

On-farm assessment of local neem oil against flowers thrips and cowpea pod borer *Maruca vitrata* Fabricius

TRAORE Fousséni, Theodore OUEDRAOGO, Antoine WAONGO, Clementine DABIRE, Antoine SANON and Barry R. PITTENDRIGH

Problem

- Insect pests are one of the major constraints in the cowpea production.
- In Burkina Faso the most important pests in term of frequency are flowers thrips and *Maruca vitrata*.

• Chemicals are effective against these pests but are harmful to human and animals health

Problem

- Since that, bio-pesticide are used an alternative to chemicals because of their environment friendly effect.
- Among the bio-pesticides which lead to reduce pests' populations are the neem oils which have been used since long time.
- To date, it is locally produced with few information on its composition because not labelled

1. Assess the neem oil against thrips and *Maruca* larvae in field conditions

2. The low concentration which lead to reduce pests' population

Methods

- Cowpea variety "tiligre" with 70 days of lifecycle was planted in the farmers' fields.
- Local and cold-pressed neem oil was purchased and assessed.
- With this neem oil, four concentrations (1.25; 1.66; 2.5 and 5%) were made by diluting it into the water.
- The concentrations (%) respectively correspond to (oil volume/water volume): 1/80; 1/60; 1/40; 1/20
- Chemicals "Pacha" Lambda-cyhalothrin (15g/l)/acetamiprid (10g/l)

Methods

- Six treatments including control (untreated plot), chemicals and four concentrations of neem oil
- The spraying starts at the cowpea budding stage corresponding to the 40 DAP
- After spraying and at the flowering stage, the flowers were random collected twice a week. Flowers thrips and *Maruca* larvae were counted
- Data collected were subjected to an ANOVA using SAS software version 9 (2003). When ANOVAs were significant, the means were separated by the Student–Newman–Keuls test at the 5% level.

Means (±SE) of thrips and *Maruca* larvae/flower in cowpea field sprayed with neem oil

Treatments	Number of flowers thrips/flower	Number of <i>Maruca</i> larvae/flower
Control (unsprayed plot)	10.48 ± 0.78 A	0.34±0.05 A
Chemicals	1.95±0.36 D	0.21±0.1 B
1.25 %	4.99±0.40 B	0.16±0.03 C
1.66 %	4.82±0.57 B	0.15±0.02 C
2.5 %	4.19±0.43 C	0.13±0.02 C
5 %	2.01±2.01 D	0.10±0.02 C
Probability	<.0001	0.013

Means within a column followed by the same letter (s) are not significantly different by a SNK test ($P \le 0.05$)

Means (±SE) of pods and grains yields from cowpea field sprayed with neem oil

Treatments	Pods yield (kg/ha)	Grain yield (kg/ha)
Control (unsprayed plot)	1183.6±13.32 C	1034.5±21.32 B
Chemicals	2000.1±174.35 A	1624.1±61.93 A
1.25 %	2029.1±148.44 A	1620.4±26.80 A
1.66 %	1741.1±217.48 B	1442.8±74.07 A
2.5 %	1796.8±149.13 B	1511.4±102.73 A
5 %	1895.8±226.41 B	1556.3±99.47 A

Means within a column followed by the same letter (s) are not significantly different by a SNK test (P < 0.05)

Conclusion

• Local neem oil is effective in controlling thrips population in the field

• Need to further this study by combining local neem oil with *Maruca* virus.

• Neem oil can be the "**friend of the poor resources farmers**" specially the cowpea smallholders

Thank you for your kind attention !

