Fertilizers and nutrient management for hops

Diane Brown, Michigan State University Extension
Pre-plant nutrient management for hops

• Soil test!
• Correct major issues before planting
• pH 6.2 to 6.5
• Lime season before if necessary
• Make sure all nutrients in optimum range
Soil pH and Nutrient Availability

Table 1. Soil pH and Interpretation

<table>
<thead>
<tr>
<th></th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
<th>7.0</th>
<th>7.5</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Strongly Acid</td>
<td>Medium Acid</td>
<td>Slightly Acid</td>
<td>Slightly Acid</td>
<td>Neutral</td>
<td>Mildly Alkaline</td>
<td>Moderately Alkaline</td>
</tr>
</tbody>
</table>

Best Range for Most Crops
Why pH matters

• soil pH affects the abundance of microorganisms.

• Bacteria are generally more prevalent in alkaline soils and fungi dominate in acidic soils.

• This is important because microbes are responsible for the cycling of nutrients.

• The most diverse and numerous populations are found in near-neutral soils.
The Influence of Soil pH on Nutrient Availability

Range of Acidity
- Nitrogen
- Phosphorus
- Potassium
- Sulfur
- Calcium
- Magnesium
- Iron
- Manganese
- Boron
- Copper & Zinc
- Molybdenum

Range of Alkalinity
Adjusting Soil pH

- Easiest pre-plant
- Soils will progressively acidify with normal farming practices
- Low pH- use lime
- Dolomitic lime also adds Ca and Mg
- Low pH- aluminum toxicity and P deficiency
Liming the Hopyard

- Add in fall
- Add prior to planting of yard if possible
- Mix into soil will react faster
fertility

- Test the soil annually
- around 100 pounds of nitrogen per acre (lb N/acre) are removed on average during hop harvest.
- typical first-year N rates are 75 lb N/ acre; in subsequent years, 100 to 150 lb N/acre.
- Low phosphorus requirements- 20-30 lb P/A
- Potassium- 80-150 lb/A
Effect of fertilizers on soil pH

• Ammonium (NH4+) or ammonium forming fertilizers (ex. urea) will cause a decrease in soil pH over time.

• Nitrate (NO3-) sources carrying a basic cation should be less acid-forming than NH4+ fertilizers.

• The presence of Ca, Mg, K, and Na in the fertilizer will slightly increase or cause no change in soil pH.

• Elemental sulfur, ammonium sulfate, and compounds such as iron can reduce the soil pH
Nutrient Sources

- Bines and leaves returned to field- *use caution*
- Composts
- Animal manure
- Organic Bagged Fertilizers
- Synthetic Fertilizers
Reading a fertilizer label- what’s in a bag?

• Product or brand name
• N-P-K grade %(by weight) of the three major nutrients in a fertilizer.
• Guarantees for Total Nitrogen (N), Available Phosphate (P2O5) and Soluble Potash (K2O)
 Example: 12-15-24 means 12% nitrogen, 15% available phosphate, and 24% soluble potash
• Net weight
• Guaranteed analysis
Guaranteed analysis

<table>
<thead>
<tr>
<th>Element</th>
<th>Agricultural Fertilizers (percent)</th>
<th>Specialty Fertilizers (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (Ca)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td>Sulfur (S)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Boron (B)</td>
<td>0.125</td>
<td>0.02</td>
</tr>
<tr>
<td>Chlorine</td>
<td>-</td>
<td>0.10</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.05 (chelate 0.10)</td>
<td>0.50</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>0.50 (chelate 0.125)</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Fertilizer and nutrients

• Organic or conventional?
• organic- can be difficult to supply nitrogen requirements
• USDA national organic program:
 • http://www.ams.usda.gov/AM Sv1.0/nop
• Template for organic USDA certification:
 • http://www.ams.usda.gov/AM Sv1.0/getfile?d DocName=STELPRDC5091031
Fertilizer and nutrients

• USDA national organic program:
 • http://www.ams.usda.gov/AMSv1.0/nop

• OMRI approved fertilizers:
 • http://www.omri.org/simple-opl-search/results/fertilizer
Organic Fertilizers

- Manures, composts, worm castings
- Often high in phosphorus
- Have them tested
- Commercially prepared bulk sources available
Organic Fertilizers- what’s acceptable

- Naturally occurring fertilizers or amendments

<table>
<thead>
<tr>
<th>Mined or Mineral Sources</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>lime - carbonate, not hydrated</td>
<td>lime - carbonate, not hydrated or burnt</td>
</tr>
<tr>
<td>or burnt</td>
<td>gypsum - calcium sulfate</td>
</tr>
<tr>
<td>rock phosphate - calcium</td>
<td>rock phosphate - calcium phosphate</td>
</tr>
<tr>
<td>phosphate</td>
<td>greensand - potassium (0-0-7)</td>
</tr>
<tr>
<td>potassium sulfate (0-0-50)</td>
<td>potassium sulfate (0-0-50)</td>
</tr>
<tr>
<td>potassium magnesium sulfate</td>
<td>potassium magnesium sulfate (0-0-21)</td>
</tr>
<tr>
<td>basalt rock powder</td>
<td>basalt rock powder</td>
</tr>
<tr>
<td>granite rock powder (5-10% K₂O</td>
<td>granite rock powder (5-10% K₂O)</td>
</tr>
</tbody>
</table>
Organic Fertilizers- what’s acceptable

- Naturally occurring fertilizers or amendments

<table>
<thead>
<tr>
<th>Animal Derived Sources</th>
<th>Material</th>
<th>Release time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bone meal (6-12-0)</td>
<td>1-4 mo.</td>
</tr>
<tr>
<td></td>
<td>blood meal (12-0-0)</td>
<td>1- 4 mo.</td>
</tr>
<tr>
<td></td>
<td>fish emulsion (5-2-2) adds micronutrients</td>
<td>1-4 mo.</td>
</tr>
<tr>
<td></td>
<td>fish meal (10-6-2)</td>
<td>1-4 mo.</td>
</tr>
<tr>
<td></td>
<td>feather meal varies- N content 7- 12%</td>
<td>4+ mo.</td>
</tr>
<tr>
<td></td>
<td>manure - many types</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 to 5 ft³ per year</td>
<td></td>
</tr>
<tr>
<td></td>
<td>worm castings</td>
<td></td>
</tr>
</tbody>
</table>
Organic Fertilizers- what’s acceptable

- Naturally occurring fertilizers or amendments

<table>
<thead>
<tr>
<th>Plant Derived Sources</th>
<th>Release time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>alfalfa meal (3-0.5-3)</td>
<td>1- 4 mo.</td>
</tr>
<tr>
<td>soybean meal (6-1.4-2)</td>
<td>1-4 mo.</td>
</tr>
<tr>
<td>cotton seed meal (6-2-2)</td>
<td>1-4 mo.</td>
</tr>
<tr>
<td>kelp meal (negligible- for trace elements)</td>
<td>4+ mo.</td>
</tr>
<tr>
<td>Kelp powder (1-0-4)</td>
<td>immed. – 1 mo</td>
</tr>
<tr>
<td>wood ash (liming action)</td>
<td>value of ag lime</td>
</tr>
<tr>
<td>composts (typ. 1.5-3.5% N, 0.5-1% P, 1-2% K) watch salts!</td>
<td>Very slow</td>
</tr>
</tbody>
</table>
Approximate nutrient content of manure

<table>
<thead>
<tr>
<th>type</th>
<th>N</th>
<th>P</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy cattle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with bedding</td>
<td>0.5%</td>
<td>0.2%</td>
<td>0.5%</td>
</tr>
<tr>
<td>without bedding</td>
<td>0.5%</td>
<td>0.2%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Horse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with bedding</td>
<td>0.7%</td>
<td>0.2%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Poultry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with litter</td>
<td>2.8%</td>
<td>2.3%</td>
<td>1.7%</td>
</tr>
<tr>
<td>without litter</td>
<td>1.7%</td>
<td>2.4%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

Approximately 30-50% of N available in the first year
Non-composted manure- 120 day pre-harvest interval
http://msue.anr.msu.edu/news/fall_manure_application_tips
Want to make your own compost?

• Compost production and use- John Biernbaum and Andy Fogiel, Department of Horticulture, Michigan State University

• www.safs.msu.edu/soilecology/pdfs/Combined%20Compost05.doc
Synthetic Fertilizers

• Nitrogen sources
• Urea- 46-0-0- converts to NH+ in 2-3 d
 – coated ureas- sulfur coated, CoRoN, Nutralene, N-Sure
• Ammonium nitrate 33-0-0
• Ammonium sulfate- 21-0-0 highly acidifying
• Calcium nitrate 16-0-0
• Potassium nitrate 13-0-44 low salt index
Synthetic Fertilizers

Common Phosphorus sources

- Triple superphosphate 0-46-0
- Diammonium phosphate 18-46-0
- Monoammonium phosphate 11-48-0
Synthetic Fertilizers

Common potassium sources

• potassium chloride 0-0-60 or 0-0-62 not recommended
• Potassium sulfate 0-0-50
• Potassium magnesium sulfate 0-0-22
 Mg-11.2%, S-22.7%
• Potassium nitrate 13-0-44
• ! Excessive potassium can lead to Mg deficiency
Hop Requirements

VARIES SLIGHTLY BY VARIETY

• 3% Nitrogen
• 2% Potassium
• 0.50% Phosphorus

• Other important nutrients
 – Boron
 – Zinc
Hops Nitrogen requirements

• 60 to 150 lbs of actual N per acre
• Apply in late May to mid June
• Base rate of application on yields
• Also consider soil type
 – Levels of organic matter-
 – 20 lb N / % OM / Ac / Yr

hop N requirement- (N from manure + returned bines, +
cover crops) = fertilizer N to apply
First Year Hop Requirements

PRODUCE 1750 LBS DM/acre

• 3.0% Nitrogen = 55 Lbs
• 2.0% Potassium = 35 Lbs
• 0.50% Phosphorus = 9 lbs
Hop Requirements

PRODUCE 5000 LBS DM/acre
- 3.0% Nitrogen = 150 Lbs
- 2.0% Potassium = 100 Lbs
- 0.50% Phosphorus = 25 lbs

CONES 1/3 to 1/2 of DM/acre
- 3.0% Nitrogen = 75 Lbs
- 2.0% Potassium = 50 Lbs
- 0.50% Phosphorus = 12.5 lbs
Yields?

You Should Know Cone Yields

1000 lbs dry cones per acre

30 to 50% of total weight

2000 to 3000 lbs total

60 to 90 lbs of N removed
Phosphorus

- Phosphorus (0 to 80 lbs/acre)
- Will depend on Al levels in soil and pH
- Will depend on soil test levels

Watch excessive P levels in soils-
ZN deficiency
Potassium

- Potassium (0 to 160 lbs/acre)
- Will depend on soil type
- Will depend on yield
- Also depends on soil levels

<table>
<thead>
<tr>
<th>For potash</th>
<th>Category</th>
<th>Low</th>
<th>Medium</th>
<th>Optimum</th>
<th>High</th>
<th>V. High</th>
</tr>
</thead>
<tbody>
<tr>
<td>K (ppm)</td>
<td></td>
<td>0–50</td>
<td>51–100</td>
<td>101–130</td>
<td>131–160</td>
<td>>160</td>
</tr>
<tr>
<td>K to apply</td>
<td></td>
<td>120–150</td>
<td>80–120</td>
<td>60–80</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Boron

- Boron deficiency in hops
- Symptoms
 - Delayed emergence of shoots
 - Small, distorted, chlorotic leaves
 - Shortened internodes
 - Lots of buds on the crown at ground level

Photos: Compendium of hop diseases
Boron

- Boron deficiency in hops-Based on soil test results
- < 1.5 ppm apply 1.0-1.5 lb/A
- > 1.5 ppm no need to apply
- Can be toxic if applied in excess!
Zinc

- Deficiency symptoms-
- Chlorotic leaves
- Long shoots with very small, cupped, with deeply cut lobes
- weak lateral and bine growth,
- Acid, sandy soils low in organic matter neutral to alkaline soils or high in P

Photos: Compendium of hop diseases
Zinc

• Foliar application of zinc sulfate (0.15-0.18%).
• or If Zinc is low add 2 to 4 lbs per acre
• Will need to put through irrigation or blend with other fertilizer
Information sources:

Heather Darby, University of Vermont, Building a Hop Industry In New England, powerpoint presentation, August, 2013
Organic Farming Principles and Practices, John A. Biernbaum, Department of Horticulture, Michigan State University,
http://www.safs.msu.edu/soilecology/pdfs/OrganicFarming.htm
Using composts in the home garden, Colorado Master Gardener Note#243
http://www.ext.colostate.edu/mg/gardennotes/243.html
Organic fertilizers, Colorado Master Gardener Note #234
http://www.ext.colostate.edu/mg/gardennotes/234.html
Michigan State University Soil and Plant Nutrient Laboratory
http://www.spnl.msu.edu/
“AND
JUSTICE
FOR ALL”

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national or ethnic origin, age, sex, handicap, religion, marital status, family status, political beliefs, or non-enforcement of the English language. To file a complaint alleging discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call toll free (866) 632-9992 (voice) or (800) 877-8339 (TDD). USDA is an equal opportunity provider and employer.