
Project Director: Juan M. Osorno
Dept. of Plant Sciences
North Dakota State University

Project Participants

- NDSU:
 - Juan M. Osorno
 - Phil McClean

- ICTA:
 - Julio C. Villatoro
 - Fernando Aldana
 - Karla Ponciano
 - Julio Martinez
 - Edgardo Carrillo

Common Bean
Essential Food Security Crop in Poor Countries

<table>
<thead>
<tr>
<th>Food Source</th>
<th>Beans</th>
<th>Maize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% protein/capita/day</td>
<td>% kcal/capita/day</td>
</tr>
<tr>
<td>East Africa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burundi</td>
<td>35.9</td>
<td>15.0</td>
</tr>
<tr>
<td>Rwanda</td>
<td>31.6</td>
<td>12.3</td>
</tr>
<tr>
<td>Tanzania</td>
<td>15.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Uganda</td>
<td>15.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Kenya</td>
<td>12.5</td>
<td>5.0</td>
</tr>
<tr>
<td>West Africa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benin</td>
<td>12.7</td>
<td>4.9</td>
</tr>
<tr>
<td>Cameroon</td>
<td>11.6</td>
<td>4.4</td>
</tr>
<tr>
<td>Togo</td>
<td>11.4</td>
<td>4.1</td>
</tr>
<tr>
<td>Angola</td>
<td>9.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Central America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicaragua</td>
<td>21.0</td>
<td>8.6</td>
</tr>
<tr>
<td>El Salvador</td>
<td>12.9</td>
<td>5.5</td>
</tr>
<tr>
<td>Guatemala</td>
<td>8.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Honduras</td>
<td>7.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>7.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Mexico</td>
<td>6.0</td>
<td>3.2</td>
</tr>
<tr>
<td>Bolivia</td>
<td>5.8</td>
<td>3.3</td>
</tr>
</tbody>
</table>

"The Climbing Bean Team"
Guatemala

Most Populated (15.4 million) and Poorest Country in Central America

- 40% of Population: 0-14 years old
- 55% of Population: 15-64 years old
- 65% of Population lives in the highlands

Western Highlands
- 26% Extreme poor
- 47% Poor
- 18% Access to assets
- 67% Stunted
- Poverty density low
- 74-270 Poor/km²

Northern Lowlands
- 32% Extreme poor
- 46% Poor
- 30% Access to assets
- 49% Stunted
- Poverty density high
- 7-83 Poor/km²

Adopted from: USAID: Guatemala
Strategic Review, Feed the Future, October, 2010

Slide from P. McClean

Guatemala

Poverty and Malnutrition

- Gross National Income
 - US$2,740
 - 53% in poverty

- Chronic Malnutrition
 - 4th highest in world
 - Climate Challenges
 - Drought and flooding

Guatemala

Poverty and Malnutrition in Rural Regions

<table>
<thead>
<tr>
<th>Milpa cycle</th>
<th>Oct - Nov</th>
<th>Dec - Feb</th>
<th>March</th>
<th>April - Sept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malnutrition</td>
<td>Harvest</td>
<td>Fallow</td>
<td>Planting</td>
<td>Growth</td>
</tr>
<tr>
<td>Bean availability</td>
<td>Moderate to Low</td>
<td>Low</td>
<td>Low</td>
<td>Moderate to High</td>
</tr>
</tbody>
</table>

Beans
- A valuable cash crop during the year

Diet
- Unbalanced: 95% maize, 5% beans
- Optimum: 75% maize, 25% beans

Adage
- “Tortillas and salt is the only thing we need.”

U.S. On-Farm Yields Across all Market Classes (1910-2012)

- R² = 0.16
- b = 12.9
- P<0.0001

Source: Vandemark et al., 2014

Feed the Future Innovation Lab for Collaborative Research on Grain Legumes

Slide from P. McClean
Seed Yield Gap
U.S. vs. Developing Regions

\[R^2 = 0.38 \]
\[b = 15.2 \]
\[P < 0.01 \]

\[R^2 = 0.16 \]
\[b = 12.2 \]
\[P = 0.02 \]

Region
- **Latin America and Caribbean**
 - Avg. Yield: 856 kg ha\(^{-1}\)
 - Potential Yield: 1800 kg ha\(^{-1}\)
 - Yield Gap: 944 kg ha\(^{-1}\)
 - Yield Gap: 52%

- **East and South Africa**
 - Avg. Yield: 675 kg ha\(^{-1}\)
 - Potential Yield: 2020 kg ha\(^{-1}\)
 - Yield Gap: 1345 kg ha\(^{-1}\)
 - Yield Gap: 67%

- **West and Central Africa**
 - Avg. Yield: 840 kg ha\(^{-1}\)
 - Potential Yield: 2125 kg ha\(^{-1}\)
 - Yield Gap: 1285 kg ha\(^{-1}\)
 - Yield Gap: 60%

Source: CGIAR Collaborative Research Program for Grain Legumes (CRP 3.5 - 2012)

Milpa Cropping System

Beans Go To Local Market For Cash

- Bolonillo bean
 - High value
 - $1.50/lb
 - Nov 2013

Common Bean

Milpa Cropping System in Central America

- **Milpa System**
 - Beans and maize intercropping
 - Component of old cropping systems
 - Mexico and Central America
 - Still used by poor farmers in the region
 - Major source of protein, calories
 - Two major milpa systems:
 - Direct: maize and beans planted simultaneously
 - Relay: Maize planted first, then beans few weeks later.
 - Other crops such as pumpkin, peas, and faba beans also included within the Milpa system in some cases.
Milpa Cropping System
Prevalent Throughout the Highlands

Guatemala Crop Production
Rural Demographics

- **Farm Size**
 - 85% of farmers
 - 1 – 10 hectares
 - Milpa highlands
 - 10% of farmers
 - Less than 1 hectare
 - Milpa highlands
 - 2% of farmers
 - Greater than 10 hectares
 - Lowland monoculture

- **10 Year Rule**
 - If land is occupied and utilized for 10 years
 - Occupants own the land
 - Fosters economic development

Case: Guatemala Bean Production Regions

- **Lowlands**
 - Monoculture
- **Highlands**
 - Milpa

Climbing beans in Guatemala

- All type IV growth habit: aggressive climbers
- Mostly medium-size black beans
 - Bolonillos
- Other Phaseolus species
 - *P. coccineus* L.
 - *P. polyanthus* L.
- Planting to harvest: ~180 days!
- Susceptible to several fungal diseases and insects
- Worldwide: less breeding/improvement efforts and resources devoted to climbing beans vs. bush-type beans
- No good regional socio-economic data about seed-type preferences, varieties grown, production systems (relay vs direct), household consumption vs sale, etc.
ICTA Germplasm Collection

- 600 climbing bean accessions
 - 3 Phaseolus species
 - Unique group with wide genetic diversity
 - S. Beebe et al. (2000) proposed a “Guatemala race”
- K. Ponciano et al. (2009):
 - Molecular characterization with SSR markers
 - Results showed that ½ of the collection may be duplicates.
 - Proposed a core collection of 300 accessions.

Objectives

- Development of germplasm with improved disease resistance and agronomic performance.
- Characterization of the genetic diversity of this unique set of germplasm.
- A better understanding of the current socio-economic status and needs of bean production within the context of intercropping systems in the region.
- Capacity building: training the next generation of plant breeders for Guatemala and establishing a long-term breeding plan to increase the productivity of climbing bean in the region.

Objective 1: Germplasm Development

- 25 accessions with traits of interest.
 - 10 promising accessions based on agronomic performance
 - Field testing at 10 locations (milpa)
 - 2-3 best accessions will be tested in farmer’s fields at 3 locations during years 2 and 3.
 - Evaluation of “Bolonillo-Texel” in farmer’s fields and 10 locations over 2-3 years.
 - First crossing block among promising accessions
 - F3-F4 generation in 3 years?
 - Agronomic evaluation under different production systems.
 - Release of selected germplasm
Target Breeding Traits

- Seed Yield and pod load distribution
- Disease/insect resistance
 - Ascochyta
 - Rust
 - Anthracnose
 - BCMV
 - Mexican weevil (Apion sp.)
- Climbing aggressiveness (direct Milpa system)
- Earliness

Objective 2: Characterization of the Genetic Diversity

- Molecular characterization of the core 300 accessions using the 6k SNP chip (BeanCAP).
 - Higher genetic resolution
 - Highly stable
 - Known physical position in the genome
- Analysis of genetic diversity and structure (population genomics)
- Assessment of intra-accessions variability using the 10 selected accessions
- Disease evaluation in the field (natural pressure) and also in greenhouse:
 - Rust (NDSU/UNL)
 - Anthracnose (NDSU)
 - Ascochyta (NDSU)
 - BCMV (UPR)
 - Data will be used for Genome-Wide Association Studies (GWAS).
Objective 3: Socio-economic Situation of Climbing Bean Production in the Guatemalan Highlands

- No data about the current status of the bean crop in regards to household consumption, common and preferred seed types produced, agronomic practices, among many other factors.
- Even more important, there is no information about the current needs in regards to bean production.
- Julio Martinez: rural social economist at ICTA will lead this work.
 - Phase 1: Grower’s survey and data analysis
 - Phase 2: Grower acceptability of new varieties/technology
- Collaboration/advising from Mywish Maredia

Objective 4: Capacity Building and Long-Term Plan

- ICTA needs M.S. and Ph.D. training for all crops.
 - “Seed program” already in place to identify outstanding young individuals
 - Two graduate students at NDSU trained in plant breeding and plant pathology (2 potential candidates)
 - Degree training at NDSU is less expensive than most U.S. universities (efficient use of funds)
- Technical workshop at NDSU (3rd year)
 - ICTA personnel to visit NDSU
 - Workshop to design a medium and long-term plan for bean breeding efforts in Guatemala
- Informal training during visits to ICTA

Collaborators/Partners

- SO1.A4 project lead by Jim Beaver
- Nutrifrijol project lead by Luis Flores
- USAID Mission in Guatemala
- Juan Carlos Rosas – EAP-Honduras
- Jim Steadman – UNL
- Jim Kelly - MSU
- Steve Beebe - CIAT

Expected Outputs

- The development and release of improved climbing beans with better agronomic performance.
- A better understanding of the organization of the genetic diversity within this unique set of germplasm.
- Identification of genomic regions associated with traits of agronomic/economic importance.
- An information database of the current market situation and production needs of climbing beans in the highlands of Guatemala.
- Training of the next generation of plant breeders.
- Establishment of a long-term breeding approach.