Integrated Asset Management: Dealing with Neglected Infrastructure and Vacant Properties in Legacy Cities

Conference on Innovations in Collaborative Modeling
June 4, 2015
Kellogg Center, MSU, East Lansing, MI
Presentation Outline

• Challenges in Legacy Cities
• Land Use & Infrastructure Solutions
• Saginaw Green Zone Case Study
• Using Modeling in Integrated Decision Making
• Next Steps
History: LegacyCities

- **Outmigration**
 - Suburbanization mid- to late-20th century
 - Poorest residents less mobile

- **Blight**
 - High urban unemployment and poverty rates
 - Foreclosure, abandonment, and dilapidation

- **Infrastructure & Vacancy**
 - Expensive, high-capacity infrastructure for now sparse populations
 - Hazardous 20-60% urban residential vacancy
Two Municipal Dilemmas

1. **Infrastructure repurposing**

 How to make service delivery more efficient to serve a smaller, more dispersed population?

 - e.g. street lighting, sewer systems, road and sidewalk maintenance

2. **Land repurposing**

 What to do with thousands of abandoned properties?

 - Aim to boost property values, create safer communities
Infrastructure Repurposing Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Example(s)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Invest in new, more efficient infrastructure | • Cluster sewage systems
• Single-operator trash collection | • Low future costs | • High upfront cost
• Difficult to revert |
| Right-size existing services | • Gravel roads
• Planned disrepair of sewer sections | • Low future costs | • High upfront cost
• Reversion feasible |
| Planned shrinkage | • Incentives for resident relocation | • Low future costs | • Political and legal resistance |
| Zoning changes | • Urban-rural demarcation line | • Permanently inhibits sprawl | • Political and legal resistance
• Negative impact on some residents |
<table>
<thead>
<tr>
<th>Option</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Open space | • Low cost/maintenance
• Non-contiguous land OK | • No productive use |
| Parks and recreational area | • Moderate maintenance
• Encourages walkability | • Some upfront costs
• Contiguous land only |
| Community gardens | • Fresh, healthy food for locals
• Fosters sense of place | • Community maintenance difficult to ensure
• Land may be contaminated |
| Commercial agriculture | • May create local jobs
• Removes public responsibility | • Detracts from “residential”
• Pesticide and water use
• Contiguous land only |
| Alternative energy | • Environmentally friendly | • High upfront costs
• High security & maintenance
• Contiguous land only |
| Green infrastructure | • Moderate maintenance
• Walkability/attractiveness
• Environmentally friendly | • Land may be contaminated
• May inhibit/remove roadways |
Saginaw Green Zone

- City of Saginaw, MI, has lost 50% of its population over the past 40 years, and 25% of its land is vacant.
- Saginaw Green Zone (350 acres with highest concentration of vacancy) was designated as Green Reserve Area.
- Worked with EPA Smart Growth to identify strategies to stabilize neighborhood and envision a new economic future.
Scoring Matrix

<table>
<thead>
<tr>
<th>Criteria</th>
<th><25%</th>
<th>25-49%</th>
<th>50-74%</th>
<th>75-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>score:</td>
<td>0-24</td>
<td>25-49</td>
<td>50-74</td>
<td>75-100</td>
</tr>
<tr>
<td>Private Ownership</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>score:</td>
<td>0-24</td>
<td>25-49</td>
<td>50-74</td>
<td>75-100</td>
</tr>
<tr>
<td>Sewer Size</td>
<td>S<=12"</td>
<td>12"<S<=24"</td>
<td>24"<S<=36"</td>
<td>36"<S</td>
</tr>
<tr>
<td>score:</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Consumption</td>
<td>0<=F<=1</td>
<td>F>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>score:</td>
<td>(F^3)*100</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Street Class</td>
<td>Off Road</td>
<td>6-7</td>
<td>4-5</td>
<td>1-3</td>
</tr>
<tr>
<td>score:</td>
<td>0</td>
<td>10-20</td>
<td>30-60</td>
<td>80-100</td>
</tr>
</tbody>
</table>

Criticality Score = αOccupancy + βOwnership + σSewer Size + δConsumption + τStreet Class
Land Use: Vacancy Rates
Land Use: Ownership Rates

Legend
Unit: %
- 0 - 24
- 25 - 49
- 50 - 74
- 75 - 100

Green Zone Boundary
Land Use Greening Decisions
Land Use Greening Decisions
Land Use Greening Decisions
Infrastructure: Sewer Size
Infrastructure: Sewer Consumption
Infrastructure: Street Class
Infrastructure: Probability of Failure
Risk = Probability of Failure * Criticality Score * Cost
Risk = Probability of Failure * Criticality Score * Cost
Infrastructure Sewer Decisions

Risk = Probability of Failure * Criticality Score * Cost

Still some pockets of occupancy
Next Steps

• Other Variables
 • Political/institutional factors
 • Social factors & public involvement
 • Environmental factors
 • Cost factors

• Variable Weights

• Iterative Decision Making Over Time
For further information, please contact:
Mary Beth Graebert
(517) 355-3378
lakemary@msu.edu