# **Title:** AJAE appendix for *Land Resilience and Tail Dependence Among Crop Yield Distributions*

Authors: Xiaodong Du, David A. Hennessy, Hongli Feng, Gaurav Arora
Date: October 22, 2017
Note: The material contained herein is supplementary to the article named in the title and published in the American Journal of Agricultural Economics (AJAE)

#### **Supplemental Materials**

#### Item 1 (demonstrating Proposition 1)

Letting  $x_1 = y(w; \theta^a)$  and  $x_2 = y(w; \theta^b)$  we seek to show that the LTD condition applies, i.e., that  $P[y(w; \theta^b) \le \hat{x}_2 | y(w; \theta^a) \le \hat{x}_1]$  is nonincreasing in  $\hat{x}_1$  for all  $\hat{x}_2$ . Figure S1 depicts where  $\hat{x}_2$  is arbitrarily chosen and  $\hat{w}_2$  is the corresponding weather index value for  $y(w; \theta^b)$  so that  $P[y(w; \theta^b) \le \hat{x}_2] = F(\hat{w}_2)$ . When  $\hat{x}_1 = \hat{x}_1^*$  with corresponding weather quantile  $\hat{w}_1^*$  then  $P[y(w; \theta^a) \le \hat{x}_1^*] = P[w \le \hat{w}_1^*] = F(\hat{w}_1^*)$ . In this case, whenever weather conditions are sufficiently bad to ensure that  $y(w; \theta^a) \le \hat{x}_1^*$  then they will be sufficiently bad to ensure that  $y(w; \theta^b) \le \hat{x}_2$ and so  $P[y(w; \theta^b) \le \hat{x}_2 | y(w; \theta^a) \le \hat{x}_1^*] = 1$ . However, when  $\hat{x}_1 = \hat{x}_1^{**}$  then  $y(w; \theta^b) \le \hat{x}_2$  is no longer guaranteed.

More generally,

(S1)  

$$P[y(w;\theta^{b}) \le \hat{x}_{2} | y(w;\theta^{a}) \le \hat{x}_{1}] = \frac{P[\{y(w;\theta^{b}) \le \hat{x}_{2}\} \cap \{y(w;\theta^{a}) \le \hat{x}_{1}\}]}{P[y(w;\theta^{a}) \le \hat{x}_{1}]}$$

$$= \frac{\min[F(\hat{w}_{2}), F(\hat{w}_{1})]}{F(\hat{w}_{1})} = \min\left[\frac{F(\hat{w}_{2})}{F(\hat{w}_{1})}, 1\right].$$

Now  $\hat{x}_1$  is monotone increasing in  $\hat{w}_1$  and  $F(\hat{w}_2)/F(\hat{w}_1)$  is nonincreasing in  $\hat{w}_1$  so that

 $P[y(w;\theta^b) \le \hat{x}_2 \mid y(w;\theta^a) \le \hat{x}_1] \text{ is nonincreasing in } \hat{x}_1. \text{ Notice that the inference above is symmetric in that it continues to apply if we interchange yield positions and consider instead <math display="block">P[y(w;\theta^a) \le \hat{x}_2 \mid y(w;\theta^b) \le \hat{x}_1]. \text{ We turn now to the RTI condition. Here we seek to show that } P[y(w;\theta^b) \ge \hat{x}_2 \mid y(w;\theta^a) \ge \hat{x}_1] \text{ is nondecreasing in } \hat{x}_1 \text{ for all } \hat{x}_2. \text{ The reasoning leading to (S1)} above now supports <math>P[y(w;\theta^b) \ge \hat{x}_2 \mid y(w;\theta^a) \ge \hat{x}_2 \mid y(w;\theta^a) \ge \hat{x}_1] = \min[\overline{F}(\hat{w}_2)/\overline{F}(\hat{w}_1),1]. \text{ As } \hat{x}_1 \text{ is monotone increasing in } \hat{w}_1 \text{ and } \overline{F}(\hat{w}_2)/\overline{F}(\hat{w}_1) \text{ is nondecreasing in } \hat{x}_1.$ 

Figure S1. Graphic of LTD Property for Land Yield Resilience Model



### Item 2

The Bayesian estimation algorithm, or the Gibbs sampler, is a four-step procedure. All priors are chosen as conjugate when possible except those for the  $\lambda$  parameters, which are assumed to be

normally distributed as usual. The four steps are:

<u>Step 1</u>: Draw  $\Phi$  from the conditional posterior pdf of  $\Phi$ :<sup>1</sup>

$$p(\Phi \mid \cdot) \sim N(D_{\Phi}d_{\Phi}, D_{\Phi})$$
  
where  $D_{\Phi} = \left[V_{\Phi}^{-1} + \sum_{i} \tilde{H}_{i}' \Sigma_{i}^{-1} \tilde{H}_{i}\right]^{-1}$ ,  $d_{\Phi} = V_{\Phi}^{-1} \mu_{\Phi} + \sum_{i} \tilde{H}_{i}' \Sigma_{i}^{-1} \tilde{y}_{i}$ , and  $\Sigma_{i} = E(\varepsilon_{i} \varepsilon_{i}') = \sigma_{\varepsilon}^{2} I_{T_{i}}$  is the variance-covariance matrix of county *i*, which is a diagonal matrix with the element  $\sigma_{\varepsilon}^{2}$ . Matrix  $I_{T_{i}}$  is the identity of size  $T_{i} \times T_{i}$  while  $\mu_{\Phi}$  and  $V_{\Phi}$  are, respectively, the mean and variance-covariance matrix of the prior normal distribution of  $\Phi$ .

<u>Step 2</u>: Draw from the conditional posterior pdf of  $\sigma_{\varepsilon}^2$ :

$$p(\sigma_{\varepsilon}^{2} \mid \cdot) \sim IG\left(0.5TN + a_{\varepsilon}, \left[b_{\varepsilon}^{-1} + 0.5\sum_{i=1}^{NT} (\tilde{y}_{i} - \tilde{H}_{i}\Phi)^{2}\right]^{-1}\right).$$

where  $IG(\cdot)$  denotes the inverse gamma distribution and  $T = \sum_{i} T_{i}$ . We choose a conjugate prior  $IG(a_{\varepsilon}, b_{\varepsilon})$  with the shape and scale parameters of  $a_{\varepsilon}$  and  $b_{\varepsilon}$ .

<u>Step 3</u>: Draw  $\eta \equiv (\eta_1, \dots, \eta_N)'$  from the truncated normal distribution  $N_{(-\sqrt{2/\pi},\infty)}(\mu_W, \sigma_W^2)$ where  $\mu_W = \left[\psi(\tilde{y}_i - \tilde{H}_i \Phi) - \sigma_{\varepsilon}^2 \sqrt{2/\pi}\right] / (\sigma_{\varepsilon}^2 + \psi^2)$  and  $\sigma_W^2 = \sigma_{\varepsilon}^2 / (\sigma_{\varepsilon}^2 + \psi^2)$ .

<u>Step 4</u>: Draw from the conditional posterior pdf of  $\lambda_j$ ,  $j \in \{1, 2, 3, 4\}$ , the parameter in the *j*th element in  $\tilde{X}_i$ ;

$$p(\lambda_j \mid \cdot) \propto e^{-0.5(\tilde{y}_i - \tilde{H}_i^{-j} \Phi^{-j} - \tilde{X}_i^{j} \phi^j)'(\tilde{y}_i^{-j} - \tilde{H}_i^{-j} \Phi^{-j} - \tilde{X}_i^{j} \phi^j)/\sigma_{\varepsilon}^2} e^{-0.5(\lambda_j - \mu_{\lambda})^2/\sigma_{\lambda}^2},$$

where  $\tilde{H}_{i}^{-j}\Phi^{-j}$  denotes the right-hand side variables and coefficients except the *j*th term in  $\tilde{X}_{i}\phi$ ,  $\tilde{X}_{i}^{j}\phi^{j}$ . Expression  $\tilde{X}_{i}^{j} \equiv \max[\lambda_{j}Q_{i} \pm \Upsilon_{i}, 0]$  involves the parameter  $\lambda_{j}$  and one of the two moisture variables  $P_{i}^{L}$  and  $P_{i}^{R}$ , which is denoted by  $\Upsilon_{i}$  here. The algorithm described above is coded in Matlab and ran 10,000 simulations. We discard the first 5,000 runs as burn-in and use the rest for inference. The initial values for parameters in  $\Phi$  are all 0.5, those for  $\lambda_1$  and  $\lambda_2$  are 1, and  $var(\tilde{y}_i)$  for  $\sigma_{\varepsilon}^2$ .

#### Item 3

#### Estimation and Regression Results of Palmer's Z

Using the monthly Palmer's Z, precipitation (P) and temperature (T) from 1895-2015 for all climate divisions in South Dakota and Iowa, we estimate the following linear regression model (OLS),

$$Z_{i,t} = \beta_0 + \sum_{j=1}^{6} \beta_{Z,j} Z_{i,t-j} + \beta_1 \tilde{P}_{i,t} + \beta_2 \tilde{P}_{i,t}^2 + \beta_3 \tilde{P}_{i,t} \tilde{T}_{i,t} + \sum_M \beta_M \mathbf{1}_M \cdot T_{i,t} + \text{CDFE}$$

where  $Z_{i,t}$  denotes the Palmer's Z of Climate division *i* in month *t*,  $Z_{t-j}$  is lagged Palmer's Z,  $\tilde{P}_{i,t} = (P_{i,t} - \overline{P}) / std(P)$  is the standardized monthly precipitation,  $\tilde{T}_{i,t} = (T_{i,t} - \overline{T}) / std(T)$ standardized monthly temperature,  $\mathbf{1}_M$  represents month dummy,  $\mathbf{1}_M \cdot T_{i,t}$  is the month-dummy interacted with monthly temperature, and CDFE are climate division fixed effects.

Note that monthly precipitation is total in the month, whereas monthly temperature is average for the month. The above regression has serious multi-collinearity when using higher-order polynomials for temperature and precipitation variables. So precipitation and temperature are standardized in order to reduce multi-collinearity and thus to allow the second order precipitation and temperature-precipitation interaction in the equation. Including monthly temperature and month-dummies separately would lead to high collinearity and dropping either reduces model-fit significantly. Hence, we include the interaction term between the two variables. The monthly dummies are included because evapotranspiration depends on average day length in a month (Thornthwaite 1948). Overall, the effort has been to maximize fit and ensure stable coefficients that are then used for estimating Palmer-Z using futuristic weather projections of precipitation and temperature. It turns out that the model has a good fit with  $R^2 = 0.89$ . The estimation results are:

| Variable  | Coeff.    | Std.  | TM-h-s         | $\Pr >  t $ |
|-----------|-----------|-------|----------------|-------------|
|           | Estimates | Error | <i>I</i> value |             |
| Intercept | 1.717     | 0.024 | 71.5           | < 0.0001    |
| Р         | 2.838     | 0.008 | 347.5          | < 0.0001    |
| $P^2$     | -0.150    | 0.003 | -43.8          | < 0.0001    |
| T*P       | -0.337    | 0.008 | -40.1          | < 0.0001    |
| Z_lag1    | 0.172     | 0.002 | 77.5           | < 0.0001    |
| Z_lag2    | 0.103     | 0.002 | 45.1           | < 0.0001    |
| Z_lag3    | 0.058     | 0.002 | 25.2           | < 0.0001    |
| Z_lag4    | 0.034     | 0.002 | 14.6           | < 0.0001    |
| Z_lag5    | 0.034     | 0.002 | 15.0           | < 0.0001    |
| Z_lag6    | 0.025     | 0.002 | 11.3           | < 0.0001    |
| SD_DIV1   | 2.183     | 0.025 | 85.6           | < 0.0001    |
| SD_DIV2   | 1.979     | 0.025 | 77.9           | < 0.0001    |
| SD_DIV3   | 1.635     | 0.025 | 64.6           | < 0.0001    |
| SD_DIV4   | 1.567     | 0.025 | 62.2           | < 0.0001    |
| SD_DIV5   | 2.161     | 0.025 | 85.1           | < 0.0001    |
| SD_DIV6   | 2.034     | 0.025 | 80.2           | < 0.0001    |

Table D-1. Estimation results of the Palmer's Z

| N             | 26,136    |        |        |          |
|---------------|-----------|--------|--------|----------|
| Nov_T         | -0.033    | 0.001  | -56.1  | < 0.0001 |
| $Oct_T$       | -0.040    | 0.0004 | -90.9  | < 0.0001 |
| Sep_T         | -0.051    | 0.0004 | -141.5 | < 0.0001 |
| Aug_T         | -0.050    | 0.0003 | -163.1 | < 0.0001 |
| Jul_T         | -0.050    | 0.0003 | -166.3 | < 0.0001 |
| Jun_T         | -0.073    | 0.0003 | -217.4 | < 0.0001 |
| May_T         | -0.073    | 0.0004 | -181.0 | < 0.0001 |
| Apr_T         | -0.066    | 0.0005 | -134.7 | < 0.0001 |
| Mar_ <i>T</i> | -0.053    | 0.001  | -86.5  | < 0.0001 |
| Feb_T         | -0.003    | 0.001  | -3.7   | 0.0002   |
| Jan_T         | -0.000003 | 0.001  | 0.0    | 0.9973   |
| IA_DIV8       | 0.131     | 0.025  | 5.3    | <0.0001  |
| IA_DIV7       | 0.349     | 0.025  | 14.0   | < 0.0001 |
| IA_DIV6       | -0.023    | 0.025  | -0.9   | 0.3576   |
| IA_DIV5       | 0.252     | 0.025  | 10.1   | < 0.0001 |
| IA_DIV4       | 0.563     | 0.025  | 22.6   | < 0.0001 |
| IA_DIV3       | 0.065     | 0.025  | 2.6    | 0.0086   |
| IA_DIV2       | 0.322     | 0.025  | 12.9   | < 0.0001 |
| IA_DIV1       | 0.740     | 0.025  | 29.6   | < 0.0001 |
| SD_DIV9       | 1.353     | 0.025  | 53.9   | < 0.0001 |
| SD_DIV8       | 1.791     | 0.025  | 71.0   | < 0.0001 |
| SD_DIV7       | 1.529     | 0.025  | 60.7   | < 0.0001 |

## Reference

Thornthwaite, C.W. 1948. "An Approach toward a Rational Classification of Climate."

Geographical Review 38(1): 55-94.

## Footnote

1. Here  $N(\mu, \Sigma)$  denotes a multivariate normal distribution with mean  $\mu$  and variance-

covariance matrix  $\Sigma$ .