

Undernutrition, Environmental Enteric Dysfunction and the potential role of legumes to improve child health

chrissie Thakwalakwa, Kevin Stephenson, Sophia Agapova, Oscar Divala, Yanko Kaimila, Ken Maleta, Isabel Ordiz, Indi Trehan, Mark Manary

Feed the Future Innovation Lab for Collaborative Research on Grain Legumes

Presentation outline

- Importance of Undernutrition (stunting)
- Environmental Enteric Dysfunction (EED)
- EED and stunting
- EED interventions
- Potential role of grain legumes

Undernutrition is a Major Cause of Child Mortality

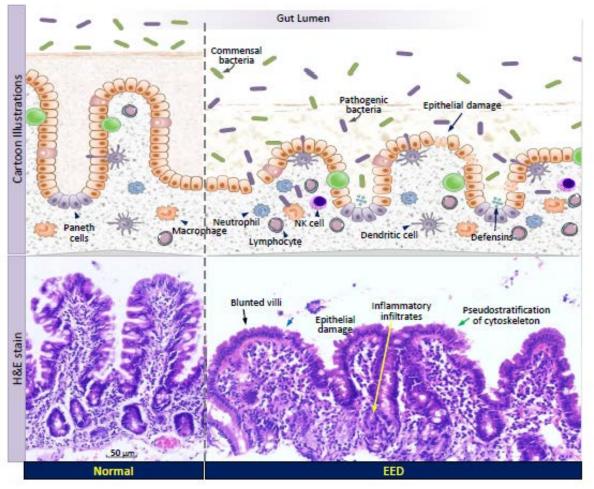
	Attributable deaths with UN prevalences*	Proportion of total deaths of children younger than 5 years	Attributable deaths with NIMS prevalences†	Proportion of total deaths of children younger than 5 years
Fetal growth restriction (<1 month)	817 000	11.8%	817 000	11.8%
Stunting (1–59 months)	1017000*	14.7%	1179 000†	17.0%
Underweight (1–59 months)	999 000*	14-4%	1180 000†	17.0%
Wasting (1-59 months)	875000*	12.6%	†000 008	11.5%
Severe wasting (1–59 months)	516 000*	7.4%	540 000†	7.8%
Zinc deficiency (12–59 months)	116 000	1.7%	116 000	1.7%
Vitamin A deficiency (6–59 months)	157 000	2.3%	157 000	2.3%
Suboptimum breastfeeding (0–23 months)	804000	11.6%	804000	11.6%
Joint effects of fetal growth restriction and suboptimum breastfeeding in neonates	1348 000	19.4%	1348 000	19.4%
Joint effects of fetal growth restriction, suboptimum breastfeeding, stunting, wasting, and vitamin A and zinc deficiencies (<5 years)	3097000	44-7%	3149 000	45.4%

Data are to the nearest thousand. *Prevalence estimates from the UN. †Prevalence estimates from Nutrition Impact Model Study (NIMS).

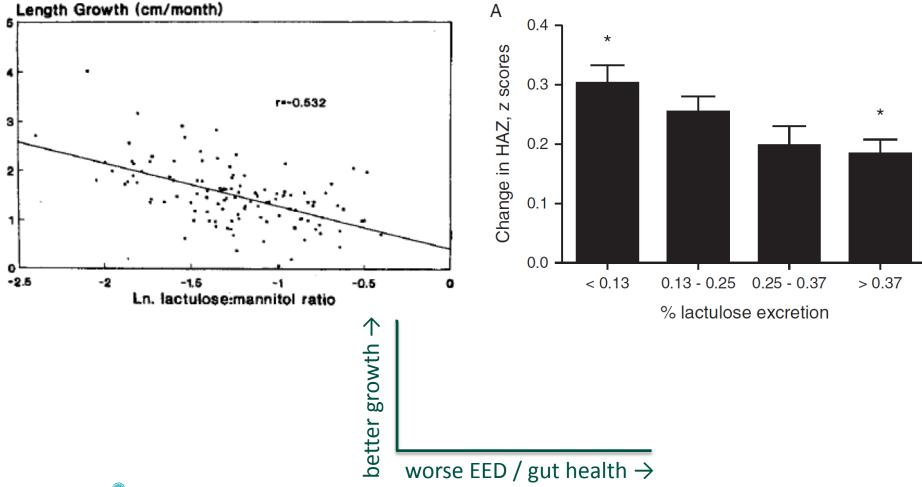
Table 2: Global deaths in children younger than 5 years attributed to nutritional disorders

Stunting

- Affects 25% of children globally, 35% in Africa, 37%in Malawi.
- Stunting is associated with:
- Increased mortality from diarrhoea, pneumonia, other infectious diseases
- Impaired cognitive development
- Reduced income (by up to 22%)
- Reduced life expectancy by up to 17%
- A significant portion of stunting comes from EED which comes from marginal diet + microbial imbalance
- Need for interventions to improve diet and correct microbial imbalance


Environmental Enteric Dysfunction

- Chronic inflammatory state of the gut
- Subclinical: No direct and easily measurable clinical case definition
- Linked to unsanitary living conditions
- High risk in the first three years of life

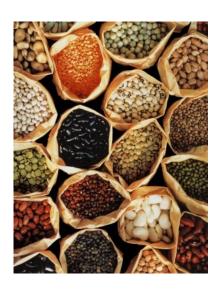

What happens in EED?

EED is Associated with Stunting

Feed the Future Innovation Lab for Collaborative Research on Grain Legumes

Prior attempts to treat EED

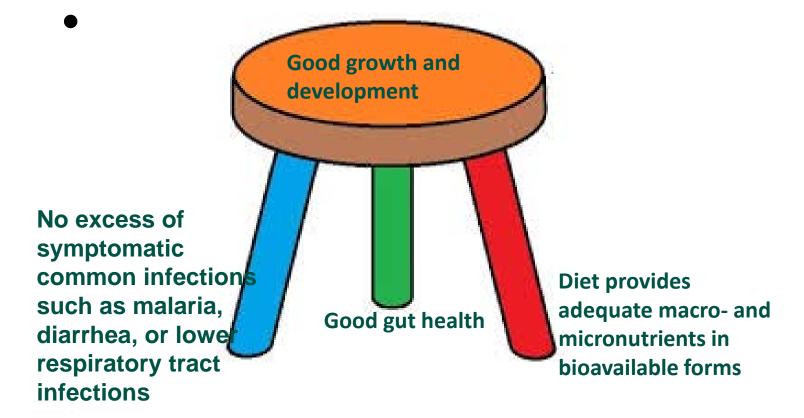
- Probiotics and antibiotics don't work
- Promotion of access to clean water and sanitation (WASH and SHINE trials)
- Micronutrient supplementation shows some improvement
 - Glutamine, vitamin A and zinc improve intestinal barrier function
- Deworming with albendazole or high-dose zinc slows EED progression
- Poly-unsaturated fatty acid supplementation not effective
 - Used for anti-inflammatory effects in Crohn's


AJCN 2005; 82: 1040; Am J Gastro 2009; 104: 2326 Lancet 2009; 374: 1032; Clinics 2014; 69: 225;

Clin Gastro Hep 2014; in press

How might legumes fit in

- Diets enriched in legumes decrease markers of inflammation
- Increased legume intake is inversely correlated with illnesses with inflammatory components such as colorectal cancer and cardiovascular disease
- Nutritional role: May serve as a major source of protein and micronutrients in populations where carbohydrate consumption predominates in complementary feeding.
- Cheapest source for added nutrition for women and children
- Low protein consumption (essential amino acids) associated with stunting



J Nutr 2012; 142: 334; Nitric Oxide 1997; 1: 476 Lipids 2010; 45: 765; Eur J Clin Nutr 2011; 65: 415 Dry Beans and Pulses 2012; JPGN 2007; 44: 487

For normal growth and development 3 conditions must be met

Acknowledgements

