; and the oocyte is arrested in metaphase II of meiosis. Oocyte 
transduction was applied to cattle (Chan et al., 1998) and then to the pig (Cabot et 
al., 2001). The third technology for creating transgenic pigs is that of sperm-mediated 
gene transfer (SMGT). In SMGT the DNA construct of interest is mixed with the 
sperm and then used for in vitro fertilization or for insemination (Lavitrano et al., 
2006). This is also a highly efficient process. 

With each of the techniques listed above there is little control over the integration of 
the construct. It is not possible to predetermine how many copies of the gene become 
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integrated, nor into which chromosome or chromosomes they are integrated. To 
facilitate targeted integration either a more efficient procedure must be developed or 
homologous recombination must be performed followed by selection of the cells with 
the specific modification desired. In mice this latter technique can be performed on 
embryonic stem cells. The few cells with the correct modification can be expanded and 
then used to make chimeras with wild type host blastocyst stage embryos (Doetschman 
et al., 1987). Unfortunately the ES cell technology to make genetic modification has 
only been fully developed for the mouse and a true ES cell (one that can go germline) 
has yet to be identified in any other species. At least two additional options exist for 
the creation of animals with a targeted modification. The first is that of genetically 
modifying a male germ cell, followed by transfer of those germ cells to a male that 
has had his germ cells depleted. The newly developing sperm would then carry the 
transgene and be capable of producing transgenic offspring. While this technology is 
still in development, in the foreseeable future transgenic pigs will be made via germ 
cell modification (Honaramooz et al., 2007). The final method of making a targeted 
modification is that of modifying a somatic cell followed by NT to clone the animal (Lai 
et al., 2002b). Currently the only method available for making targeted modifications, 
knock-ins or knock-outs, is via cloning from a modified somatic cell.

The cloning technology in pigs was first developed by using blastomere stage 
nuclei as donor cells (Prather et al., 1989) (Figure 1). The thought at the time was that 
complex reprogramming of a somatic cell could not be completed by the cytoplasm 
of the oocyte. It was not until many years later that adult cells were first used to 
successfully create offspring by nuclear transfer (Polejaeva et al., 2000) (Figure 
1B). One year later came the first report of genetic modification followed by nuclear 
transfer and cloning (Park et al., 2001a) (Figure 1C).

The use of somatic cells for genetic modification and as donors for NT presents 
certain challenges.  The foremost is the limited lifespan of most somatic cells. In 
general, fetal-derived fibroblast cells begin to undergo senescence after about 30 
population doublings. Thus, if one is to make a genetic modification to such cells, the 
selection and expansion of the clones with the desired genotype must be completed 
quickly prior to senescence. Fortunately, progress is being made in the production of 
clones from stem cells, i.e. cells that can be grown for extended periods of time prior 
to differentiating or undergoing senescence. There are now at least two examples 
of cloned pigs from stem cell lines. The two types of stem cell donors include 
mesenchymal stem cells  (Jin et al., 2007) and skin-derived stem cells (Hao et al., 
2008). 

In addition to the advancements in cloning from stem cell lines, additional 
advancements in the technology for making the genetic modification are appearing. 
One technique with much promise is that of using zinc finger nucleases to make the 
modification (Mani et al., 2005; Morton et al., 2006; Porteus, 2006). This can be a 
highly efficient process, and if used in combination with stem cells as donors for 
cloning, it may result in a practical method of genetically modifying swine.

Control of gene expression

A large number of factors determine if a transgene is expressed or not. Generally the 
focus is upon the construct design and getting the desired promoter, enhancer and 
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other control elements into the design. The goal of this review is not to describe all 
the factors that control transgene expression as there are many reviews that provide 
that information (Conese et al., 2007; Kwaks and Otte, 2006; van Gaal et al., 2006; 
Venter, 2007; Vilaboa et al., 2005; Vilaboa and Voellmy, 2006; Xiao et al., 2007), but 
rather to focus on one example of being able to exogenously control gene expression. 
The first attempt in farm animals to create a tight regulation of expression was in 
pigs. Here an autoregulative tetracycline-responsive bicistronic expression cassette 
designed to result in ubiquitous expression of human regulators of complement 
activation was introduced into the pig genome (Kues et al., 2006). Unexpectedly the 
cassette was silenced by DNA methylation, except in muscle fibers. However when 
the animals were crossed, resulting in two cassettes in a single animal, the cassette 
was demethylated and reactivated. Much is still to be learned from attempts at making 
domestic animals with genes that can be tightly controlled.

Medical reasons to genetically modify pigs

XENOTRANSPLANTATION

Due to similarities in physiology, and size, pigs have been considered a source of organs 
for transplantation to humans.  Pigs have short gestation time and large litter size, 

Figure 1. Pigs that resulted from advancements in cloning and genetic modification technology. A. The 
first cloned pig derived from a blastomere nucleus as a donor (Prather et al., 1989). B. The first pigs cloned 
from somatic cell donor nuclei (Millie, Alexa, Crista, Carrell, and Dotcom) (Polejaeva et al., 2000). C. 
The first transgenic pigs resulting from nuclear transfer (Park et al., 2001a). The pig on the left carries the 
transgene for the enhanced green fluorescent protein, while the pig on the right is a wild type under normal 
lighting. D. The first pig with a gene knocked out, GGTA1 (Lai et al., 2002a).
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and they can be raised in pathogen free conditions. Compared to non-human primates 
(NHPs), pigs have less chance to transmit infectious diseases to human, and have fewer 
ethical issues as organ donors. Unfortunately, when a pig organ or cells are transferred 
to a primate the cells are immediately lysed. This is due to the presence of pre-formed 
antibodies in the primate that recognize a specific cell surface carbohydrate; a terminal 
α-1,3-galactose epitope on the cell surface. The gene in the pig that is responsible is 
called α-1,3-galactosyltransferase (GGTA1). Because this gene is not functional in 
humans and Old World monkeys, they developed a very high titer of anti-gal antibodies 
in their body. It has been reported that, in humans, up to 1% of the total circulating 
IgG is anti-α1,3Gal natural antibody (Galili et al., 1985). The pre-formed antibodies 
immediately recognize the α-1,3Gal epitope, which then activate the complement 
system and result in hyperacute rejection (HAR) of the transplanted cells or organs/
tissues from pigs. To overcome this major obstacle in xenotransplantation, a number of 
strategies have been employed to reduce or eliminate α-1,3 Gal induced HAR.  These 
methods include overexpression of α-2,3-sialyltransferase or α1,2-fucosyltransferase 
in pig cells to compete with α1,3GT; treatment of pig organs with α-galactosidase 
to remove surface α-1,3Gal epitope (Costa et al., 2002; Miyagawa et al., 2001); 
expression of complement inhibitor genes, such as human decay-accelerating factor 
(DAF), CD59 or CD46 (membrane cofactor protein (MCP) in transgenic pig organs 
to suppress the complement reaction (Cozzi, 1995; Fodor et al., 1994; Loveland et al., 
2004; McKenzie et al., 2003; Rosengard, 1995); and temporary depletion of natural 
anti α-1,3Gal antibody from recipients prior to and after transplantation (Ghanekar et 
al., 2001; Zhong et al., 2003). However, all these methods only partially removed the 
α1,3 Gal from the surface of the xenografts, or temporarily removed the anti-α-1,3 
gal antibodies from recipients. The anti-α-1,3 gal antibodies will come back as soon 
as the treatment stops, and the residual α1,3 Gal molecules on pig cells were still 
sufficient to activate the complement cascade and cause destruction of the grafts (Galili, 
2001; Joziasse and Oriol, 1999).  Another possible solution to this problem of HAR 
was to disrupt or knock-out the gene i.e. GGTA1, that is responsible for production 
of α-1,3 Gal epitopes (Figure 1D). Once that was accomplished (Dai et al., 2002; 
Lai et al., 2002b) and homozygous knock-out pigs produced (Kolber-Simonds et al., 
2004; Phelps et al., 2003), then the organs could be transplanted into baboons. These 
xenotransplantation experiments showed that if GGTA1 is knocked out the life of the 
kidney and hearts could be extended without the HAR (Chen et al., 2005; Kuwaki et 
al., 2005; Tseng et al., 2005; Yamada et al., 2005). 

With a possible solution to the HAR, the focus has moved to the delayed xenograft 
rejection (DXR) or acute vascular rejection (AVR). The exact cause of AVR is still 
unknown, but may be due to antibodies against non-α-1,3Gal xeno-antigens, molecular 
incompatibilities of coagulation regulation between pig and NHPs, and innate cellular 
responses from NK cells and macrophages. Many proposals have been made to deal 
with AVR. Most of them are to make transgenic GGTA1 KO pigs with human genes 
which have specific functions. Some examples are: using human DAF, CD46 or 
CD59 to inhibit complement activity (Cozzi and White, 1995; Hinchliffe et al., 1998; 
van den Berg et al., 2000); using anti-coagulate gene tissue factor pathway inhibitor 
(TFPI) and CD39, or nucleoside triphosphate diphosphohydrolase I (NTPDase-1)  to 
suppress micro thrombosis (Chen et al., 1999; Dwyer et al., 2004); using HLA-G or 
HLA-E to inhibit NK cells (Crew, 2007; Lilienfeld et al., 2007; Wang et al., 2004); 
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using hemoxygenase-1 (HO-1), A20 and death decoy receptor (TR6/DcR3) genes 
(Akamatsu et al., 2004; Daniel et al., 2004; Shi et al., 2003) to protect endothelial 
cells from inflammatory damage and apoptosis, as well as using CTLA4Ig to inhibit 
T cells activation (Wekerle et al., 2002). Other proposals include removing potential 
rejection-related pig genes such as SLA, Intercellular adhesion molecular-1 (ICAM-1) 
or co-stimulatory molecules by directly knocking out those pig's genes or using 
siRNA technology to inhibit their expression. To date, several such transgenic pigs 
have been generated either on a wild-type pig background or GGTA1 knock-out 
background. GGTA1 knock-out pigs with a human DAF have been produced and 
available in National Swine Resource and Research Center (www.nsrrc.missouri.
edu). GGTA1 knock-out pigs with human α-1,2-fucosyltransferase gene to modify the 
carbohydrate has been reported (Ramsoondar et al., 2003). One group has added the 
human leukocyte antigen in transgenic pigs (Tu et al., 2000). A human tumor necrosis 
factor-alpha-related apoptosis-inducing ligand (TRAIL) transgenic pig showed the 
transgenic pig lymphocytes could induce apoptosis of human lymphoid cells (Klose 
et al., 2005). Transgenic pigs with human CD39 have been generated to prevent the 
formation of thrombosis in transplanted organs (Dwyer et al., 2007). Petersen et al 
recently reported the production of hHO-1/hDAF transgenic pigs by nuclear transfer. 
Kidneys from hHO-1/DAF transgenic pigs survived ex vivo perfusion for 240 min with 
AB-pooled human blood and exhibited no indication for xenogenic activation of the 
human coagulation system. On the contrary, kidneys from wild-type pigs only lasted 
for 60 min in ex vivo perfusion (Petersen et al., 2008). The same group also reported 
birth of seven healthy piglets carrying human A20 gene driven by a CMV-β-actin 
promoter (Oropeza et al., 2008). Many other transgenic pigs on the GGTA1 knock-out 
background are under development and we expect the results will be published in the 
near future. Successful xenotransplantation will likely require multiple modifications 
to overcome both innate immunity as well as the acquired immunity that will be 
generated against the molecules on the surface of the pig organ.

PHARMACEUTICALS 

An interesting application of pharmaceutical production in pigs is the production 
of human hemoglobin in the blood of pigs (Sharma et al., 1994). It is thought 
that isolation of the human hemoglobin from the blood of the transgenic pig may 
provide a source for treating trauma patients. It may seem surprising, but pigs have 
also been used to produce pharmaceuticals in their milk. While pigs are not usually 
considered a dairy breed of livestock, they have been used to produce Protein C, an 
in-activator of coagulation factors Va and VIIIa (Van Cott et al., 2001), as well as 
human coagulation factor VIII and IX (Lindsay et al., 2004; Paleyanda et al., 1997) in 
their milk. Interestingly the pig mammary epithelial cells are unique among livestock 
in making the complex post-translational modifications needed for FIX and FVIII 
biological activity (Van Cott et al., 2004).

MODELS OF HUMAN DISEASE

Pigs have also been genetically modified in attempts to create better models of human 
disease. Six examples will be discussed below. 
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Retinitis Pigmentosa

The first model of human disease to be discussed is a line of pigs that has a mutated 
version of the rhodoposin gene that results in pigs getting retinitis pigmentosa (RP). 
This model (Banin et al., 1999; Petters et al., 1997) has a Pro347Leu mutation. These 
animals develop early and severe rod loss, likely resulting in subsequent degeneration 
of the cones in a pattern that mimics rod and cone loss in humans. The size and 
physiology of the pig eye is, again, similar to humans and thus these pigs will clearly 
be very valuable for preclinical studies (Ghosh et al., 2007).

Cardiovascular Disease:Fat-1

Polyunsaturated fatty acids (PUFAs) are fatty acids with 18 or more carbon atoms and 
two or more double bonds. There are two major groups of PUFAs, omega-6 (n-6) and 
omega-3 (n-3), depending on the position of the double bond nearest the methyl end 
(the ω carbon) of the fatty acid. Both n-3 and n-6 PUFAs are significant structural 
components of the phospholipids membranes of tissues throughout the body and n-3 
PUFAs are especially rich in the retina and brain in which DHA constitutes over 36% 
of total fatty acids (DeFilippis and Sperling, 2006; Lin et al., 1993; Simopoulos, 2001; 
Simopoulos, 2003; Simopoulos, 2006). Mammals lack the desaturases necessary to 
synthesize both LA (n-6) and ALA (n-3). Furthermore, the n-3 and n-6 PUFAs are 
not inter-convertible in mammalian cells because mammals also lack the enzyme, 
omega-3 fatty acid desaturase. Therefore, LA and ALA and their elongation and 
desaturation products are essential fatty acids (EFAs) to mammals, and they must be 
acquired from the diet (Simopoulos, 2001; Simopoulos, 2003; Simopoulos, 2006). 
Over the past 100-150 years, there has been an enormous increase in the consumption 
of n-6 PUFAs due to the increased intake of vegetable oils from corn, sunflower seeds, 
cottonseed, and soybeans, which all contain high levels of n-6 PUFAs but very little 
n-3 PUFAs.  In addition, intake of n-3 PUFAs is much lower today because of the 
decrease in fish consumption and the industrial production of animal feeds rich in 
grains containing n-6 fatty acids, leading to production of meat and eggs rich in n-6, 
but poor in n-3 PUFAs (Simopoulos, 1998; Simopoulos, 2001; Simopoulos, 2003; 
Simopoulos, 2006). Today, in Western diets, the ratio of n-6 to n-3 PUFAs ranges from 
10-20:1 instead of the traditional range of 1-2:1. It has been proposed that the high 
n-6/n-3 PUFA ratio may contribute to the high prevalence of many modern human 
diseases such as CVD, diabetes, obesity, cancer and depression. (Simopoulos, 2002a; 
Simopoulos, 2002b; Simopoulos, 2003; Simopoulos, 2006).

The potential anti-atherosclerotic effects of omega-3 PUFAs has been well 
recognized and studied in last 30 years after Bang et al first reported in 1976 that the 
low mortality from CVD among the Greenland Eskimos whose diet was mainly n-3 
PUFA-rich marine vertebrates (Bang et al., 1976). The seminal finding in Eskimos was 
confirmed and extended in Western populations (Ascherio et al., 1995; Dolecek, 1992; 
von Schacky, 1987; von Schacky, 2000; von Schacky, 2004) as well as in large animal 
experiments including swine (Kim et al., 1993; Kim et al., 1991; Weiner et al., 1986) 
and nonhuman primates (Davis et al., 1987; Harker et al., 1993; Parks et al., 1990a; 
Parks et al., 1990b). Many studies have shown that n-3 PUFAs have broad beneficial 
effects on many factors at all stages of atherogenesis. These major effects include: 1) 
lowering triacylglycerol, cholesterol, and VLDL concentration; 2) reducing platelet 
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aggregation and thrombosis; 3) reducing the production of inflammatory markers such 
as CRP, IL-6, E-selectin, ICAM-1, VCAM-1IL-1β and TNF-α; 4) down-regulating 
PDGF in quiescent and activated mononuclear cells; and 5) inhibiting ventricular 
arrhythmias (De Caterina et al., 2004; Mori and Beilin, 2004; Simopoulos, 2001; 
Simopoulos, 2003; von Schacky, 2000; von Schacky, 2004).

An n-3 fatty acid desaturase gene, fat-1, which converts n-6 PUFAs to n-3 PUFAs, 
was cloned from Caenorhabditis elegans (roundworm) by Dr. Browse’s group in 1997 
(Spychalla et al., 1997). Fat-1 transgenic mice have been generated (Kang et al., 2004) 
and several studies have shown high n-3 PUFAs and balanced n-6/n-3 ratio in fat-1 
mice have significantly inhibitory effect on colitis (Hudert et al., 2006), chemically 
induced acute hepatitis (Schmocker et al., 2007), prostate cancer (Berquin et al., 
2007), and melanoma (Xia et al., 2006).  We have introduced the humanized version 
of the fat-1 gene into pigs by somatic cells nuclear transfer (Lai et al., 2006; Li et 
al., 2006).  The fat-1 pigs not only have a 3 fold increase n-3 PUFAs, but also reduce 
their n-6 PUFAs by 25% since the FAT-1 protein effectively converts n-6 PUFAs into 
n-3 PUFAs in those pigs. As a result, the n-6/n-3 ratio has been reduced 5-fold (from 
8.52 to 1.69) compared to the control pigs. We have also found that all the tissues 
tested from the fat-1 transgenic pigs (heart, muscle, liver, kidney, spleen, brain, skin 
and tongue) showed much lower n-6/n-3 ratios than control pigs, indicating that the 
fat-1 gene is expressed well in most tissues (Lai et al., 2006; Li et al., 2006). We 
have successfully produced four litters of F1 fat-1 transgenic piglets from the founder 
boars by natural breeding with wild-type gilts. The n-3 PUFAs concentration and 
n-6/n-3 ratio in tails from all F1 fat-1 piglets are very similar to those in tail samples 
from their fathers. 

The fat-1 transgenic pig is an excellent unique large animal model to study the 
preventive effects against atherosclerosis and the underlying mechanisms by n-3 
PUFAs and balanced n-6/n-3 ratio. First, pigs have very similar physiology and lipid 
metabolism to humans, and pigs are a useful model for the evaluation of atherosclerosis 
from the perspective that lesions develop spontaneously, their circulatory system and 
localization of lesions are similar to humans, and the lesions are responsive to dietary 
intervention by exhibiting regression after prolonged periods (Fan and Watanabe, 
2000; Kim et al., 1991; Rowsell et al., 1965; Turk and Laughlin, 2004; Weiner et al., 
1985); Second, the fat-1 transgenic pigs have significantly high n-3 PUFAs (especially 
EPA and DPA) concentration and an ideal n-6/n-3 ratio (~2:1). The balanced n-6/n-3 
ratio is critical to reduce inflammation, and such a low n-6/n-3 ratio (~2:1) is very 
difficult to achieve by feeding pigs with fish oil, which only increases n-3 PUFAs but 
will not reduce n-6 PUFAs in pigs; Third, it will be a well-controlled, single-factor 
experiment because all pigs in both experimental and control groups will be fed with 
the exactly same diet. It will exclude the potential interference from other fish oil 
components, such as cholesterol, chemical contaminants or other fatty acids, and extra 
energy. Fourth, the influence of genetic background to the results will be minimal if 
the same sex, non-transgenic littermates are used as controls.

Diabetes 

Diabetes is a disease that is becoming more of a problem in the high fat diet and 
sedentary lifestyle of North Americans. Interestingly, there is one natural model of 
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type 2 diabetes: the Ossabaw Island pig. When these pigs are active they remain lean, 
but when they become sedentary and on a high fat diet they have a propensity to develop 
type 2 diabetes (Boullion et al., 2003; Dyson et al., 2006). Recently a pig has been 
genetically modified to create a model of type 2 diabetes. This group used a lentiviral 
vector to deliver a dominant negative glucose-dependent insulinotropic polypeptide 
receptor under the control of the rat Ins2 promoter. These animals had a reduced insulin 
release and higher glucose levels as compared to non-transgenic littermates as measured 
in response to an oral glucose tolerance test (Renner et al., 2008). Genetically modified 
animals like these will be very useful for the study of diabetes. 

Huntington’s Disease

Huntington’s Disease is associated with a CAG repeat in a gene called ‘huntington’. 
As the length of the trinucleotide repeat increases the onset occurs at an earlier age 
(Macdonald et al., 1993; Rosenblatt et al., 2001). Huntington’s Disease is inherited 
as an autosomal dominant disease that gives rise to progressive neural cell death 
associated with choreic movements and dementia. In an attempt to make a better 
model to study Huntington’s Disease, the pig Huntington gene was cloned from a 
miniature pig and combined with a rat neuron-specific enolase promoter and injected 
into the pronuclei of pig zygotes. After embryo transfer five transgenic pigs were 
produced (Uchida et al., 2001). 

Cystic Fibrosis

Cystic fibrosis is the most common genetic disease in adolescents in North America. 
The disease is caused by a mutation in the cystic fibrosis transmembrane conductance 
regulator (CFTR) gene. This aberrant protein results in less movement of chloride ions 
across the membrane. When this mutation is introduced into mice they do not exhibit 
all of the expected phenotypes. While they do have gastrointestinal problems, they do 
not exhibit any airway disease (Grubb and Gabriel, 1997) either because mice have a 
compensatory mechanism that rescues pulmonary function, or the lifespan of the mouse 
is insufficient to develop the disease. Thus there is no model to study cystic fibrosis-
induced lung disease except for the affected children. Since the pig lung shares many 
physiological properties with humans, Michael Welsh’s laboratory at the University 
of Iowa and our group (RSP) at Missouri moved forward to knockout the CFTR gene 
in the pig. In addition we have created a version that has a deletion of the 508th amino 
acid (phenyalanine). This is the most common mutation in North American Caucasians. 
Heterogygote animals with the knockout mutation have been created (Rogers et al., 
2008) and have successfully transmitted the mutation to both male and female offspring. 
When these animals reach sexual maturity and reproduce it should result in homozygous 
null animals that hopefully will exhibit a lung disease phenotype.

Alzheimer’s Disease

Recently a modification has been introduced to generate pigs that may exhibit 
symptoms of Alzheimer’s Disease. This was accomplished by inserting a mutated 
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version of the “Swedish mutation” of the amyloid precursor protein gene (Kragh et al., 
2008). While it is not yet known if the animals will develop the disease it represents 
a first step into this important area of human medicine.

CELL TRACKING

Molecular markers which permit identification of cells within a mixed population 
have proven to be immensely useful for a variety of studies. A number of lines of 
pigs transgenic for the enhanced green (Cabot et al., 2001; Park et al., 2001b), red, 
blue (Webster et al., 2005)  and orange (Matsunari et al., 2008) versions of these 
fluorescent proteins have been made. The utility of these cells can be illustrated with 
a few examples. The first is a study where Multipotent Adult Progenitor (MAP) cells 
were isolated from the blood of a mature female pig. It was possible to differentiate 
these MAPs into a variety of cell types, including hollow endothelial tubules, astrocytes 
and glial cells, osteoblasts, adipocytes, and smooth muscle (Price et al., 2006). In 
addition, the ability of these cells to differentiate into neuronal cells and to establish 
connections to endogenous neurons after injection into rat brains could be easily 
tracked since they were fluorescent.	

Another example began in 2002 when Dr. Mike Young (Harvard) and Henry Klassen 
(UC-Irvine) suggested using the eGFP expressing pig eye for a tracking study of ocular 
regeneration; and as it turned out this collaboration involved additional groups from 
Lund in Sweden, Children’s Hospital of Orange County in California, and Copenhagen 
University in Denmark. The project begins with an individual from Harvard or UC-
Irvine flying into Columbia to collect fetal pig eyes. The eyes are carried back to 
Harvard or UC-Irvine and retinal progenitor cells are cultured and expanded. These 
cells are then transported to Copenhagen where the group uses a recipient pig that has 
induced retinal damage. The eGFP retinal progenitor cells are then transplanted into 
the damaged eye. After up to 10 weeks the eyes are harvested and transported to Lund 
where sections are cut and the contribution of eGFP expressing cells to the different 
cell types of the retina are determined (Klassen et al., 2004; Shatos et al., 2004). The 
retinal progenitor cells appear to migrate to the area of damage, integrate into the 
different layers of the retina, express retinal-specific markers and morphologically 
appear to differentiate into rods and cones. Again, identification of the cells that were 
transplanted was facilitated by using retinal progenitor cells that were genetically 
marked with the eGFP.

HUMAN/PIG HYBRID ORGANS

In an attempt to produce human hepatocytes that can be transferred to humans that 
have impaired liver function two lines of pigs have been made that have a liver-specific 
promoter (albumin or alpha-fetoprotein) driving a suicide gene (thymidine kinase or 
cytosine deaminase) (Beschorner et al., 2003a; Beschorner et al., 2003b). The goal here 
would be to transfer human hepatocytes to a pre-immune transgenic fetal pig. After 
the pig is born and reaches adult size, the pig would be treated with the appropriate 
precursor (ganciclovir or 5-fluorocytosine, respectively). The precursor would be taken 
up into all the cells in the transgenic/chimeric pig, but only in the pig hepatocytes 
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would the precursor be converted into a toxic analog and destroy those cells. The 
surviving human hepatocytes would regenerate and might be harvested for transfer 
into humans that need hepatocytes. While this process is still under development it 
is showing promise (Beschorner et al., 2007).

BIOARTIFICIAL LIVER SUPPORT

One group has attempted to develop a bioartificial liver support system to treat 
patients with severe liver failure. Here a human albumin gene was introduced into a 
pig (Naruse et al., 2005). The gene was expressed in the pig liver. The authors suggest 
that pig livers producing major human hepatic proteins would be ideal to minimize 
xenogenic protein influx. Further development and characterization of pigs with a 
similar modification is warrented. Levy et al reported two successful extracorporeal 
hepatic supports with transgenic (hDAF/hCD59) porcine livers used as a bridge to 
human liver transplantation (Levy et al., 2000). 

Agricultural reasons to genetically modify pigs

A number of genes have been inserted in pigs to either enhance growth and production 
traits, or to alter the product so that it is more environmentally safe, leaner or healthier 
for human consumption. These additions include the genes for growth hormone (GH1) 
(Hammer, 1985) , insulin-like growth factor 1 (IGF1) (Pursel et al., 1999), phytase 
(Golovan, 2001), B-cell CLL/lymphoma 2 (BCL2) (Guthrie et al., 2005), delta 12 fatty 
acid desaturase (Saeki et al., 2004), omega-3 desaturase (hfat-1) (Lai et al., 2006), 
and bovine alpha-lactalbumin (LALBA) (Bleck, 1998). Some of the modifications 
may improve productivity of the animal (GH1, IGF1), while others are intended to 
alter the composition of the carcass so that it may be more healthy for the animal, and 
for humans to consume (delta 12 fatty acid desaturase, hfat-1). One modification was 
envisioned to increase the number of viable eggs that a female would produce (BCL2), 
another to increase the weaning weight of piglets (LALBA), and another was to help 
reduce pollution caused by elimination of inorganic phosphorous (phytase). Other 
modifications can be envisioned that may make the animals more or less susceptible 
to disease, or more tolerant to heat stress. While none of these modifications have 
been approved to enter the human food chain, the above modifications show that 
many of these ideas can be reduced to practice and result in a possible economic or 
health benefit to the producer and consumer.

Conclusion

In conclusion, genetic modification in pigs is now possible with a precision that was 
not previously possible. Genes can be added randomly or in precise locations resulting 
in genetic additions, modifications, knock-in or knockouts. These modifications 
can change the pig so that it is a better model of human disease, that it produces 
pharmaceuticals, or that the health of the animal or consumer is improved. Since 
many transgenic or knockout rodents models are not ideal models for human disease, 
more and more transgenic/knockout pigs will be in demand as human disease models 
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for the study of mechanisms and testing of new drugs and treatments. Successful 
modification of pigs for xenotransplantation will provide unlimited supply of organs 
and tissues to alleviate the current organ shortage crisis. We expect that therapeutical 
human proteins from pigs will soon be used to treat human diseases and, one day, 
heathier pork and bacon from environmentally-friendly pigs will be accepted on the 
dining room table. The biggest limitation in creating genetically modified pigs to 
benefit mankind is our imagination. 
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