Planning and Siting for Hoophouses

Collin Thompson
Farm Manager, The North Farm
Overview

• Site Considerations

• Structure Considerations

• Pre-Construction Preparations
Terminology

- **Hoophouse** – Structure glazed with polyethylene (greenhouse plastic) that is used to extend the growing season.

- **High Tunnel** – Same as hoophouse. Term used to emphasize importance of low tunnel use inside high tunnel.

- **Greenhouse** – Typically a more permanent structure, often with supplemental heat.
Why Consider Season Extension?

- Extend the growing season
- Increase marketing/cropping opportunities
- Increase revenue per square foot
- Increase crop quality & yield
- Enhanced environmental control
- Reduce incidence of plant disease
- Protection from weather (i.e. frost & hail)
- Labor efficiency (work regardless of weather)
Site Considerations

• Light & Shade
 • Orientation

• Drainage

• Access, Utilities, Future Expansion

• Wind & Snow

• Stationary & Movable
Light & Shade

- Light is essential for growth - maximizing light will directly impact yields
 - Photosynthesis
 - Heat
- Many things impact light transmission
 - Location
 - Season
 - Material selection
- Orientation of Structure
 - Wind
 - Snow
 - Light
 - Ventilation
Light & Shade

• Shading from other structures
 • 2x height = distance from structure
 • Most essential in fall-spring

• Bed orientation/tunnel orientation
 • Depends on cropping plan:
 • Tall crops vs. Short Crops
Drainage

- 1” of rain on 1500 ft2 = 935 gallons of water

- Water must move away from the structure during rain/snow melt
 - Avoid saturation/flooding of interior soils
 - Limit freezing in winter months

- Options:
 - Swales
 - French drains
 - Rainwater collection
 - Ditches
Access, Utilities, Future Expansion

- Water will be necessary
 - Hoses vs. Hydrant
- Depending on use of tunnel, it may be important to have electricity or gas
- Future hoophouses?
 - Build with access to current and future structures in mind
 - Think about setbacks for multiple structures
Wind & Snow

- Snow
 - Must have enough space to clear away from structure
 - Must have structure that is strong enough to withstand local snowloads
 - Think about ventilation in spring/fall

- Wind
 - Use of windbreaks around structures
 - Prevailing winds and orientation
Management!
Stationary & Movable

• Depends on type of movable system
• Parallel and in the same plane (moving along length of structure)
• Utilities – access in all positions
• Drainage – effect on other positions
• Does moving require equipment? – access requirements
• Build in one position, move to next (soil preparation)
Structure Considerations

- Bracing
- Roof Geometry
- Ventilation
- Endwalls
Bracing

Types:
- Corner Bracing (Sidewall & Roof)
- Purlins
- Truss Kits

Considerations
- Steel thickness and diameter
- Attachment mechanism
- Hoop spacing
Note: Ensure hardware is installed so it will not come in contact with plastic.

Begin at Peak of Hoop 3 and Work Toward Corners

Install Using 2-3/8" Brace Bands And 5/16 x 1-3/4" Carriage Bolts
Roof Geometry

Quonset

Cathedral

Gable

Gothic
Ventilation

• Types:
 • Ridge
 • Endwall
 • Roof
 • Sidewall
 • Roll-Up
 • Drop Down

• Considerations
 • Weather – wind, rain, snow
 • Electrical access
 • Cropping plan (warm vs. cool)
 • Manual vs. automated
Endwalls

• Types:
 • Prefabricated metal
 • Wood construction

• Considerations
 • Longevity of materials
 • Wood vs. metal
 • Type of wood – rot resistance
 • Anchoring
 • Access
Pre-Construction

- Soil tests
 - A & L Labs - Indiana
 - Logan Labs – Ohio
- Cover cropping – easy prior to construction
- Addition of composts/manure and minerals
- Stale seed bedding
- *This is the time for drainage work!*
Questions?

Collin Thompson
Farm Manager
thom1264@msu.edu
www.msunorthfarm.org