Nutrients to Soybean: Enhanced, Supplied, or Suppressed?

Shaun N. Casteel, Purdue University Extension Soybean Specialist scasteel@purdue.edu, 765-494-0895

@PurdueSoybean and **Purdue Crop Chat podcast**

Classic Sulfur Deficiency

- Coarse-textured: Sand, Loamy Sand, Sandy Loam
- Low Organic Matter < 2%

SOYBEAN STATION

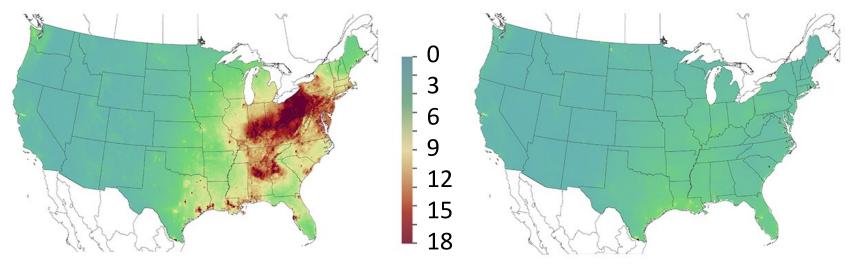
DELIVERING FIRST CLASS INFORMATION

Situational Sulfur Deficiency: Factors Affecting Sulfur Availability

Early to Timely Planting cool soils, limited mineralization

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

Situational Sulfur Deficiency: Factors Affecting Sulfur Availability



Residue with High Carbon Immobilization of Sulfur

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

Sulfur: Who Needs It...Maybe You?

Total Sulfur Deposition (lb/ac)

Avg. of 2000-2002

Source: CASTNET/CMAQ/NADP USEPA, 2022

Avg. of 2019-2021

Adapted from USEPA, 2023

SOYBEAN STATION

©2023 Casteel, Purdue University - 5

DELIVERING FIRST CLASS INFORMATION

Sulfur Effects on Soybean

No Sulfur

20 lb S/ac

LaCrosse, IN – July 15, 2016

SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

No Sulfur

LaCrosse, IN – Sept 7, 2017

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

Supplying Sulfur to Our Fields

- ~3-4 lb S/ac mineralized per 1% OM per year
- Plant Residue Mineralized or Immobilized?
 - C:S Ratio < 200:1 → MINERALIZED SO₄-S
 - C:S Ratio > 400:1 → IMMOBILIZED SO₄-S
 - Corn Stover ~350:1
 - Soybean Stover ~125:1
 - Wheat Straw ~300:1
 - Cover Crop? Other Factors?

S Fertilizer Blends Broadcasted at Planting of Soybean

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

Treatment	Sulfur	Nitrogen	Phosphorus	Potassium
	lb S/ac	lb N/ac	lb P ₂ O ₅ /ac	lb K ₂ O/ac
Untreated	•	•	•	•
Ν	•	17.5	•	•
Ρ	•	•	40	•
К	•	•	•	60
NPK	•	17.5	40	60

SOYBEAN STATION

©2023 Casteel, Purdue University - 11

DELIVERING FIRST CLASS INFORMATION

Treatment	Sulfur	Nitrogen	Phosphorus	Potassium
	lb S/ac	lb N/ac	lb P ₂ O ₅ /ac	lb K ₂ O/ac
Untreated	•	•	•	
Ν	•	17.5	•	•
Ρ	•	•	40	
К	•	•	•	60
NPK	•	17.5	40	60
Sulfur + N	20	17.5	•	•
Sulfur + P	20	17.5	40	•
Sulfur + K	20	17.5	•	60
Sulfur + NPK	20	17.5	40	60
		SOYBEAN STAT	ION ©2023 Ca	steel, Purdue University - 1

DELIVERING FIRST CLASS INFORMATION

2019 Sulfur x NPK

	No AMS		AMS	
UTC	50.0	b		
N	50.0	b	53.4	b
Р	53.5	b	57.8	а
К	45.3	С	50.9	b
NPK	50.8	b	50.7	b

- K impeded yield ~ 5 bu/ac
 - Addition of N and P alleviated the yield hit (same as UTC)
 - Addition of N and S alleviated the yield hit (same as UTC)
- ~8 bu/ac improvement with AMS + P

La Crosse, IN

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

2020 Sulfur x NPK

	No AMS		AMS	
UTC	50.6			
Ν	54.4	cde	63.3	а
Ρ	56.8	bcd	58.9	abc
К	51.4	е	62.3	а
NPK	53.7	de	60.2	ab

- K did not have negative impact
- 6.2 bu/ac improvement with P
- 12.7 bu/ac improvement with AMS

- 3.8 bu/ac numeric improvement with N (urea alone)

S-NPK LaCrosse Aug 4, 2021

UTC KCI + AMS AMS

SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

22 LaCrosse: S+NPK

Source	No AMS		AMS	
UTC	50.8	а		
Ν	48.8	а	52.1	а
Ρ	51.4	а	52.8	а
К	43.2		50.9	а
NPK	43.6	b	52.0	а

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

21 W. Lafayette: S+NPK x Variety

Var ***

Fert***

V x Fert: ns

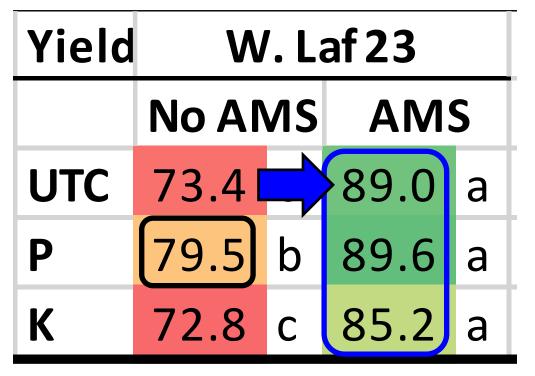
Cl Incl. \rightarrow 68.2 Cl Intermed. \rightarrow 74.6

ACRE 21	Pooled O	Pooled Over Varieties					
Source	No AMS		AMS				
UTC	67.9	С					
Ν	68.5	С	75.0	b			
Ρ	69.1	С	78.5	а			
К	67.1	С	74.9	b			
NPK	68.3	С	73.4	b			

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

22 W. Lafayette: S+NPK x Variety

<u>YIELD</u>	W.Laf. 22	Poo	Pooled Over Varietie			
Var ns Fert**	Source	No	AMS		AMS	
	UTC		66.7		4	
V x Fert: ns	Ν		69.3	С	70.5	bc
	Ρ		73.1	a	72.8	ab
Cl Incl. → 69.9	К	ſ	68.1	cd	68.5	cd
Cl Intermed. \rightarrow 69.7	NPK		69.9	С	69.4	С



SOYBEAN STATION

©2023 Casteel, Purdue University - 19

DELIVERING FIRST CLASS INFORMATION

23 PKS x Variety: W. Laf, Wanatah

Por S? Sulfur: 12 to 16 bu

Pooled over varieties, LSD_{0.10}

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

23 PKS x Variety: W. Laf, Wanatah

Yield	W. Laf 23					Wanatah 23		
	No AMS AMS			No AMS	AMS			
UTC	73.4		89.0	а		75.9	75.2	
Ρ	79.5	b	89.6	а		77.5	74.6	
Κ	72.8	С	85.2	а		76.1	73.9	

Por S? Sulfur: 12 to 16 bu

Pooled over varieties, LSD_{0.10}

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

Sulfur Management Considerations

- Soluble S Fertilizer applied prior to planting (less than 6 weeks) of greatest benefit and flexibility
- Broadcast of 15 to 20 lb S/ac with soluble source near planting such as AMS, MES10, pelletized Gypsum, or before emergence with ATS.
- Leaf Nutritional Snapshots then Apply Sulfur – "Close" to critical S levels (0.25%)
 - -N:S ~18:1 or higher

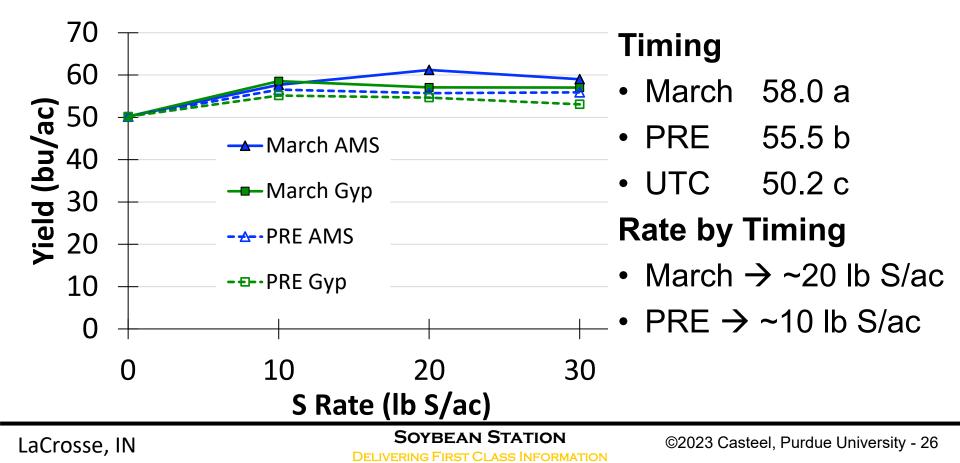
Sulfur Management Considerations

- Nutrient interactions can mask or limit yield effects based on timing of potash (i.e., Cl) in low CEC soil.
- Phosphorus blending is promising.
- Timely planting is foundational for high yielding soybeans; which seems to be intensified when coupled with PRE applications of N + S.
- **Field conditions** that affect S availability and nodulation + N fixation (soil temp, planting, residue)

22 Sulfur Timing: March vs. PRE

- LaCrosse
- Timing: March vs. PRE
- Source:
 - -**AMS** 21-0-0-24S
 - -PolyS 0-14-0-19S, 3.6Ca, 12.2Mg
 - -Gypsum 0-0-0-17S, 22Ca
- Rate: 0, 10, 20, 30 lb S/ac

S Timing: Other Nutrients Applied


S Rate	AMS	PolyS	PolyS	PolyS	Gypsum
lb S/ac	lb N/ac	lb K ₂ O/ac	lb Mg/ac	lb Ca/ac	lb Ca/ac
0					
10	8.8	7.4	6.4	1.9	12.9
20	17.5	14.7	12.8	3.8	25.9
30	26.3	22.1	19.3	5.7	38.8

SOYBEAN STATION

©2023 Casteel, Purdue University - 25

DELIVERING FIRST CLASS INFORMATION

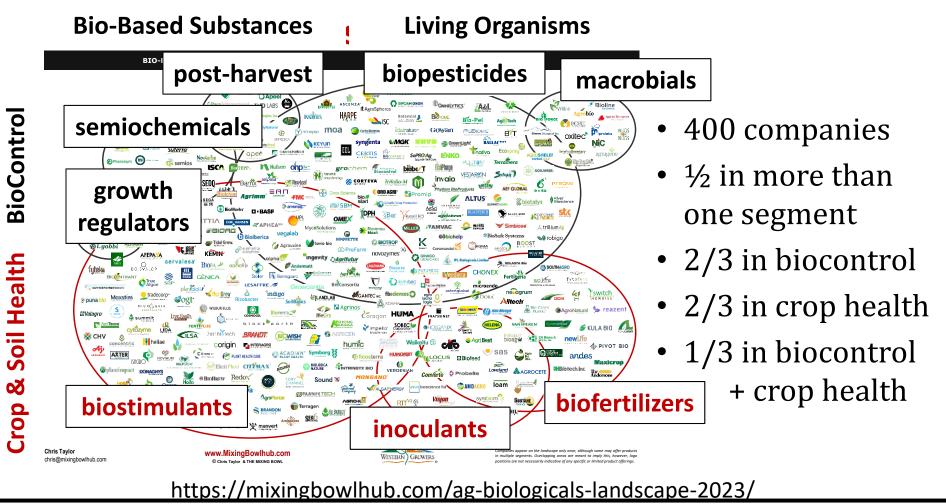
22 Sulfur Timing: March vs. PRE

 1200 companies have "Products derived from naturally occurring from micro and macro organisms, plant extracts, and other natural materials used to enhance crop production."

LIVING ORGANISMS

Chris Taylor chris@mixingbowlhub.com WWW.MixingBowlhub.com © Chris Taylor & THE MIXING BOWL

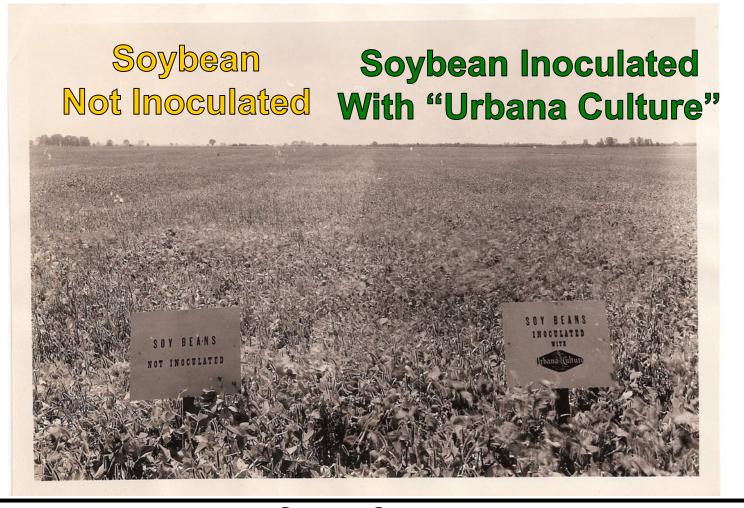
BIO-BASED SUBSTANCES



Companies appear on the landscape only once, although some may offer products in multiple segments. Overlapping areas are meant to imply this, however, laga positions are not necessarily indicative of any specific or limited product offerings.

https://mixingbowlhub.com/ag-biologicals-landscape-2023/

SOYBEAN STATION


DELIVERING FIRST CLASS INFORMATION

SOYBEAN STATION

©2023 Casteel, Purdue University - 28

DELIVERING FIRST CLASS INFORMATION

SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

Soybean Inoculants

- Bradyrhizobium japonicum
- At least 100,000 colony forming units/seed
- Soils with very low pH correct pH first

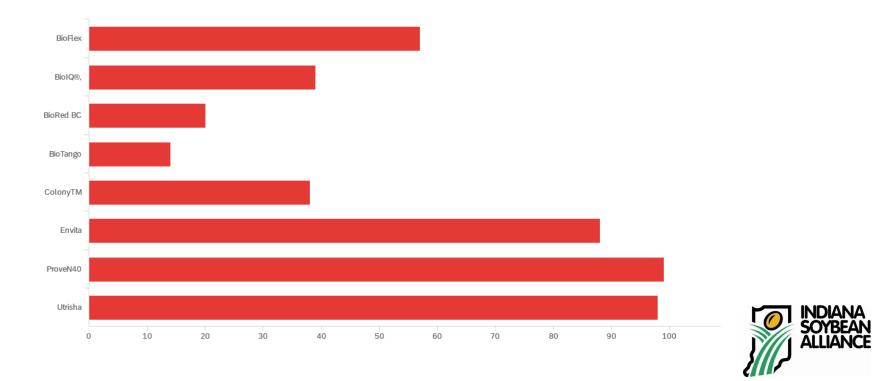
SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

When to Inoculate For Nitrogen Management?

- No history of soybean being grown in last 3 to 5 yrs
 - Continuous corn
 - CRP land
 - Newly cleared land
- Sandy soils in northern and southern Indiana
- Soils that have been flooded for extended periods
- What about extremely drought-stressed fields?
- Double inoculant rate and/or two different method of application
- Add sulfur?

2011 Soybean Inoculants: "EXTRA! EXTRA!"

- Integral® bio-fungicide in Vault LVL and Vault HP:
 - Bacillus subtilis = ubiquitous bacterium that contributes to nutrient cycling when biologically active by producing various enzymes


• LCO Promoter Technology in Optimize and Optimize 400:

- Isoflavinoid is the soybean's signal to rhizobia for N
- LCO (Lipo-chitooligosaccharide), "I heard you please send food"
- Azosperillium brasilense in Primo:
 - Produces Indole Acetic Acid (IAA) = plant hormone that initiates primary and secondary root development as well as root hair formation

Nutrient Influencing Biologicals

- Nitrogen-Supplying Biologicals (non-rhizobial) may fix or generate N.
- **Phosphorus Supply:** Biostimulants may provide enzymes (e.g., phosphatase that break and release phosphorus bound to organic matter). Solubilizers may solubilize P from soil minerals.
- Humic/Fulvic Acids: may chelate (acquire) cations in the soil to increase P and Zn availability. A general effect on soil and nutrient availability/access. Some may influence plants.
- Marine Extracts: may stimulate microbes, roots, and shoots (in general a plant effect).
- **Combinations:** may provide any of the previously mentioned effects depending on microbes in the mix.

Nitrogen-Supplying Biologicals (non-rhizobial)

SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

Treatment	ACRE	Pinney	Average	2023 Bio Shotgun
UTC	74.2	80.9	77.6	2025 Dio Shotgun
Utrisha	71.7	83.8	77.8	• ACRE: NS, CV 8.8%
Envita 🗾	70.9	84.3 X	77.6	110102.100, 0000000000000000000000000000000000
Optimize 🥅	70.1	84.1 x	77.1	• Pinney Sand: NS, CV 4.5%
MegaPhos	74.2	81.4	77.8	
Phosgard	75.7	82.0	78.9	Nitrogen Supply: -4.1 to 3.4 bu
Rootella	72.3	82.9	77.6	
MegaFol	79.6	83.7	81.7x	Phosphorus Supply: -1.9 to 2.0 bu
Maritime	72.7	80.3	76.5	II. In A aida 20 to 11 hr
QuickRoots	74.6	83.2	78.9	Humic/Fulvic Acids: -3.9 to -1.1 bu
Accomp_Max	76.2	82.2	79.2	Marine Extracts: -1.5 to 5.4 bu
PhosN	73.8	81.5	77.6	
Env_401	77.3	79.0	78.2	Combinations: -0.4 to 2.3 bu
Ferti_Fulvic	73.1	79.7	76.4	
Nutra	73.3	79.8	76.5	$x = UTC$ Contrasts at $p \le 0.10$
Hydra	70.3	79.3	74.8	1 -

_

Bio N Supplier x Fertility

- Three non-rhizobial N supplying biologicals:
 - -Untreated
 - Envita (Azotic): Gluconacetobacter diazotrophicus
 - -Utrisha (Corteva): Methylobacterium symbioticum
- Four fertility regimes:
 - Unfertilized
 - $-N \rightarrow 40$ lb N/ac from Urea (46-0-0)
 - $-S \rightarrow 20$ lb S/ac from pelletized gypsum (0-0-0-17S)
 - $-N+S \rightarrow 40$ lb N/ac + 20 lb S/ac (urea + pelletized gypsum)

23 Bio N Supplier x Fertility: W. Laf Bio N: none to ~4 bu

Fertility	No Bio		Envita		Utrisha	
None			74.1			
Nitrogen	77.4	bc	81.2	b	78.2	bc
Sulfur	88.0	а	88.7	а	87.7	а
Nitrogen + Sulfur	90.4	а	91.0	а	89.7	а

Sulfur: +13 bu

SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

23 Bio N Supplier x Fertility: Wanatah

Fertility	No Bio	Envita	Utrisha
None	82.5	82.7	81.6
Nitrogen	79.5	79.5	82.6
Sulfur	82.7	76.1	78.0
Nitrogen + Sulfur	81.2	79.7	80.0

SOYBEAN STATION

©2023 Casteel, Purdue University - 38

23 Bio N Supplier x Fertility: LaCrosse

Fertility	No E	Bio	Envi	ta	Utrisha	
None	49.3	С	53.2	bc	53.0	bc
Nitrogen	53.7	bc	48.8	С	49.5	С
Sulfur	58.4	ab	57.5	ab	51.3	С
Nitrogen + Sulfur	58.5	ab	59.5	а	61.9	а

Sulfur: +9 bu

LSD0.05, CV(%) 8.3

SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

Concluding Thoughts

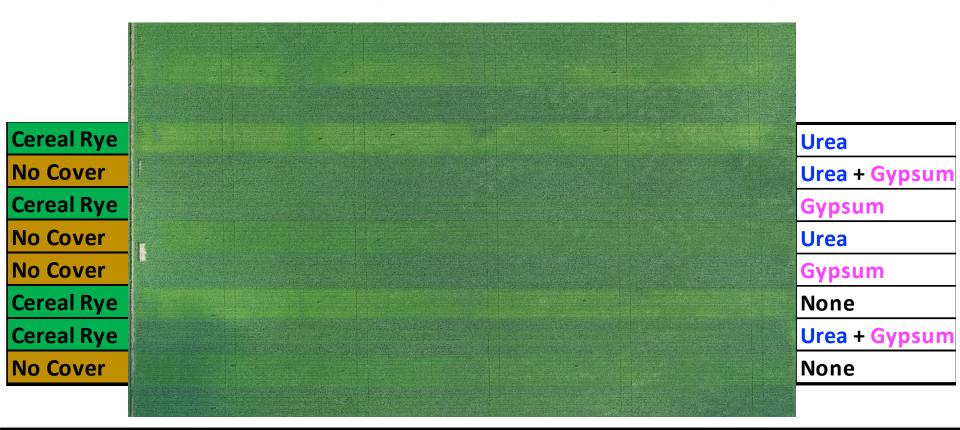
- Apply the lessons learned from Bradyrhizobium
 - -Soil fertility, field condition, crop rotation, CFUs, etc.
- Identify the potential benefit of the biological
- Evaluate it in the field(s) in need of this effect
- Test over multiple seasons to determine repeatability of response or no response
- Purdue On The Farm: Non-rhizobial N Suppliers

2022-23 Cereal Rye x NS in Soybean

- 2 x 4 Factorial at field-scale
- 2 Cereal Rye → Yes, No
- 4 NS Fertility
 - None
 - Sulfur: 20 lb S/ac (pelletized Gypsum)
 - Nitrogen: 40 lb N/ac (Urea)
 - N+S: 40 lb N, 20 lb S
- Terminate ~12-16 inches (April-ish)
- Indiana: Columbia City, W. Lafayette, Butlerville
- Illinois: Effingham, Urbana

18 INFA Tipton

23 Cereal Rye x NS: West Lafayette



April 18th Terminate Cereal Rye May 6th Apply Fertilizer, Plant Soy

Sept 1st Response of Soybean

@PurdueSoybean | Purdue Crop Chat podcast | <u>scasteel@purdue.edu</u>

2023 Cereal Rye x NS: West Lafayette

W. Lafayette, Aug. 10, 2023

SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

C. Rye x NS in Soybean: 23 West Lafayette

Cover Crop	Fertilizer	Yield (bu/ac)			
None	None	61.2	b		
None	Urea	62.4	b		
None	Gypsum	71.4	а		
None	Urea + Gypsum	74.3	а		
Cereal Rye	None	54.7	С		
Cereal Rye	Urea	58.2	bc		
Cereal Rye	Gypsum	71.0	а		
Cereal Rye	Urea + Gypsum	74.8	а		

BONUS BENEFITS?

Sudden Death Syndrome

Fertilizer	Severity		Incidence	Disease Index		
None	2.3	а	48%	12.6	а	
Urea	2.0	а	48%	10.7	а	
Gypsum	1.0	b	39%	3.6	b	
Urea + Gypsum	1.1	b	33%	4.8	b	

Pooled over cereal rye + no cover, West Lafayette, 2023

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

Sudden Death Syndrome

PRE-applied Sulfur

No Sulfur

SOYBEAN STATION

©2023 Casteel, Purdue University - 47

Phytophthora

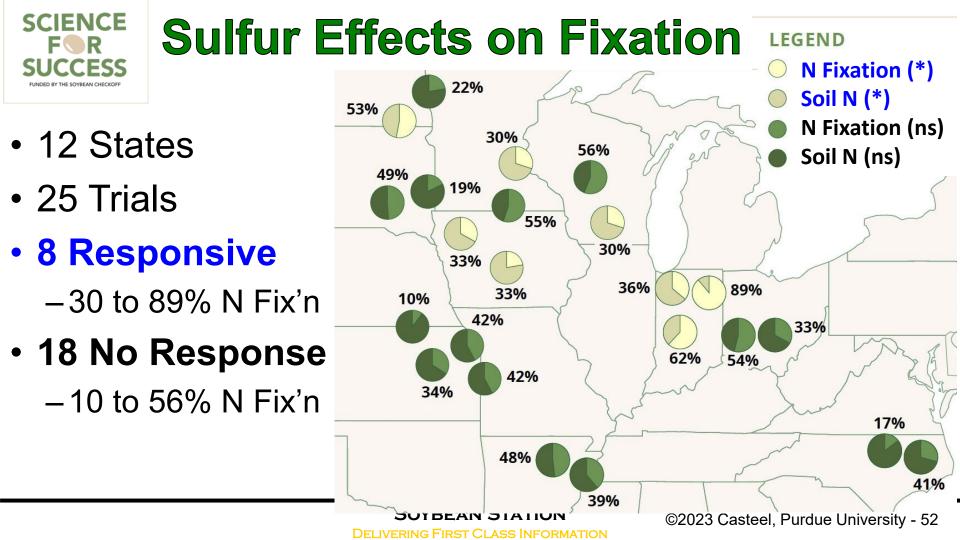
SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

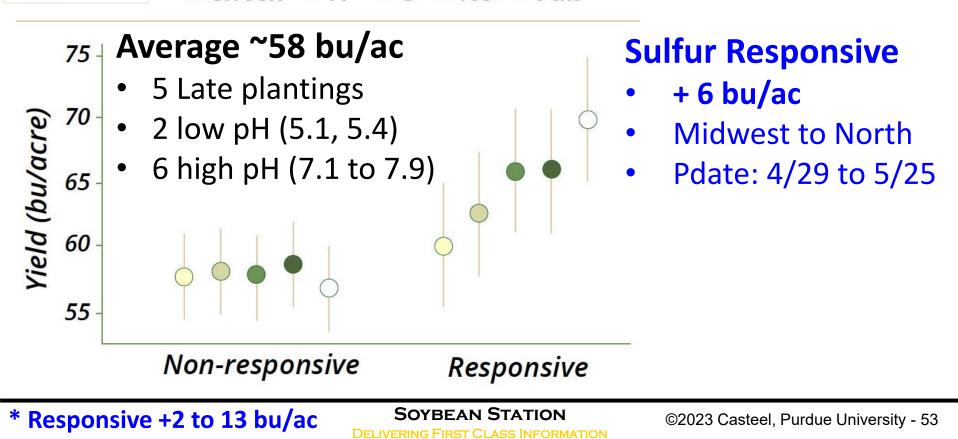
AMS 20 lb S/ac

Untreated

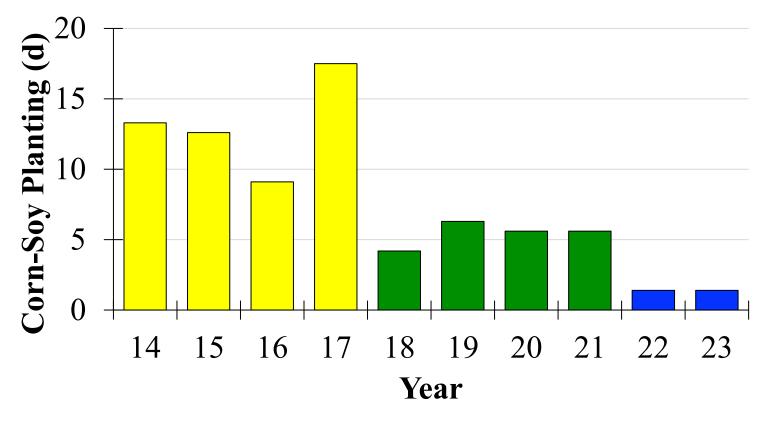
SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION


SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

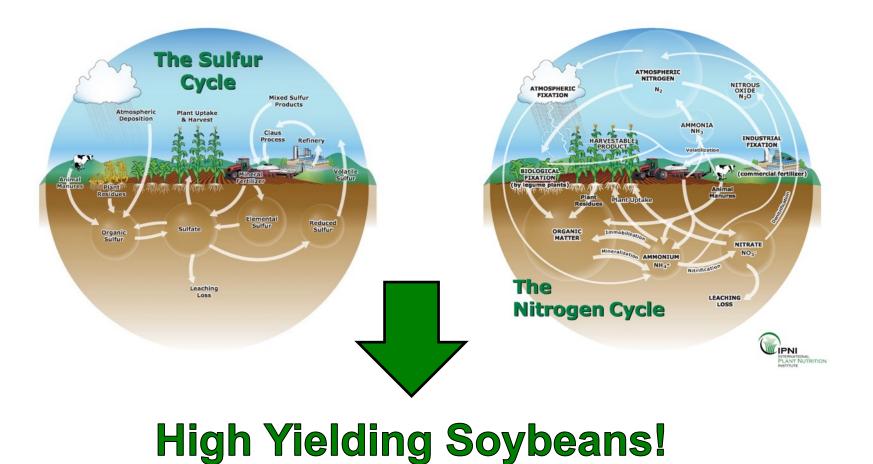
Shaun Casteel, scasteel@purdue.edu


@PurdueSoybean and Purdue Crop Chat podcast

ULLIVEINING I IINGI ULAGO INI UNMATICIN



Check ● N ● S ● NS ○ Full



Indiana Soybean Planting Relative to Corn

Adapted from USDA-NASS, 2023

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

IPNI, 2013

SOYBEAN STATION

©2023 Casteel, Purdue University - 55

Yield (bu/ac)	20	18	20	20	20	21	2022 Avg			
Early Planting	11-May		12-May		14-]	May	12-May		EARLY	7
UTC	62.4	de	61.9	de	69.0	cde	61.8	def	63.8	
AMS	69.5	bc	79.8	a	72.3	abcd	64.0	bcde	71.4	8 to 11 bu
ATS	71.5	abc	76.0	ab	•	•	69.3	ab	72.3	in
Gypsum	•		75.2	abc	76.9	a	67.1	abcd	73.1	EARLY
N + S	74.2	ab	82.6	a	75.2	ab	67.9	abc	75.0	Planting
Urea	•		•		67.3	def	64.4	bcde	65.9	i la
Late Planting	5- J	un	8-J	un	10-	Jun	6-,	Jun	LATE	
UTC	59.2	e	61.9	de	54.1	g	59.0	efg	58.6	
AMS	60.7	e	68.6	bcd	56.0	g	61.4	def	61.7	No Effect
ATS	61.9	e	66.1	de	•	•	53.4	g	60.5	in
Gypsum			66.7	cde	55.4	g	64.6	abcde	62.2	LATE
N + S	62.8	de	66.5	cde	56.0	g	65.3	abcd	62.7	Planting
Urea	•		•	•	57.3	g	63.9	bcde	60.6	

©2023 Casteel, Purdue University - 56

EARLY Planting @ 23 West Lafayette

UTC R3 leaf S ~0.26% S Sulfur R3 leaf S ~0.31% S R3 leaf N:S 19:1 R3 leaf N:S 17:1

Picture taken August 30, 2023

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

2023 S x Planting: Yield

Yield (bu/ac)	18-A	pr	12-N	/Iay	7-Jun	
UTC	77.5	de	75.4	def	66.6	g
AMS	98.8	a	90.6	b	71.9	efg
ATS	•		84.5	c	70.9	fg
Gypsum	98.9	a	90.5	b	69.0	g
N + S	101.1	a	92.9	b	72.1	efg
Urea	80.9	cd	77.8	d	68.4	g

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

©2023 Casteel, Purdue University - 60

		2018	2019 †	2020	2021	2022		
PLAN	TING							
F	EARLY	11-May	11-Jun	12-May	14-May	12-Ma		
L	LATE	5-Jun	27-Jun	8-Jun	10-Jun	6-Jun		
FERT	TLITY			SULFUR	NITRO	DGEN		
				(S lb/ac	(N lb	/ac)		
UTC	Untrea	ted		•				
AMS	Ammo	nium sulf	ate	20	17	17.5		
ATS	Ammo	nium thio	sulfate	20	9.3			
Gyp	Calciu	m sulfate		20	•			
N + S	AMS c	or Gyp + U	Jrea	20	4(C		
Urea				•	4(C		

Yield (bu/ac)	2018			
Early Planting	11-May			
UTC	62.4	de		
AMS	69.5	bc		
ATS	71.5	abc		
Gypsum	•			
N + S	74.2	ab		
Urea	•			
Late Planting	5-Jun			
UTC	59.2	e		
AMS	60.7	e		
ATS	61.9	e		
Gypsum	•			
N + S	62.8	de		
Urea	•			

DELIVERING FIRST CLASS INFORMATION

Yield (bu/ac)	201	18	2020		
Early Planting	11-N	Aay	12-May		
UTC	62.4	de	61.9	de	
AMS	69.5	bc	79.8	a	
ATS	71.5	abc	76.0	ab	
Gypsum			75.2	abc	
N + S	74.2	ab	82.6	a	
Urea					
Late Planting	5-J	un	8-Jun		
UTC	59.2	e	61.9	de	
AMS	60.7	e	68.6	bcd	
ATS	61.9	e	66.1	de	
Gypsum			66.7	cde	
N + S	62.8	de	66.5	cde	
Urea	•		•	•	

©2023 Casteel, Purdue University - 63

Yield (bu/ac)	2018		20	20	2021	
Early Planting	11-N	Aay	12-N	Aay	ay 14-N	
UTC	62.4	de	61.9	de	69.0	cde
AMS	69.5	bc	79.8	a	72.3	abcc
ATS	71.5	abc	76.0	ab	•	•
Gypsum	•		75.2	abc	76.9	a
N + S	74.2	ab	82.6	a	75.2	ab
Urea	•		•		67.3	def
Late Planting	5-J	un	8-Jun		10-Jun	
UTC	59.2	e	61.9	de	54.1	g
AMS	60.7	e	68.6	bcd	56.0	g
ATS	61.9	e	66.1	de	•	•
Gypsum	•		66.7	cde	55.4	g
N + S	62.8	de	66.5	cde	56.0	g
Urea	•		•	•	57.3	g

DELIVERING FIRST CLASS INFORMATION

Yield (bu/ac)	20	18	202	2020		2021		022
Early Planting	11-N	Aay	12-N	12-May		May	12-May	
UTC	62.4	de	61.9	de	69.0	cde	61.8	def
AMS	69.5	bc	79.8	a	72.3	abcd	64.0	bcde
ATS	71.5	abc	76.0	ab	•	•	69.3	ab
Gypsum	•		75.2	abc	76.9	a	67.1	abcd
N + S	74.2	ab	82.6	a	75.2	ab	67.9	abc
Urea	•		•		67.3	def	64.4	bcde
Late Planting	5-J	un	8-Jun		10-Jun		6-Jun	
UTC	59.2	e	61.9	de	54.1	g	59.0	efg
AMS	60.7	e	68.6	bcd	56.0	g	61.4	def
ATS	61.9	e	66.1	de	•	•	53.4	g
Gypsum	•		66.7	cde	55.4	g	64.6	abcde
N + S	62.8	de	66.5	cde	56.0	g	65.3	abcd
Urea	•			•	57.3	g	63.9	bcde

©2023 Casteel, Purdue University - 65

Yield (bu/ac)	20	18	20	20	20	21	2022 Avg			
Early Planting	11-May		12-May		14-]	May	12-May		EARLY	7
UTC	62.4	de	61.9	de	69.0	cde	61.8	def	63.8	
AMS	69.5	bc	79.8	a	72.3	abcd	64.0	bcde	71.4	8 to 11 bu
ATS	71.5	abc	76.0	ab	•	•	69.3	ab	72.3	in
Gypsum	•		75.2	abc	76.9	a	67.1	abcd	73.1	EARLY
N + S	74.2	ab	82.6	a	75.2	ab	67.9	abc	75.0	Planting
Urea	•		•		67.3	def	64.4	bcde	65.9	i la
Late Planting	5- J	un	8-J	un	10-	Jun	6-,	Jun	LATE	
UTC	59.2	e	61.9	de	54.1	g	59.0	efg	58.6	
AMS	60.7	e	68.6	bcd	56.0	g	61.4	def	61.7	No Effect
ATS	61.9	e	66.1	de	•	•	53.4	g	60.5	in
Gypsum			66.7	cde	55.4	g	64.6	abcde	62.2	LATE
N + S	62.8	de	66.5	cde	56.0	g	65.3	abcd	62.7	Planting
Urea	•		•	•	57.3	g	63.9	bcde	60.6	

©2023 Casteel, Purdue University - 66

Minimum Soil Temperature near Plantings

		2018	2020	2021	2022	Avg
Planting	Week	Minimum Soil Temp @ 4-in (F)				
Early	-1	58.5	47.3	48.2	59.0	53.2
Early	1	63.2	57.9	58.0	66.5	61.4
Early	2	63.4	63.7	65.0	66.4	64.6
Early	3	72.4	65.8	61.3	69.7	67.3
LATE	-1	68.3	69.5	70.5	71.1	69.8
LATE	1	69.1	69.4	72.1	70.7	70.3
LATE	2	73.2	72.3	71.3	76.7	73.4
LATE	3	70.8	70.4	74.8	76.2	73.0

SOYBEAN STATION

©2023 Casteel, Purdue University - 67

EARLY Planting @ 23 West Lafayette

UTC R3 leaf S ~0.26% S Sulfur R3 leaf S ~0.31% S R3 leaf N:S 19:1 R3 leaf N:S 17:1

Picture taken August 30, 2023

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

2023 S x Planting: Yield

Yield (bu/ac)	18-Apr		12-May		7-Jun	
UTC	77.5	de	75.4	def	66.6	g
AMS	98.8	a	90.6	b	71.9	efg
ATS	•		84.5	c	70.9	fg
Gypsum	98.9	a	90.5	b	69.0	g
N + S	101.1	a	92.9	b	72.1	efg
Urea	80.9	cd	77.8	d	68.4	g

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

Sulfur x Planting Interaction

- Sulfur Fertility increased yield in EARLY plantings (2018, 2020-23) due to better S supply, N fixation, and leaf retention and seed size increases.
- **Sulfur Fertility** did not affect the yield of **LATE** plantings (2018-23).
- Cool soil conditions prior to and following EARLY plantings likely limited mineralization of soil organic matter (e.g., S and N supply), nodulation and fixation, and soybean development (e.g., nodule, plant).

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

Shaun Casteel, scasteel@purdue.edu

@PurdueSoybean and Purdue Crop Chat podcast _____

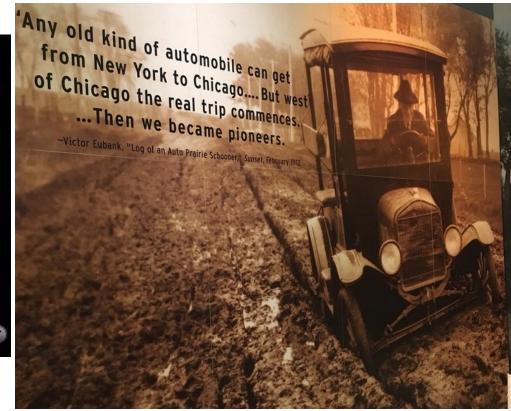
How Much S Does Soybean Need?

Grain	lb/bu	50 bu	75 bu	100 bu
Nitrogen	3.30	165	248	330
P_2O_5	0.73	37	55	73
K ₂ O	1.20	60	90	120
Sulfur	0.18	9	14	18
Total S	0.35	18	26	35

SOYBEAN STATION DELIVERING FIRST CLASS INFORMATION

Doing the Math: Sulfur Needs (Ib S/ac) (Rough Mass Balance)

Soil Organic Matter


Yield	Need	Sky	1%	2%	3%	4%
bu	lb S/ac		~4	~8	~12	~16
50	18	~5	9	5	1	+3
75	26	~5	17	13	9	5
100	35	~5	26	23	18	14

SOYBEAN STATION

©2023 Casteel, Purdue University - 74

Expanding Across The Frontier

SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

Azospirillum

- **Proposed benefits:** increased root growth and improved mineral and water uptake
- Co-inoculated with Bradyrhizobium japonicum
 - Increased plant growth and nodules (Cassan et al., 2009)
 - Brazil: increased nodulation in early stages, N accumulation, plant growth and yield (especially under drought) (Chibeba et al., 2015; Hungria et al., 2015; Cerezini et al.,2016)
 - US: Co-inoculation of *Azospirillum brasilense* and *Bradyrhizobium japonicum* resulted in a *soybean yield increase in only 2 out of 25 site-years* (de Borja Reis et al., 2022).

Bacillus

- Considered a *plant growth-promoting bacteria*
 - Improve nutrient supply
 - Modulate plant phytohormones
 - Induce plant resistance with antagonistic substances (Radhakrishnan et al., 2017)
- **Greenhouse**: Improvements in shoot and root weight of soybean treated on the seed (Akinrinlola et al., 2018)
- Field
 - *Quebec*: improve nodule number, nodule weight, shoot weight, root weight, total N, and grain yield (Bai et al., 2003)
 - India: increase Zn solubilization in the rhizosphere → higher Zn in plant biomass (Sharma et al., 2011).
 - *Egypt*: enhance drought tolerance and increase yield (Sheteiwy et al., 2021).

Bradyrhizobium

- N-fixing bacteria provide 50 to 60% of soybean N requirement
- *Bradyrhizobium japonicum* and *Bradyrhizobium elkanii* (Salvagiotti et al., 2008; Pagano and Miransari, 2016).
- Rarely any benefit in fields with a history of soybean production and an established *Bradyrhizobium* population (De Bruin et al., 2010)
- In Wisconsin, there was no positive soybean yield benefit to *Bradyrhizobium elkanii* inoculation in fields with a history of soybean production (Furseth et al., 2012).

- Promote N fixation through a symbiotic relationship with plants (Braña et al., 2016).
- In canola, a commercial seed treatment containing *Delftia* increased yield, which was attributed to greater S availability (Banerjee and Yesmin, 2004).

Glomus

- Arbuscular mycorrhizal fungi (AMF) are important for plant nutrition due to mutualistic symbiosis with the roots of about 80% of vascular plants (Smith et al., 2003).
- *Glomus* is an example of AMF, which promote P uptake (Smith and Read, 2008).
- Greenhouse: Greater soybean yield with direct inoculation of *Glomus* (Koyama et al., 2019) and reduced disease (Zambolim and Schenck, 1983).
- Field: *Glomus* and half rate of P fertilizer yielded comparable to a full rate of P fertilizer in Ghana (Thioub et al., 2019).

Pantoea

- **Potential benefits** (based on lab and greenhouse studies):
 - Combat plant pathogens
 - Promote plant growth
 - (May et al., 1997; Wright et al., 2001; Dutkiewicz et al., 2016).
- *Pantoea agglomerans* is considered a biofertilizer, solubilizing insoluble phosphates in a laboratory study (Son et al., 2006; Chen and Liu, 2019).

Pseudomonas

Potential benefits

- Promote plant growth by suppressing pathogenic microorganisms,
- Synthesize growth-stimulating plant hormones,
- Promote plant disease resistance (Preston, 2004; Kasotia et al., 2012).

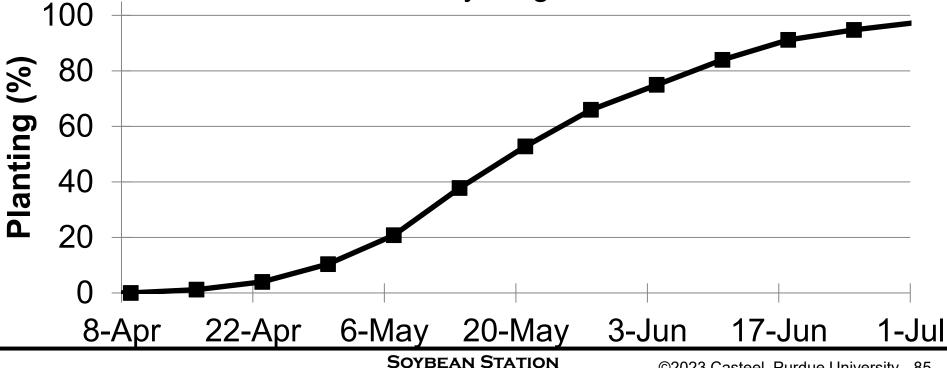
• Greenhouse or laboratory:

- Suppress several fungal root pathogens and plant parasitic nematodes (Timper et al., 2009).
- Suppress disease and increase nutrient uptake in seeds treated with *Pseudomonas* (Paulitz, 1991)
- Field:
 - Soybean seed treated with *Pseudomonas* yielded comparable to fungicide seed treatment (Kommedahl et al., 1981). Though more variability.
 - Did NOT control soybean cyst nematode or impact soybean yield (Noel, 1990).

Trichoderma

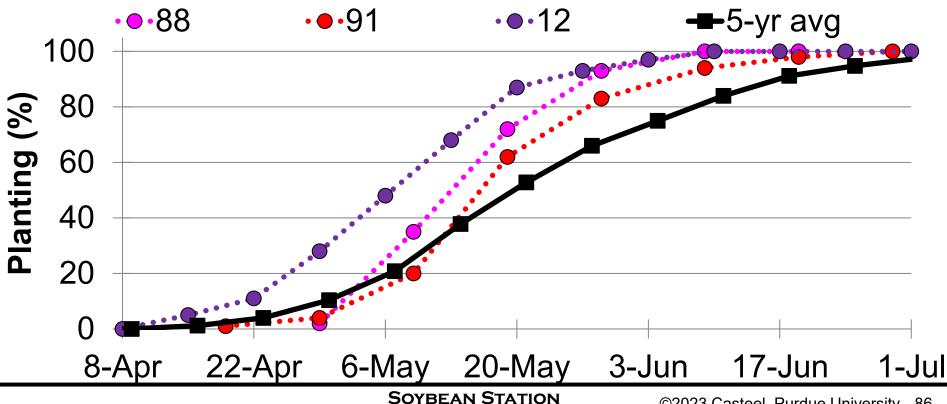
• Greenhouse:

- *Trichoderma harzianum* showed biocontrol effects against soybean charcoal rot caused by *Macrophomina phaseolina* (Khaledi and Taheri, 2016), white mold caused by *Sclerotinia sclerotiorum* (Macena et al., 2020), and root lesion nematode (Kath et al., 2017).
- Increased root length and shoot biomass (Entesari et al., 2013; Yusnawan et al., 2019).
- Little effect on soybean seedling performance if plants were not exposed to biotic or abiotic stress (salinity, chilling, heat) (Mastouri et al., 2010).
- Field in Brazil:
 - 4 to 13% increase in soybean yield (Freitas Chagas Jr. et al., 2021)
 - Increase in height and # of pods per plant in isolated application, and increase in grain yield when combined with fungicide seed treatment (Zandona et al., 2019);
 - 53% increase in soybean grain yield when grown on soil infected with root lesion nematode (*Pratylenchus brachyurus*) (de Oliveira et al., 2019).

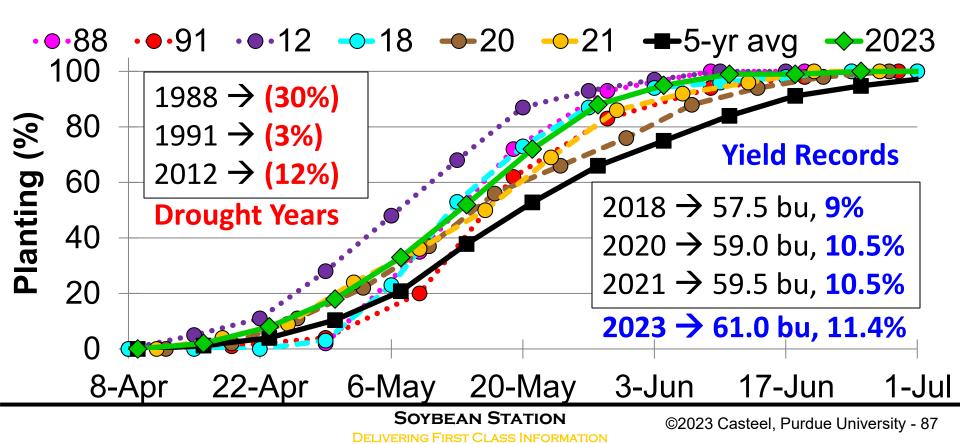

SOYBEAN STATION

©2023 Casteel, Purdue University - 84

DELIVERING FIRST CLASS INFORMATION


Indiana Soybean Planting: Earliest Years

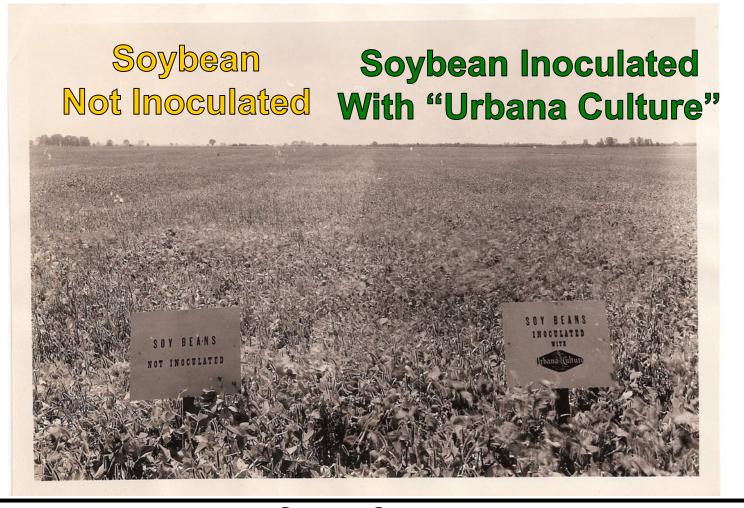
♣5-yr avg


DELIVERING FIRST CLASS INFORMATION

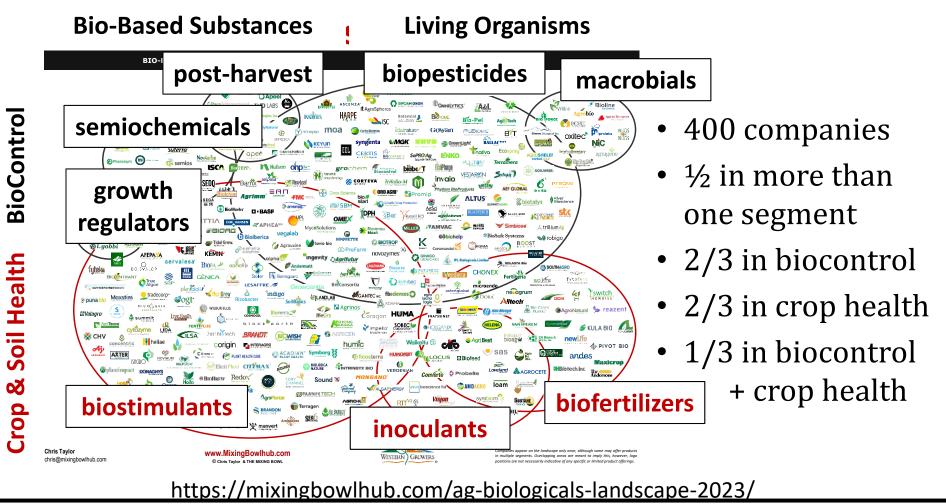
Indiana Soybean Planting: Earliest Years

DELIVERING FIRST CLASS INFORMATION

Indiana Soybean Planting: Earliest Years


Indiana Yields

Year	Planting (50%)	Yield	Changes f	rom Trend
	d after corn	bu/ac	Percent	bu/ac
2010	29.4	48.5	-0.8%	(0.4)
2011	13.3	45.5	-7.8%	(3.9)
2012	12.6	44.0	-11.7%	(5.8)
2013	7.0	51.5	2.5%	1.2
2014	13.3	55.5	9.4%	4.8
2015	12.6	50.0	-2.3%	(1.2)
2016	9.1	57.5	11.4%	5.9
2017	17.5	54.0	3.7%	1.9
2018	4.2	57.5	9.5%	5.0
2019*	6.3	51.0	-3.7%	(2.0)
2020	5.6	59.0	10.5%	5.6
2021	5.6	59.5	10.5%	5.6
2022	1.4	57.5	5.9%	3.2
2023	1.4	61.0	11.4%	6.2


SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

SOYBEAN STATION

©2023 Casteel, Purdue University - 90

DELIVERING FIRST CLASS INFORMATION

National Screen of Commercially Available Biological Seed Treatment for Soybean

SOYBEAN STATION

Results – Grain Yield

Analysis of variance (ANOVA) for treatment, location, and treatment x location interaction in 2022.

Source of variation	F-value	Prob > F
Treatment	1.02	0.4229
Location	109.46	<.0001
Treatment x Location	1.10	0.0985

SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

SCIENCE F R SUCCESS

2022						
Treatment	W. Laf	Wanatah				
UTC	64.8	55.3				
BioBuild	62.9	56.1				
SabrEx	62.0	55.6				
GraphEx	64.1	53.9				
Vault_IP	63.7	55.4				
Bio_Yield_ST	63.9	55.1				
Bio_Yield	63.5	54.4				
LAL_Fix_Rise	65.1	54.7				
Rise_Shine	63.4	54.4				
Myco_Endo	65.7	55.6				

BEAN STATION

SCIENCE F R SUCCESS

FUN	FUN 2022				2023	
	Treatment	W. Laf	Wanatah	Treatment	W. Laf	Wanatah
	UTC	64.8	55.3	UTC	70.3	76.0
	BioBuild	62.9	56.1	BioBuild	68.8	76.7
	SabrEx	62.0	55.6	SabrEx	73.7	76.9
	GraphEx	64.1	53.9	GraphEx	71.0	77.9
	Vault_IP	63.7	55.4	Vault_IP	72.1	77.0
	Bio_Yield_ST	63.9	55.1	Aveo	71.4	79.0
	Bio_Yield	63.5	54.4	BioWake	71.6	76.4
	LAL_Fix_Rise	65.1	54.7	Pro_Larise	72.0	75.9
	Rise_Shine	63.4	54.4	Rise_Shine	68.4	75.0
	Myco_Endo	65.7	55.6	Myco_Endo	71.7	75.6

SCIENCE F R SUCCESS

FUN	2022				2022-23		
	Treatment	W. Laf	Wanatah	Treatment	W. Laf	Wanatah	AVERAGE
	UTC	64.8	55.3	UTC	70.3	76.0	67.5
	BioBuild	62.9	56.1	BioBuild	68.8	76.7	65.8
	SabrEx	62.0	55.6	SabrEx	73.7	76.9	67.8
	GraphEx	64.1	53.9	GraphEx	71.0	77.9	67.5
	Vault_IP	63.7	55.4	Vault_IP	72.1	77.0	67.9
	Bio_Yield_ST	63.9	55.1	Aveo	71.4	79.0	•
	Bio_Yield	63.5	54.4	BioWake	71.6	76.4	•
	LAL_Fix_Rise	65.1	54.7	Pro_Larise	72.0	75.9	•
	Rise_Shine	63.4	54.4	Rise_Shine	68.4	75.0	65.9
	Myco_Endo	65.7	55.6	Myco_Endo	71.7	75.6	68.7

- 95

Shaun Casteel, scasteel@purdue.edu

@PurdueSoybean and Purdue Crop Chat podcast ;

Classic Sulfur Deficiency

- Coarse-textured: Sand, Loamy Sand, Sandy Loam
- Low Organic Matter < 2%

SOYBEAN STATION

DELIVERING FIRST CLASS INFORMATION

Bio N Supplier x R4 Protect

• Three non-rhizobial N supplying biologicals:

- Untreated
- Envita (Azotic): Gluconacetobacter diazotrophicus
- Utrisha (Corteva): Methylobacterium symbioticum

• Two fertility regimes:

- Unfertilized
- $-S \rightarrow 20$ lb S/ac from pelletized gypsum (0-0-0-17S)
- Two foliar protection regimes:
 - None
 - R4 application of fungicide and insecticide (Revytek + Fastac)

23 Bio N Supplier x R4 Protect: W. Laf

	Untreated		R4 Protect		
None	77.4	d	78.3	d	• Bio N: NS
Envita	80.6	cd	82.5	bcd	• R4 Protect: NS
Utrisha	79.2	d	81.5	cd	• Gypsum: +8 bu
Gyp	85.4	abc	88.2	а	• Gyp + R4 Protect:
Gyp_Envita	85.9	abc	87.5	ab	highest yields
Gyp_Utrisha	84.7	abc	87.6	ab	

SOYBEAN STATION

©2023 Casteel, Purdue University - 99

DELIVERING FIRST CLASS INFORMATION