Nutrition Management and Fertilization for Christmas Tree Production

Bert Cregg, Ph.D. Michigan State University Department of Horticulture Department of Forestry

		UNIV	FRSITY
Essential	Eleme	ents for Plant G	rowth
Macro	os	Micro)S
Carbon	С	Iron	Fe
Hydrogen	Н	Boron [*]	В
Oxygen	0	Manganese	Mn
Phosphorus	Р	Copper	Cu
Potassium	K	Zinc	Zn
Nitrogen	Ν	Molybdenum	Мо
Sulfur	S	Chlorine	CI
Calcium	Са	Nickel	Ni
Magnesium	Mg		

1/17/2014

Desired	soil pH	for sele	ected	
Chris	stmas tree	e speci	es	
		Desired	ł	
	Spp	рН		
Balsam	fir	5.0-5.5	i	
Fraser f	ir	5.0-5.5	i	
White p	ine	5.0-5.5	i	
Canaan	fir	5.5-6.0)	
Concolo	or fir	6.0-6.5	i	
Blue spi	uce	6.0-7.0)	
Douglas	-fir	6.0-7.0)	

pl	H and	l Nu	trien	t Ava	ailabi	lity
-			NITROG	EN		
-			PHOSPHO	RUS		
-				POTASSI	JM	
-				SULFUR	Same and the second	
-				CALCIUM		
				MAGNES	IUM	-
	IRON					
	MA	NGANE	SE			-
		BOR	ON	-		
-	COPPE	R and ZI	NC			-
				MOLYBD	ENUM	
4	5	6	7 pH	8	9	10

Recommended Tons of Limestone per Acre,^a Estimated from Soil pH and Texture, to Raise the pH of a 6 2/3-in. Plow Layer of Different Soils to pH 6.5

Texture of Plow Layer		pH Rai	nge	
	4.5 - 4.9	5.0 - 5.4	5.5 - 5.9	6.0 - 6.4
Clay and silty clay	6	5	4	2 1/2
Clay loams or loams	5	4	3	2
Sandy loams	4	3	2 1/2	1 1/2 ^b
Loamy sands	3	2 1/2	2	1 ^b
Sands	2 1/2	2	1 1/2 ^b	1/2 ^b
mmendations based ough a 100-mesh sie	on a liming mate ve and having a	erial having 25 neutralizing v	5% alue of 90%	

MICHIGAN STATE Extension

Effective Neutralizing Value (ENF)

- (ENF) • Based on chemical effectiveness (calcium carbonate equivalent)
- CaCO3 =100
- Particle size (finer mesh increases effectiveness)
- Moisture content

MICHIGAN STATE | Extension

Calcium carbonate equivalent (CCE) of a few common liming materials.

Common name	Chemical formula	CCE
Calcitic limestone	CaCO ₃	100
Dolomitic limestone	CaMg(CO ₃) ₂	109
Burned lime, quick lim	ne CaO	179
Hydrated or slaked lim Assuming 100% pure material	e Ca(OH) ₂	136

MICHIGAN STATE | Extension MICHIGAN STATE | Extension Amount of elemental S needed to reducing soil pH (#/Ac) (ENF) Starting Soil CEC 5 15 Η 6 218 327 6.5 436 654 7 654 981 1308 7.5 872 1308 1744

MICHIGAN STATE Extension

25

436

872

Cation Exchange Capacity (CEC)

- · Common nutrient elements that occur as cations are K⁺, Mg⁺², Ca⁺², NH₄⁺
- The ability of a soil to hold positively charged ions (cations)
- · Gives an indication of the ability of soil to hold nutrients

MICHIGAN STATE | Extension

What factors determine CEC?

- · Soil texture
- Organic matter
- Type of clay mineral

MICHIGAN STATE | Extension Soil CEC ranges Soil texture CEC (meq/100g soi) Sands (light-colored) 3-5 Sands (dark-colored) 10-20 10-15 Loams Silt loams 15-25 20-50 Clay and clay loams Organic soils 50-100

Reducing pH		
Table 2. Common acidit	ving materials	
Table 2. Common acidit Material (100% tasis)	ying materials Chemical Formula	Pounds of Material Equivalent to 100 Pounds of Sulfur
Table 2. Common acidit Material (100% tasts) Sulfur, Elemental	ying materials Chemical Formula S	Pounds of Msterial Equivalent to 100 Pounds of Sulfur" 100
Table 2. Common acidit Material (100% tasis) Sultur, Elemental Aluminum Sulfate	ying materials Chemical Formula S Al ₂ (SOd);r18H;O	Pounds of Material Equivalent to 100 Pounds of Sulfur" 100 694
Table 2. Common acidit Material (100% sass) Sultur, Elemental Aluminum Sulfate Ammonium Sulfate	ying materials Chemical Formula S Alr/(SO4):r18H;O (NH2);rSO4	Pounds of Material Equivalent to 100 Pounds of Sulfur" 100 694 260

Reducing pH		
Table 2. Common acidit	bring materials	
Table 2. Common acidit Material (100% basis)	fying materials Chemical Formula	Pounds of Material Equivaler to 100 Pounds of Sulfur*
Table 2. Common acidit Material (100% tasis) Sulfur, Elemental	fying materials Chemical Formula S	Pounds of Material Equivaler to 100 Pounds of Sulfur* 100
Table 2. Common acidit Material (100% tasis) Sulfur, Elemental Aluminum Sulfata	fying materials Chemical Formula S Ab/(SO4):r18H/O	Pounds of Msterial Equivaler to 100 Pounds of Sulfur 100 694
Table 2. Common acidit Material (100% tasis) Sulfur, Elemental Aluminum Sulfata Ammonium Sulfate	fying materials Chemical Formula S Ab/(SO4):r18H,O (NH2);SO4	Pounds of Msterial Equivaler to 100 Pounds of Sulfur 100 694 260

Effective Neutralizing Value

- Example:
- · Soil test lab ENF = 60
- Your produce
- You need to recommend

recommends 2 tons/ac @	pł
ct has ENF = 50 o add 60/50 = 1.2 times ded amount (2.4 tons/ac)	

Determining need for fertilization

- In general fertilization in field nursery production is based on at least one of the following:
 - Visible symptoms
 - Soil testing
 - Foliar testing

MICHIGAN STATE Extension

Stratify soil sampling

- Divide fields into sections based on
 - Slope
 - Drainage
 - Past cropping or use
 - Manageable unit size

Nutrient analysis

- · Soil analysis
 - Typical soil analysis will give macronutrients and some micros (Fe, Mn, Zn, Cu) and also elements that can be toxic (Al)
 - Limitation of soil analysis is that it may not indicate amount available to plants (Fe chlorosis)
 - Some elements can interfere with uptake of others (K -induced Mg deficiency)

MICHIGAN STATE Extension

Nutrient analysis

- Foliar analysis
 - Foliar analysis provides measure of actual nutrient concentration of plant tissue
 - Problem: Often only very general guidelines are available for "optimal" nutrients concentrations
 - Concentrations can vary by: age of plant, leaf position, time of year

Extension Foliar nutrient analyses Sample recently expanded foliage Keep track of time of year when sampled Deciduous -> Mid-late summer Conifers -> Early fall If possible, sample 'good' and 'bad' plants

MICHIGAN STATE Extension

Gains and losses of N

- Increase N availability
 - Fertilization
 - Mineralization
 - N fixation
- Decrease N availability
 - Leaching
 - Denitrification
 - Crop harvest

How much nitrogen should I apply?

- Historically, recommendations for N have ranged as high as 250-300 lbs N/ac
- Trees don't need that much N
- Excessive fertilization can lead to nitrate leaching

MICHIGAN STATE Extension Nitrogen recommendation for firs & spruces Tree age Oz. N/tree 1bs N/Ac 0.5 40 1 2 0.625 50 1 3 75 >4 1.25 100

MICHIGAN STATE Extension

In order to optimize plant uptake and minimize environmental contamination:

- · Fertilize more frequently in smaller amounts
- Band fertilizer along the crop root-zone to ensure that nutrients are intercepted
- Minimize ammonia volatilization by incorporating fertilizer
- Avoiding the use of urea during warm, dry periods

MICHIGAN STATE Extension

Fertilizer application methods

- Granular
 - Choice of material
 - Timing
 - Broadcast vs. banding

	Salt Inde	X
Ni	trogen sou	rces
Material	Salt index	1 11/11
Ammonium nitrate	104.7	1 11111 1 1.
Ammonium sulfate	69.0	1 The 1 1 11 1
Calcium nitrate	52.5	
DAP	34.2	
Potassium nitrate	73.6	
Urea	75.4	A BO
Sodium nitrate	100.0	a contraction
		0 Ve

1/17/2014

MICHIGAN STATE | Extension

MSU Nitrogen Source Study

• Treatments

- Annual application of 75# N per acre
- Applied as either NH_4^+ or NO_3^- only
- Lime or sulfur added to off-set pH effects
- Treatments applied for 4 years (2009-2012)

N source c	ost com	pariso
Fertilizer	\$ per ton*	\$ per #N
Urea	\$573	\$0.62
Ammonium sulfate	\$502	\$1.19
МАР	\$675	\$2.81
	*Average of co-ops in Feb. 28, 2013	Montcalm and M

	MICHIGAN STATE Extension						
Nutrient concentration and soil							
reaction of common fertilizers							
				Acid/Base Equiv.			
Fertilizer source	%N	P2O5	К2О	(#CaCO3/ton fert.)			
Anhydrous ammonia	82			-2960			
Ammonium nitrate	34			-1260			
Ammonium sulfate	21			-2240			
Urea	46			-1680			
Diammonium phosphate	16-21	48-53		-1480			
Monoammonium phosphate	11-12	48-61		-1300			
Calcium nitrate	15			400			
Potassium nitrate	13		46	520			

Summary

- N source (ammonium vs. nitrate) had little or no impact on tree growth, foliar nutrition or color
- N fertilizer choice should be made based on:
 - Need for other nutrients
 - Cost
 - Soil reaction
 - Other factors

