Collaborating Programs

- S01.A5 – Dr. Phil Roberts and team
- S04.1 – Mywish Maredia and Byron Reyes

Cowpea

1. Important protein source for approximately 200 million Africans
2. Major crop in West Africa
3. Insect pests are major drag on yield
Research/Extension Efforts

- Six major insect pest species that attack this crop in the field and in storage
- The damage caused by these pests can devastate farmer's livelihoods
- Development and deployment of Integrated Pest Management control strategies
 - Understand the pests to develop best practices for given environments
- Technology-based community building efforts for extension deployment strategies

Four Objectives

- Define the pest problems on cowpea in Ghana, Burkina Faso, Niger and Benin
- Discover, document and set the stage for scaling of appropriate IPM solutions
- Scaling of Solutions (and testing of the scaling)
- Capacity Building

Understanding Pest Systems

- Understanding the pest problems has given us insights into solutions
- Study of pest problems
 - Using organism level and ecological studies
 - Coupled with molecular tools
Life-history and regional movement patterns

Maruca vitrata

- South to North migration hypothesis
- Endemic and migratory zones
- The zones make a difference in the control strategy

Laid the ground work genomic and biological tools for understanding and controlling of legume pod borer (Maruca vitrata) (LPB)

Outcomes (LPB)
- Life history better defined
- Migratory patterns better defined

Ba et al., 2009; Baoua et al., 2011

Laid the ground work genomic and biological tools for understanding and controlling of legume pod borer (Maruca vitrata) (LPB)

Outcomes (LPB)
- Life history better defined
- Migratory patterns better defined

Ba et al., 2009
Laid the ground work genomic and biological tools for understanding and controlling of legume pod borer (Maruca vitrata) (LPB)

Outcomes (LPB)
- Life history better defined
- Migratory patterns better defined
- Alternative hosts
- Genomic tools developed

Approaches
1) Insects from large geographical regions were collected
2) Some were pooled and sequenced to discover polymorphisms
3) Others were tested individually to test for polymorphisms and test hypotheses

Ba et al., 2009; Baoua et al., 2011

Recommendations based on IRM models from our field data (Bt cowpea)
1) Bt cowpea can be grown in the north with minimal concerns for resistance
2) If grown in the south two Bt pyramided genes would be required
3) Wild alternative hosts can serve as a refuge for Bt cowpea

Outcomes (LPB)
- Life history better defined
- Migratory patterns better defined
- Alternative hosts
- Genomic tools applied to understand pest populations
- Host plant resistant varieties tested
- Improved varieties in the hands of farmers
- Training programs for farmers
- Implications for Bt cowpea
Recommendations for Biocontrol

1) Endemic zone extends into southern Burkina Faso
2) Biocontrol agents can be released into these areas this far north
3) Development of a neem plus virus (MaviNPV) spray can be used – safe alternative for pesticide sprays – just as effective as pesticides and in some cases better

Outcomes (LPB)
- Life history better defined
- Migratory patterns better defined
- Alternative hosts
- Genomic tools developed
- Genomic tools applied to understand pest populations
- Host plant resistant varieties tested
- Improved varieties in the hands of farmers
- Training programs for farmers
- Implications for Bt cowpea
- Implications for biocontrol

Table 1: Cowpea yield as affected by different pest control treatments in two different rainy seasons in Southern Benin

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1st rainy season</th>
<th>2nd rainy season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsprayed control</td>
<td>522.95 ± 28.20a</td>
<td>282.00 ± 21.88a</td>
</tr>
<tr>
<td>Chemical control (Decis)</td>
<td>868.62 ± 68.09b</td>
<td>652.75 ± 62.94b</td>
</tr>
<tr>
<td>Neem oil</td>
<td>826.42 ± 52.80b</td>
<td>691.23 ± 22.18b</td>
</tr>
<tr>
<td>Jatropha oil</td>
<td>867.90 ± 26.29b</td>
<td>533.66 ± 45.31b</td>
</tr>
<tr>
<td>MaviMNPV</td>
<td>875.32 ± 47.83b</td>
<td>545.07 ± 54.09b</td>
</tr>
<tr>
<td>Neem oil + MaviMNPV</td>
<td>1082.10 ± 58.78c</td>
<td>552.47 ± 27.32b</td>
</tr>
<tr>
<td>Jatropha oil + MaviMNPV</td>
<td>1096.30 ± 26.05c</td>
<td>614.33 ± 11.34b</td>
</tr>
</tbody>
</table>

* Kgh/ha

High humidity
High Maruca density

1) Doubling of yields under both conditions
2) As good as conventional pesticides

High humidity
Dry conditions after flowering
Lower Maruca density in pods

1) Doubling of yields under both conditions
2) As good as conventional pesticides

Surprise N1: Apanteles taragamae and MaviMNPV flying together!

Exotic parasitoid from Asia: Apanteles taragamae
Entomopathogenic Baculovirus MaviMNPv

Exotic parasitoid + Entomopathogenic Baculovirus = implications for biological control

<table>
<thead>
<tr>
<th>Treatments</th>
<th>2 h</th>
<th>24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0 b</td>
<td>0 b</td>
</tr>
<tr>
<td>Ovipositor</td>
<td>0,91 a</td>
<td>0,96 a</td>
</tr>
<tr>
<td>Whole body</td>
<td>0,94 a</td>
<td>0,97 a</td>
</tr>
<tr>
<td>Diet</td>
<td>0,90 a</td>
<td>0,98 a</td>
</tr>
<tr>
<td>P>F</td>
<td><0,0001***</td>
<td><0,0001***</td>
</tr>
</tbody>
</table>

Biological control: exploiting the large diversity of *M. vitrata* natural enemies in Asia

- Our first case study: the exotic parasitoid *Apanteles taragamae*, an interesting biological control candidate
- Up to 60% parasitism on *M. vitrata* feeding on Sesbania
Biological control pipeline: more to come

On-going collaborative project with AVRDC and icipe:

Therophilus marucae (Hymenoptera, Braconidae)

Nemorilla maculosa (Diptera, Tachinidae)

Photo courtesy C. van Achterberg

Moving forward

- We now have molecular markers for all the pests of cowpea
- These will be used in this phase, along with organism and ecological level studies, to understand these pest systems
- Outcomes will be used to develop and drive pest management strategies
- Biocontrol agents for release and in development
 - In field testing of scaled release programs
- Neem + virus spray for larger scaling testing and deployment

Cheap and simple rearing methods together with the combination of bio-pesticides open up new opportunities:

Developed in India – IITA in process of reproducing this approach in West Africa
80 t of neem seeds collected by a community of 600 women (in Benin)

Neem oil extraction, 500 l / week

4500 liters ready for commercialization

Production of essential oils

The next step:
same women groups mass-produce *Maruca vitrata*, infest larvae with the virus and sell the dead larvae to the enterprise for extraction, purification and conditioning

Bio-fertilizers: useful and income-generating by-products

Mixing neem oil with essential oils

The final product: a commercially viable bio-pesticide
Scientific Animations Without Borders

- Exploration of how we can make information available to target groups with diverse language and literacy levels
- Exploration of how we can cost-effectively bring together expertise to create that content
- Exploration of how to engage partners for scaling
Future efforts
1) Field testing
2) Adding new languages through virtual network of collaborators
3) Freely accessible to the rest of the world

Deployment Approaches
- Local groups
 - NGOs, NARs, etc
- Online
- Library systems
- Cell phones
- Video viewing clubs
- SAWBO-App
- Etc...

SAWBO App
- A system to easily access educational videos
- Rapidly (in seconds) sort through dozens or hundreds or thousands of videos to find the one you want
 - By topic
 - By language
 - By country
- Videos can be downloaded onto the phone
- Share with other phones using Bluetooth®
- Alpha version has been created and tested
- Beta version to be released

Understanding Scaling
Questions regarding how to have impact
- What do people learn?
- How do people use this knowledge?
- Localized versus specialized
- Who are the potential partners?
- What in field technologies are the best?
- How can these be used with existing programs?
- Pathways for deployment – online/offline
- How can these fit into existing educational programs (FFF)?
- Etc...
Capacity Building

- Graduate and undergraduate training
- Technician cross-training
- Farmer field schools
- Creation of education content and sharing with outside groups

What we have in hand

1) An understanding of pest populations that will help us decide on the best pest control solutions by region

2) Molecular tools – to gain greater insights into pest populations and track bio-control agents

3) Bio-control agents that can be used to manage pest populations
What we have in hand
1) An understanding of pest populations that will help us decide on the best pest control solution by region
2) Molecular tools – to gain greater insights into pest populations and track bio-control agents
3) Bio-control agents that can be used to manage pest populations
4) A neem plus viral spray that is as or more effective than traditional pesticide sprays
5) Potentially scalable educational solutions for educators of cowpea farmers
 - Growing library of educational materials
 - In the language the farmers speak with no need to be literate
 - Tools and a program to create more educational content (SAWBO)

Acknowledgements
Collaborators & Support

Pittendrigh lab
Susan Balfie
Dr. Weilin Sun
Brett Ods
Francisco Seufferheld
Laura Steele
Tolulope Agundiade

Illinois Natural History Survey
Dr. Marlis R. Douglas
Dr. Michael R. Douglas

UIUC International Programs
Dr. Bello

INRAN, Maradi, Niger
Dr. Ibrahim Baoua

INERA, Burkina Faso
Dr. Clementine L. Binso-Debir
Dr. Niango M. Ba
Pr. Antoine Sanon

IITA, Cotonou, Benin
Dr. Manuele Tamo

INRAB
Leonard Hinnou

SARI
Stephan Asante

CRI
Haruna Brimah

USDA, ARS, AMES, IOWA
Dr. Richard Hellmich
Dr. Brad Coates

CSIRO, Australia
Dr. Thomas J. Higgins
Dr. Joel Armstrong

AVRDC, Taiwan
Dr. R. Srinivasan

University of Puerto Rico
Dr. Fernando Gallardo
Dr. Dimuth Sirithunga
Evelio Hernandez
Jeniffer Pagan

INRAN, Maradi, Niger
Dr. Ibrahim Baoua

INERA, Burkina Faso
Dr. Clementine L. Binso-Debir
Dr. Niango M. Ba
Pr. Antoine Sanon

IITA, Cotonou, Benin
Dr. Manuele Tamo

INRAB
Leonard Hinnou

SARI
Stephan Asante

CRI
Haruna Brimah

INRAN, Maradi, Niger
Dr. Ibrahim Baoua

INERA, Burkina Faso
Dr. Clementine L. Binso-Debir
Dr. Niango M. Ba
Pr. Antoine Sanon

IITA, Cotonou, Benin
Dr. Manuele Tamo

INRAB
Leonard Hinnou

SARI
Stephan Asante

CRI
Haruna Brimah

Acknowledgements
Collaborators & Support

Pittendrigh lab
Susan Balfie
Dr. Weilin Sun
Brett Ods
Francisco Seufferheld
Laura Steele
Tolulope Agundiade

Illinois Natural History Survey
Dr. Marlis R. Douglas
Dr. Michael R. Douglas

UIUC International Programs
Dr. Bello

INRAN, Maradi, Niger
Dr. Ibrahim Baoua

INERA, Burkina Faso
Dr. Clementine L. Binso-Debir
Dr. Niango M. Ba
Pr. Antoine Sanon

IITA, Cotonou, Benin
Dr. Manuele Tamo

INRAB
Leonard Hinnou

SARI
Stephan Asante

CRI
Haruna Brimah

USDA, ARS, AMES, IOWA
Dr. Richard Hellmich
Dr. Brad Coates

CSIRO, Australia
Dr. Thomas J. Higgins
Dr. Joel Armstrong

AVRDC, Taiwan
Dr. R. Srinivasan

University of Puerto Rico
Dr. Fernando Gallardo
Dr. Dimuth Sirithunga
Evelio Hernandez
Jeniffer Pagan

INRAN, Maradi, Niger
Dr. Ibrahim Baoua

INERA, Burkina Faso
Dr. Clementine L. Binso-Debir
Dr. Niango M. Ba
Pr. Antoine Sanon

IITA, Cotonou, Benin
Dr. Manuele Tamo

INRAB
Leonard Hinnou

SARI
Stephan Asante

CRI
Haruna Brimah

Acknowledgements
Collaborators & Support

Pittendrigh lab
Susan Balfie
Dr. Weilin Sun
Brett Ods
Francisco Seufferheld
Laura Steele
Tolulope Agundiade

Illinois Natural History Survey
Dr. Marlis R. Douglas
Dr. Michael R. Douglas

UIUC International Programs
Dr. Bello

INRAN, Maradi, Niger
Dr. Ibrahim Baoua

INERA, Burkina Faso
Dr. Clementine L. Binso-Debir
Dr. Niango M. Ba
Pr. Antoine Sanon

IITA, Cotonou, Benin
Dr. Manuele Tamo

INRAB
Leonard Hinnou

SARI
Stephan Asante

CRI
Haruna Brimah

USDA, ARS, AMES, IOWA
Dr. Richard Hellmich
Dr. Brad Coates

CSIRO, Australia
Dr. Thomas J. Higgins
Dr. Joel Armstrong

AVRDC, Taiwan
Dr. R. Srinivasan

University of Puerto Rico
Dr. Fernando Gallardo
Dr. Dimuth Sirithunga
Evelio Hernandez
Jeniffer Pagan

This project has been made possible through support provided to the Dry Grains Pulses Collaborative Research Support Program, funded by the Bureau for Economic Growth, Agriculture, and Trade, U.S. Agency for International Development, under the terms of Grant No. 600A12000032. The opinions expressed herein are those of the authors and do not necessarily reflect the views of the U.S. Agency for International Development or the U.S. government.