

2009 NW Orchard & Vineyard Show

New tactics for control of grape berry moth

Paul Jenkins, Rufus Isaacs, Luis Teixeira, Keith Mason, and John Wise Michigan State University

Grape berry moth

Metamorphosis of grape berry moth management

Early 1900's

- Reliance on cultural and biological tactics, arsenical insecticides
- □ Mid 1900's
 - Broad-spectrum neurotoxins: DDT, parathion, methyl parathion, etc

Metamorphosis of grape berry moth management

Late 1900's

- Identification of sex pheromone and first mating disruption products
- Cornell's Risk Assessment Protocol developed and implemented
- Food Quality Protection Act, insecticide restrictions

Early 2000's

- Further restrictions on broad-spectrum pesticides
- More selective insecticides available to growers
- Increasing interest in sustainable viticulture

Mating disruption

Pest management technique that uses synthetic sex pheromones to disrupt the reproductive cycle of insects.

Grape berry moth mating disruption

- Studies in NY and Ontario demonstrated efficacy of twist ties for mating disruption
- But, low adoption of twist ties for GBM control
 - Most effective with moderate to low pest pressure
 - Needed season-long release
 - Labor to apply
 - Cost/efficacy relative to insecticides

Grape berry moth mating disruption

- Wax matrix (SPLAT-GBM[™]) is a flexible formulation for application in vineyards
- Provided season-long control of Oriental fruit moth
- Additional work on Codling moth, other leps

$\mathsf{SPLAT}\text{-}\mathsf{GBM}^{\mathsf{TM}}$

SPLAT = Specialized Pheromone & Lure Application Technology

Application is versatile (hand, mechanical)

Can be 'charged' with one or more pheromones

2005-06 Large-plot mating disruption study

- I ml SPLAT-GBM[™] per post (3% pheromone)
- Male GBM monitored weekly in traps baited with lures
- Sampled GBM infestation for 1st and 2nd generations

Male moth captures Large-plot mating disruption study

Captures in SPLAT-treated plots significantly lower than untreated plots.

High disruption for 10-12 weeks.

Percent cluster infestation Large-plot mating disruption study

Effect of droplet density on male moth captures

□ Small plot experiment in 2006

- 0.2 ml drops at densities of 40, 160, 320, 640, or 1280 drops/acre
- Lure-baited trap in each plot, checked weekly May-August

Effect of droplet density on male moth captures

Mechanical application of SPLAT-GBMTM

2008 Comparison of application rates

Replicated 1-7 acre vineyards

4 Treatments

Insecticides only (no mating disruption)

Insecticides + SPLAT 0.5 Kg/ac (X 2)

Insecticides + SPLAT 1.0 Kg/ac (X 2)

Insecticides + SPLAT 1.0 Kg/ac (X 3)

2008 Comparison of application rates

Lower infestation at vineyard borders

No effect of application rate

Mating disruption summary

- Wax matrix formulation provides a flexible method for pheromone application to vineyards
- 0.5 or 1.0 Kg/ac rates reduced GBM infestation at vineyard borders
- Low labor and applicator costs provide economical method for vineyard treatment
- Working to improve droplet integrity and applicator design

Potential for new reduced-risk insecticides

- Intrepid methoxyfenozide
- Confirm tebufenozide
- Altacor rynaxypyr
- Delegate spinetoram
- Avaunt indoxacarb
- Assail acetamiprid
- Clutch clothianidin
- Venom dinotefuran

Treatments against Gen 1, 2, 3, 3

Gen 1 Capture 3.2 oz Gen 2 Capture 3.2 oz Gen 3 Danitol

Program 2:

Gen 1 Danitol Gen 2 Capture 6.4oz Gen 3 Sevin, Sevin

Caged moth experiment

1. Dip clusters in treatment solutions for one minute

Treatment Rate/ac Class Water Intrepid 2F IGR 8.0 oz Guthion 50 WP 1.5 lb OP Sevin 80S 2.5 lb Carbamate Danitol 2.4 EC 10.6 oz Pyrethroid

- 2. 20 adult moths caged onto clusters on DAY 1, 7, or 14
- 3. Clusters recovered 7 DAT to quantify adult survival, egglaying and survival to pupa/adult

2.

Residue age vs. GBM survival from egg to adult

GBM in NW Michigan

Pest pressure?

Trapping for GBM not the best indicator
MSU and Cornell are currently working on this

Scouting is preferred method

GBM in NW Michigan, 2008

Improved GBM control through phenology-based application of selective insectices

Comparison of new insecticides and timings

Phenology-based sprays Intrepid at 8 or 12 oz/ac

Risk Assessment Protocol Sevin – Late June Imidan – Mid-July Baythroid – Late August

Summary

- Wax pheromone formulation shows promise for nonchemical control of GBM
- Mechanical applicator allows rapid treatment with pheromone wax
- Selective insecticides and other new products have great potential for GBM control with minimal side effects
- Integrating these tools into IPM programs will benefit workers, the environment, and beneficial insects

Acknowledgements

Thanks to...

All our grower cooperators

Zsofia Szendrei, Elly Maxwell, and Chris Sebolt

Jim Miller, Lukasz Stelinski and Larry Gut

Funding support...

Pest Management Alternatives Program Crops at Risk Program Viticulture Consortium-East

