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Supplemental Materials 

Item 1 (demonstrating Proposition 1) 

Letting 1 ( ; )ax y w θ≡  and 2 ( ; )bx y w θ≡  we seek to show that the LTD condition applies, i.e.,  

that 2 1ˆ ˆ[ ( ; ) | ( ; ) ]b aP y w x y w xθ θ≤ ≤  is nonincreasing in 1̂x  for all 2x̂ . Figure S1 depicts where 

2x̂  is arbitrarily chosen and 2ŵ  is the corresponding weather index value for ( ; )by w θ  so that 

2 2ˆ ˆ[ ( ; ) ] ( )bP y w x F wθ ≤ = . When *
1 1ˆ ˆx x=  with corresponding weather quantile *ŵ1  then 

* * *
1 1 1ˆ ˆ ˆ[ ( ; ) ] [ ] ( )aP y w x P w w F wθ ≤ = ≤ = . In this case, whenever weather conditions are sufficiently 

bad to ensure that *
1̂( ; )ay w xθ ≤  then they will be sufficiently bad to ensure that 2ˆ( ; )by w xθ ≤  

and so *
2 1ˆ ˆ[ ( ; ) | ( ; ) ] 1b aP y w x y w xθ θ≤ ≤ = . However, when **

1 1ˆ ˆx x=  then 2ˆ( ; )by w xθ ≤  is no 

longer guaranteed.  

More generally,  
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Now 1̂x  is monotone increasing in 1ŵ  and 2 1ˆ ˆ( ) / ( )F w F w  is nonincreasing in 1ŵ  so that 
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2 1ˆ ˆ[ ( ; ) | ( ; ) ]b aP y w x y w xθ θ≤ ≤  is nonincreasing in 1̂x . Notice that the inference above is 

symmetric in that it continues to apply if we interchange yield positions and consider instead 

2 1ˆ ˆ[ ( ; ) | ( ; ) ]a bP y w x y w xθ θ≤ ≤ . We turn now to the RTI condition. Here we seek to show that 

2 1ˆ ˆ[ ( ; ) | ( ; ) ]b aP y w x y w xθ θ≥ ≥  is nondecreasing in 1̂x  for all 2x̂ . The reasoning leading to (S1) 

above now supports 2 1 2 1ˆ ˆ ˆ ˆ[ ( ; ) | ( ; ) ] min[ ( ) / ( ),1]b aP y w x y w x F w F wθ θ≥ ≥ = . As 1̂x  is monotone 

increasing in 1ŵ  and 2 1ˆ ˆ( ) / ( )F w F w  is nondecreasing in 1ŵ  it follows that 

2 1ˆ ˆ[ ( ; ) | ( ; ) ]b aP y w x y w xθ θ≥ ≥  is nondecreasing in 1̂x . 

Figure S1. Graphic of LTD Property for Land Yield Resilience Model 

 

 

Item 2 

The Bayesian estimation algorithm, or the Gibbs sampler, is a four-step procedure. All priors are 

chosen as conjugate when possible except those for the λ  parameters, which are assumed to be 
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normally distributed as usual. The four steps are: 

Step 1: Draw Φ  from the conditional posterior pdf of Φ :1 

( | ) ~ ( , )p N D d DΦ Φ ΦΦ ⋅   

where 
11 1

i i ii
D V H H

−− −
Φ Φ ′= + Σ ∑   , 1 1

i i ii
d V H yµ− −
Φ Φ Φ ′= + Σ∑ 

 , and 2( )
ii i i TE Iεε ε σ′Σ = =  is the 

variance-covariance matrix of county i , which is a diagonal matrix with the element 2
εσ . Matrix 

iTI  is the identity of size i iT T×  while µΦ  and VΦ  are, respectively, the mean and variance-

covariance matrix of the prior normal distribution of Φ .  

Step 2: Draw from the conditional posterior pdf of 2
εσ : 

1
2 1 2

1
( | ) ~ 0.5 ,  0.5 ( ) .NT

i ii
p IG TN a b y Hε ε εσ

−
−

=

  ⋅ + + − Φ   
∑ 

  

where ( )IG ⋅  denotes the inverse gamma distribution and ii
T T=∑ . We choose a conjugate prior 

( , )IG a bε ε  with the shape and scale parameters of aε  and bε . 

Step 3: Draw 1( , , )Nη η η ′≡   from the truncated normal distribution 2
( 2/ , )

( , )W WN
π

µ σ
− ∞

  

where 2 2 2( ) 2 / / ( )W i iy H ε εµ ψ σ π σ ψ = − Φ − + 


  and 2 2 2 2/ ( )W ε εσ σ σ ψ= + . 

Step 4: Draw from the conditional posterior pdf of jλ , {1,2,3,4}j∈ , the parameter in the jth 

element in iX ; 

2 22 0.5( ) /0.5( ) ( )/( | ) ,
j j j j jj j j j

ji i i i i iy H X y H X
jp e e λ λε λ µ σφ φ σλ

− − −− − − −′− − Φ − − Φ −⋅ ∝
   

   

where j j
iH − −Φ  denotes the right-hand side variables and coefficients except the jth term in iX φ , 

j j
iX φ . Expression max[ ,0]j

i j i iX Qλ≡ ± ϒ  involves the parameter jλ  and one of the two 

moisture variables L
iP  and R

iP , which is denoted by iϒ  here. 
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The algorithm described above is coded in Matlab and ran 10,000 simulations. We discard 

the first 5,000 runs as burn-in and use the rest for inference. The initial values for parameters in 

Φ  are all 0.5, those for 1λ  and 2λ  are 1, and var( )iy  for 2
εσ .  

 

Item 3 

Estimation and Regression Results of Palmer’s Z 

Using the monthly Palmer’s Z, precipitation ( P ) and temperature (T ) from 1895-2015 for all 

climate divisions in South Dakota and Iowa, we estimate the following linear regression model 

(OLS),  

6 2
, 0 , , 1 , 2 , 3 , , ,1

CDFEi t Z j i t j i t i t i t i t M M i tj M
Z Z P P P T Tβ β β β β β−=

= + + + + + ⋅ +∑ ∑ 1      

where ,i tZ  denotes the Palmer’s Z of Climate division i  in month t , t jZ −  is lagged Palmer’s Z, 

, ,( ) / ( )i t i tP P P std P= −  is the standardized monthly precipitation, , ,( ) / ( )i t i tT T T std T= −  

standardized monthly temperature, M1  represents month dummy, ,M i tT⋅1  is the month-dummy 

interacted with monthly temperature, and CDFE are climate division fixed effects. 

Note that monthly precipitation is total in the month, whereas monthly temperature is average 

for the month. The above regression has serious multi-collinearity when using higher-order 

polynomials for temperature and precipitation variables. So precipitation and temperature are 

standardized in order to reduce multi-collinearity and thus to allow the second order precipitation 

and temperature-precipitation interaction in the equation. Including monthly temperature and 

month-dummies separately would lead to high collinearity and dropping either reduces model-fit 

significantly. Hence, we include the interaction term between the two variables. The monthly 

dummies are included because evapotranspiration depends on average day length in a month 
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(Thornthwaite 1948). Overall, the effort has been to maximize fit and ensure stable coefficients 

that are then used for estimating Palmer-Z using futuristic weather projections of precipitation 

and temperature. It turns out that the model has a good fit with 2R  = 0.89. The estimation results 

are: 

Table D-1. Estimation results of the Palmer’s Z 

Variable 
Coeff. Std.  

T Value Pr > |t| 
Estimates Error  

Intercept 1.717 0.024  71.5 <0.0001 

P 2.838 0.008  347.5 <0.0001 

P2 -0.150 0.003  -43.8 <0.0001 

T*P -0.337 0.008  -40.1 <0.0001 

Z_lag1 0.172 0.002  77.5 <0.0001 

Z_lag2 0.103 0.002  45.1 <0.0001 

Z_lag3 0.058 0.002  25.2 <0.0001 

Z_lag4 0.034 0.002  14.6 <0.0001 

Z_lag5 0.034 0.002  15.0 <0.0001 

Z_lag6 0.025 0.002  11.3 <0.0001 

SD_DIV1 2.183 0.025  85.6 <0.0001 

SD_DIV2 1.979 0.025  77.9 <0.0001 

SD_DIV3 1.635 0.025  64.6 <0.0001 

SD_DIV4 1.567 0.025  62.2 <0.0001 

SD_DIV5 2.161 0.025  85.1 <0.0001 

SD_DIV6 2.034 0.025  80.2 <0.0001 
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SD_DIV7 1.529 0.025  60.7 <0.0001 

SD_DIV8 1.791 0.025  71.0 <0.0001 

SD_DIV9 1.353 0.025  53.9 <0.0001 

IA_DIV1 0.740 0.025  29.6 <0.0001 

IA_DIV2 0.322 0.025  12.9 <0.0001 

IA_DIV3 0.065 0.025  2.6 0.0086 

IA_DIV4 0.563 0.025  22.6 <0.0001 

IA_DIV5 0.252 0.025  10.1 <0.0001 

IA_DIV6 -0.023 0.025  -0.9 0.3576 

IA_DIV7 0.349 0.025  14.0 <0.0001 

IA_DIV8 0.131 0.025  5.3 <0.0001 

Jan_T -0.000003 0.001  0.0 0.9973 

Feb_T -0.003 0.001  -3.7 0.0002 

Mar_T -0.053 0.001  -86.5 <0.0001 

Apr_T -0.066 0.0005  -134.7 <0.0001 

May_T -0.073 0.0004  -181.0 <0.0001 

Jun_T -0.073 0.0003  -217.4 <0.0001 

Jul_T -0.050 0.0003  -166.3 <0.0001 

Aug_T -0.050 0.0003  -163.1 <0.0001 

Sep_T -0.051 0.0004  -141.5 <0.0001 

Oct_T -0.040 0.0004  -90.9 <0.0001 

Nov_T -0.033 0.001  -56.1 <0.0001 

N 26,136     
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Adj. 2R   0.89     
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Footnote 

1. Here ( , )N µ Σ  denotes a multivariate normal distribution with mean µ  and variance-

covariance matrix Σ . 


