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Abstract

Modern empirical social science consists largely of attempts at answering ques-
tions of the form “What is the causal effect of X on Y?” As a result, social scientists
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posed by finding the required mechanism. To help overcome that resistance, we first
explain how to use the front-door criterion in a regression context. We then present
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we look at what happens when some of the assumptions underpinning the front-door
criterion are violated.
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1 Introduction

Empirical social science research increasingly consists largely of attempts at answering

questions of the form “What is the causal effect of X on Y?” Consequently, social scientists

rely on a number of empirical techniques aimed at disentangling causal relationships

from mere correlations. The fact that one cannot usually infer a causal relationship from

a mere correlation is referred to as the “identification problem.”

For a dichotomous treatment variable X and a continuous outcome Y, Figure I graph-

ically represents the identification problem, where the average treatment effect (ATE),

β̂ = E(Y|X = 1)− E(Y|X = 0), is not identified because of the presence of unobserved

confounders U.

FIGURE I: The Identification Problem

X Y

U

β̂

For instance, suppose we observe a correlation between someone consuming red wine

X and experiencing migraines Y. It is possible that drinking red wine causes migraines. It

is also possible, however, that a third, unobserved factor U—stress, for instance—causes

one to both drink red wine and experience migraines. In order to test whether drinking

red wine causes migraines, applied researchers have to use one of the several techniques

available to social scientists for identifying causal relationships. In the ideal case, the re-

searcher conducts an experiment by randomly assigning each observation i to the control

(i.e., Xi = 0, drinks no red wine) or treatment (i.e., Xi = 1, drinks red wine) groups, which

frees X from the influence of U and allows for credible causal identification.

Not all questions, however, can be answered with an experiment. Practical limitations

from implementation challenges to ethical concerns often prevent the use of experiments

to answer important research questions, and so in the absence of experimental data, most
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empirical social scientists rely on quasi-experimental techniques. All of those techniques

(e.g., instrumental variables, difference-in-differences, regression discontinuity) exploit a

specific feature of the data at hand to get as close as possible to a situation where X is

experimentally assigned, and thus not affected by the unobserved confounder U.

FIGURE II: The Front-Door Criterion

MX Y

U

γ̂ δ̂

One such quasi-experimental technique is Pearl’s (1995, 2000) front-door criterion

(FDC), an empirical method which was brought to the general public’s attention in Pearl

and Mackenzie’s (2018) The Book of Why, and which is represented in Figure II. The idea

behind the FDC is simple. Suppose one is interested in identifying the causal relationship

flowing from X to Y in Figure I. The unobserved confounder U obviously prevents iden-

tifying that causal relationship, but if one can find a mechanism M which (i) lies on the

causal path between X and Y, (ii) is the only such mechanism, and (iii) is not affected by

the unobserved confounder U, then one can identify the causal relationship flowing from

X to Y.

The intuition behind this is as follows. Breaking down Figure II into two parts yields

Figure III, which represents two causally identified relationships. On the left, in panel (a),

the causal relationship γ̂ from X to M is identified because the unobserved confounder

U affects X but does not affect M. On the right, in panel (b), the causal relationship δ̂ is

identified because the unobserved confounder affects Y but does not affect M. Combining

the two parts of the FDC—the ATE γ̂ of X on M, and the ATE δ̂ of M on Y—by multiplying

them by one another allows recovering β̂, the ATE of X on Y.

For instance, it may be that we are not able to randomly assign whether someone

consumes red wine on a given day (i.e., X), but we can randomly assign how much red
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FIGURE III: The Front-Door Criterion as the Product of Two Causal Relationships

(a)

X M

U

γ̂

(b)
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wine this person drinks (i.e., M) when they decide to consume red wine. In that case,

assuming perfect compliance, the FDC can credibly estimate the causal effect of red wine

consumption on migraines (i.e., Y).

Social scientists in general—and economists in particular—have been resistant to in-

corporating the FDC in their standard empirical toolkit. This resistance largely stems

from the fact that finding a convincing empirical application, where a researcher can

identify the causal effect of X on Y via an exogenous mechanism M, has thus far been

relatively elusive.1 In his writings on the FDC, for instance, Judea Pearl always gives the

same canonical example where X is a dummy variable for whether one smokes, Y is a

dummy variable for whether one develops lung cancer, and M is the accumulation of tar

in one’s lungs, which may be due to either to one smoking or to the conditions of one’s

environment (Pearl 1995; Pearl 2000; Pearl and Mackenzie 2018). Consequently, the only

extant published social science applications of the FDC are by Glynn and Kashin (2017;

2018), who respectively show that the front-door adjustment can be useful even when the

assumptions required for the FDC do not hold, and develop a front-door difference-in-

differences estimator as an extension of the FDC. The applications of Glynn and Kashin

(2017; 2018) both plausibly satisfy the necessary criteria for the FDC approach, but do not

exactly replicate existing experimental findings.2

The contribution of this paper is thus threefold. First, because linear regression re-

1A well-articulated example of economists’ skepticism regarding the usefulness of the front-door crite-
rion can be found in section 2.7 of Imbens (2019).

2In Glynn and Kashin (2018) the authors apply the FDC approach to estimating the effects of attending
a job training program on earnings. In Glynn and Kashin (2017) the authors also apply the FDC Difference-
in-Differences approach to evaluate the effect of an early in-person voting program on voting turnout.
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mains the workhorse of empirical social science, and because an explanation of how to

use the FDC in a regression context has so far been lacking in the literature, we explain

how to use the FDC in the context of linear regression.3 Second, we present three ex-

amples of the FDC in practice: one using simulated data, and two using real-world data

where the randomly varying treatment intensity serves as the mechanism M—one from

a randomized controlled trial, and one from a lab experiment. Lastly, and perhaps most

importantly for applied econometricians, we explore departures from Pearl’s ideal FDC

scenario. Specifically, we look at what happens when (i) there are multiple mechanisms,

some of which may be omitted from the FDC estimation, (ii) the assumption of strict exo-

geneity of M is violated, and (iii) the treatment is completely defined by the mechanism.

The remainder of this paper is organized as follows. In section 2, we present the theory

behind the FDC and a “how-to” for those applied economists who may wish to broaden

their empirical toolkit by adding to it the FDC. Section 3 presents thee empirical illustra-

tions: one based on simulated data, and two based on the real-world data in Beaman et

al. (2013) and Bellemare et al. (2019). In section 4, we explore departures from some of

the assumptions underpinning the FDC. We conclude in section 5 by offering practical

recommendations for using the FDC in empirical research.

2 The Front-Door Criterion: Theory and Practice

We begin this section with a brief presentation of the FDC estimand as derived in Pearl

(1995, 2000). We then offer our first contribution, which is that of explaining how to use

the FDC in practice in a regression context.

3This contribution builds on the previous work by Chalak and White (2011).
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2.1 Theory

We are interested in estimating E[Y|X], the ATE of X on Y in Figure I above. Recall

that with observational data, this task is complicated by the presence of unobserved con-

founders, U, which give rise to the identification problem. Given the validity of a number

of identifying assumptions, however, the FDC approach pictured in Figure II allows for

unbiased estimates of causal effects.

As discussed in Pearl (1995, 2000), the FDC requires that there exists a variable, M,

that satisfies the following conditions relative to X and Y:

(i) M intercepts all directed paths from X to Y. This implies that the only way in

which X influences Y is through M. In Figure II, this means that there should

be no arrows bypassing M between X and Y.

(ii) There is no back-door path between X and M. This implies that the relationship

between X and M is not confounded by unobserved confounders, i.e., that the

coefficient γ̂ = E[M|X] in Figure II is identified.

(iii) Every back-door path between M and Y is blocked by X. This implies that,

conditional on X, the relationship between M and Y is not confounded by un-

observed confounders, i.e., the coefficient δ̂ = E[Y|M, X] in Figure II is identi-

fied.4

As in Pearl (1995), we derive the FDC estimand in three steps, with the goal being to com-

pute P(Y|do(X)) with observable variables, where do(X) denotes X when that variable

is randomly assigned. Therefore, P(Y|do(X)) represents the causal effect of X on Y. This

should be contrasted with P(Y|X), which may not represent the causal effect of X on Y

due to the presence of the unobserved confounder U. Because observing do(X) is un-

likely outside of a randomized experiment, our goal here is to restate P(Y|do(X)) using

only observational variables.
4This condition is conceptually equivalent to the familiar "ignorability" assumption required for match-

ing estimators (Rosenbaum and Rubin (1983).
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The first step is to compute P(M|do(X)). Here we make use of condition (ii), i.e., there

is no back-door path between X and M, and so the relationship between X and M is

identified. When that condition holds, we can write

P(M|do(X)) = P(M|X), (1)

given that in this case, the unobserved confounder U affecting X but not M makes the

two sides of Equation 1 equivalent.

The second step is to compute P(Y|do(M)). Here we cannot set do(M) = M because

there is a back-door path from M to Y, via X. To block this path we can make use of

condition (iii), i.e., every back-door path between between M and Y is blocked by X. In

that case, by controlling for and summing over all values Xi of X, we can write

P(Y|do(M)) = ∑
X

P(Y|X, do(M))× P(X|do(M)) (2)

where the right-hand-side of Equation 2 involves two expressions involving do(M).

The second term on the right-hand-side of Equation 2 can be reduced to P(X) because,

as stated by condition (i), M intercepts all directed paths from X to Y. The first term on

the right-hand-side of Equation 2 can be expressed as P(Y|X, M) because, as stated by

condition (iii), X blocks all back-door paths from M to Y. This implies that conditional on

X, the relationship between M and Y is identified. Therefore, we can write

P(Y|do(M)) = ∑
X

P(Y|X, M)× P(X). (3)

The third and last step is to combine the two effect estimates, P(M|do(X)) from Equa-

tion 1 and P(Y|do(M)) from Equation 2, in order to compute P(Y|do(X))—the causal

effect of X on Y.

To start, we express P(Y|do(X)) in terms of do(X) by controlling for and summing
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over all values of Mi of M. This allows us to write

P(Y|do(X)) = ∑
M

P(Y|M, do(X))× P(M|do(X)). (4)

Condition (iii) allows us to rewrite M as do(M) in the first term on the right-hand-side

of Equation 4. Because every back-door path between Y and M is blocked by X, then

the variation in M is exogenous. Additionally, as stated by condition (i), M intercepts all

paths from X to Y and so we can remove do(X) from the first term on the right-hand side

of Equation 4. Put differently, the causal effect between M and Y is independent of X, so

we can rewrite the first term on the right-hand side of Equation 4 as

P(Y|M, do(X)) = P(Y|do(M), do(X)) = P(Y|do(M)). (5)

Recall that Equation 3 states that P(Y|do(M)) = ∑X P(Y|X, M)× P(X) and Equation

1 states that P(M|do(X)) = P(M|X). Therefore, plugging Equation 3 into Equations 4

and 5, and plugging Equation 1 into Equation 4 gives us the FDC estimand as originally

derived by Pearl (1995). That estimand is such that

P(Y|do(X)) = ∑
M

P(M|X)×∑
X′

P(Y|X′, M)× P(X′). (6)

Conceptually, and as discussed in Hernán and Robins (2019), the FDC approach works

by first estimating the effect of X on M, and then estimating the effect of M on Y holding

X constant. Both of these effects are unbiased because nothing confounds the effect of X

on M and X blocks the only back-door path between M on Y. Multiplying these effects

by one another yields the FDC estimand.

Pearl (2000) makes one more assumption. This assumption states that P(Xi|Mi) > 0.

This implies that no matter the value of the mechanism is for unit i, that unit has to have

a nonzero probability of getting treated. This means that the mechanism Mi cannot be
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entirely defined by the treatment Xi. In the canonical example of the relationship between

smoking X and lung cancer Y, this assumption implies that the amount of tar in the lungs

of smokers M must be the the result not only of smoking, but also of other factors (e.g.,

exposure to environmental pollutants), and that tar be absent from the lungs of some

smokers (say, because of an extremely efficient tar-rejecting mechanism). We will discuss

this assumption in more detail in Section 4, but the good news is that it can be can be

directly validated with data.

2.2 Practice

In this sub-section we discuss how to empirically estimate treatment effects using the

FDC approach. When the necessary conditions for the FDC to identify a treatment effect

hold, one way to estimate treatment effects is using the following approach. Let

Mi = κ + γXi + ωi (7)

and

Yi = λ + δMi + φXi + νi. (8)

In Equation 7, following condition (ii) which states that there is no back-door path

between X and M, the relationship between X and M is identified, since Cov(X, ω) = 0.

In Equation 8, Yi is the outcome variable, which is related to Xi only through Mi. In this

case, following conditions (i) and (iii) which together imply that M intercepts all paths

between X and Y, and X blocks all back-door paths between M and Y, the relationship

between M and Y conditional on X is identified, since Cov(M, ν) = 0. Therefore, esti-

mating Equations 7 and 8 and multiplying the coefficient estimates δ̂ and γ̂ by each other

estimates β.
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More formally, one can write

ATEFDC = E[Y|do(X)] = E[δ̂× γ̂] = β̂unbiased (9)

The conditions under which the proposition in equation 9 must hold are derived as

follows. The definition of β̂ is:

β̂ =
∑(Xi − X̄)(Yi − Ȳ)

∑(Xi − X̄)2 (10)

A familiar expansion of equation (10) demonstrates that β̂ = β if Cov(X, ε) = 0, where

ε is the error term in a regression of Y on X. Figure II suggests, however that Cov(X, ε) 6=

0. Therefore, regressing Y on X will not calculate an unbiased estimate of β. Given that

the conditions of the FDC hold, however, the FDC approach can calculate the unbiased

estimate of β.

This can be shown given the following derivation. By subtracting the mean of Yi in

equation 8 and substituting this into equation 10 yields the following augmented defini-

tion of β̂.

β̂ =
∑(Xi − X̄)(δ1(Mi − M̄) + φ(Xi − X̄) + (νi − ν̄))

∑(Xi − X̄)2 (11)

Similarly, by subtracting the mean of Mi in equation 7 and substituting this into equa-

tion 11 yields the following augmented definition of β̂, which is now in terms of Xi and

the error terms from equations 7 and 8.

β̂ =
∑(Xi − X̄)(δ(γ(Xi − X̄) + (ωi − ω̄)) + φ(Xi − X̄) + (νi − ν̄))

∑(Xi − X̄)2 (12)

Equation 12 reduces to the following expression

β̂ = δ× γ + δ
Cov(X, ω)

Var(X)
+ φ +

Cov(X, ν)

Var(X)
(13)
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If Cov(X, ω) = 0, Cov(X, ν) = 0, and φ = 0, then β̂ = δ× γ = β. The exogeneity of

M leads to Cov(X, ω) = 0 and Cov(X, ν) = 0. This assumption is implied by conditions

(ii) and (iii) which together state that there is no back-door path between X and M, and

that every back-door path between M and Y is blocked by X. Finally, φ = 0 indicates that

there is no direct effect of X on Y conditional on both M and the unobserved confounder

U.5 This ”no direct effect” assumption is implied by condition (i)—that M intercepts all

directed paths from X to Y.

In section 4, we will examine the consequences of the failure of some of these assump-

tions. Specifically, we will look at what happens when Cov(X, ω) 6= 0 and Cov(X, ν) 6= 0

(i.e., when M is not strictly exogenous) and when φ 6= 0 (i.e., when there is a direct effect

of X and Y). Both of these cases will lead to biased estimates of the ATE defined by the

formula given in Equation 13.

3 Empirical Illustration

We first show empirical results using simulated data. We then show results using data

from a randomized controlled trial conducted by Beaman et al. (2013) in Mali. Finally,

we show results using data from a lab experiment conducted by Bellemare et al. (2019) at

two experimental labs in the US in the field in Peru.

3.1 Simulation Results

Our simulation setup is as follows. Let Ui ∼ N(0, 1), Zi ∼ U(0, 1), εXi ∼ N(0, 1), εMi ∼

N(0, 1), and εYi ∼ N(0, 1) for a sample size of N = 100, 000 observations. Then, let

Xi = 0.5Ui + εXi, (14)

5Another way to interpret φ is as the marginal effect of X on Y when controlling for the unobserved
confounder U. Although in practice this is not directly testable, our simulation analysis demonstrate this
result.
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Mi = ZiXi + εMi, (15)

and

Yi = 0.5Mi + 0.5Ui + εYi. (16)

This fully satisfies Pearl’s (1995, 2000) three criteria for the FDC to be able to estimate

the average treatment effect of X on Y, viz. (i) the only way in which X influences Y

is through M, (ii) the relationship between M and X is not confounded by U, since U

only affects X and not M, and (iii) conditional on X, the relationship between M and Y is

not confounded by U. By substituting Equation 14 into Equation 15, and then Equation

15 into Equation 16, it should be immediately obvious to the reader that the true ATE is

equal to 0.250 in our simulations.

To show that the FDC estimates the ATE of X on Y, we estimate two specifications. The

first specification, which we refer to as our benchmark specification because it generates

an unbiased estimate of the ATE by virtue of controlling for the unobserved confounder

U, estimates

Yi = α0 + β0Xi + ζ0Ui + ε0i, (17)

where, because both Xi and Ui are included on the right-hand-side, E(β̂0) = β, i.e.,

the true ATE.

The second specification, which we refer to as our front-door specification, estimates

Mi = κ0 + γ0Xi + ω0i (18)

Yi = λ0 + δ0Mi + φ0Xi + ν0i (19)

where the unobserved confounder Ui does not appear anywhere, but because the nec-

essary assumptions for the FDC to identify the ATE hold, E(γ̂0 · δ̂0) = β, i.e., the true

ATE.

Lastly, we estimate a naïve specification, one that is similar to the benchmark spec-
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ification in Equation 17, but which fails to control for the presence of the unobserved

confounder.

Column 1 of Table I shows estimation results for Equation 17, our benchmark specifi-

cation. Column 2 shows estimation results for our naïve specification. Columns 3 and 4

show estimation results respectively for the front-door specification in Equations 18 and

19, respectively. The line labeled “Estimated ATE” shows estimates of the ATE for each

of those three specifications. Unsurprisingly, the estimates of the ATE in columns 1 and 2

differ markedly, as the former controls for Ui but the latter does not: β̂ is equal to 0.252 in

the benchmark case, but it is near double that at 0.454 in the naïve case.

Given the derivations above, it should also come as no surprise that the estimate of

the ATE generated by multiplying the coefficient on treatment in column 3 by the coeffi-

cient on the mechanism in column 4 is equal to 0.254. Assuming the ATE in column 1 is

not correlated with the ATE computed from columns 3 and 4, the benchmark and front-

door ATEs are statistically identical. In both cases, the estimated ATE is not statistically

different from its true value of 0.250.

Finally, column 5 in Table 1 serves an illustrative purpose. It shows that conditional on

the mechanism (M) and the unobserved confounder (U), the coefficient on the treatment

(X) is statistically indistinguishable from zero. This result highlights the “no direct effect”

assumption that is implied by the FDC conditions in Figure I and by equation 13.

3.2 Real-World Results

This section illustrates the FDC using the results of two experimental studies, one by Bea-

man et al. (2013), and one by Bellemare et al. (2019).6 In Table II, we replicate results

from Beaman et al. (2013), who conduct a randomized controlled trial with rice farmers

6In both of the examples presented in this section, treatment is randomly assigned, and so there is no
unobserved confounder U affecting both X and Y. In addition, Pearl’s assumption that P(Xi|Mi) > 0 is
violated in both the examples because in cases where the mechanisms are equal to zero, the likelihood that
an observation will receive treatment is equal to zero. As a consequence of those two facts, the estimation
procedure discussed in section 2 has to be modified slightly. We explain in section 4.3 how to do so.
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TABLE I: Simulation Results

Benchmark Naïve Front-Door Direct
Effect

Variables Y Y M Y Y
(1) (2) (3) (4) (5)

Treatment (X) 0.252*** 0.454*** 0.507*** 0.200*** -0.003
(0.004) (0.003) (0.003) (0.004) (0.004)

Mechanism (M) – – – 0.502*** 0.500***
(0.003) (0.003)

Confounder (U) 0.499*** – – – 0.501***
(0.004) (0.004)

Intercept -0.004 -0.005 -0.004 -0.003 -0.003
(0.004) (0.004) (0.003) (0.004) (0.003)

Estimated ATE 0.252*** 0.454*** 0.254*** –
(0.004) (0.003) (0.002)

Observations 100,000 100,000 100,000 100,000
Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
The front-door equations in columns (3) and (4) are estimated by seem-
ingly unrelated regressions. The standard error for the front-door ATE is
estimated by the delta method.

in Mali. Starting from the full sample, units of observations are either assigned to a treat-

ment group or a control group, with treated units receiving fertilizer and control units

receiving no fertilizer.

In this application, we exploit as a mechanism the fact that treatment intensity varies

at random within the treatment group to illustrate the FDC in practice. Treatment inten-

sity varies at random, with about half of the treatment-group observations receiving half

of the prescribed amount of fertilizer, the remainder of the treatment-group observations

receiving the full prescribed amount of fertilizer, and the control-group observations re-

ceiving none of the prescribed amount of fertilizer.

As one would expect from the derivations in Section 2, the results in Table II show

that the ATEs obtained by the FDC are all statistically indistinguishable from the bench-

mark ATEs. For example, considering the average rate of fertilizer use among the control

group is 0.32, the benchmark estimate (in column 1) suggests that receiving free fertil-

izer increases the use of fertilizer over twofold. The FDC approach roughly replicates
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TABLE II: Empirical Illustration — Rice Production and Fertilizer Use in Mali

Use of Fertilizer Fertilizer Quantity Fertilizer Expenses
(1) (2) (3) (4) (5) (6)

Benchmark 0.639*** 27.24*** -2,717.1***
(0.033) (3.568) (464.6)

Front-Door 0.603*** 26.64*** -2,605.3***
(0.030) (3.002) (389.7)

Observations 378 378 378 378 373 373
Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All
columns include the same control variables as in Beaman et al. (2013). Columns
(1), (3), and (5) represent benchmark OLS estimates of the ATEs of receiving fertil-
izer on the outcome variables. The estimates in columns (1), (3), and (5) replicate
the findings of Beaman et al. (2013) except that the original study differentiates
between two treatment groups defined by intensity of treatment. Columns (2),
(4), and (6) represent seemingly unrelated regression estimates of the front-door
criterion ATEs. Standard errors in columns (2), (4), and (6) are estimated by the
delta method.

(in column 2) this benchmark estimate. The similarity between the benchmark and FDC

estimates persist for the the quantity of fertilizer use (columns 3 and 4) and fertilizer ex-

penses (columns 5 and 6). The results show that receipt of free fertilizer leads to increases

in the use of fertilizer at both the extensive and intensive margins and reduces fertilizer

expenses.

Table III also illustrates the FDC using real-world data using data from Bellemare et

al.’s (2019) lab experiment aimed at testing Sandmo’s (1971) theoretical prediction that

output price risk makes risk-averse producers hedge against price risk by producing less

than they do in situations of price certainty. Here, subjects are put in the role of producers

facing a price that is either certain or uncertain, with the amount of price uncertainty—

the standard deviation of the price distribution—varying at random in the subset of cases

where the price is risky. Specifically, Y denotes output quantity chosen by a given subject

in a given round ex ante of the realization of the price, X denotes whether the price is

certain (X = 0) or uncertain (X = 1), and M measures treatment intensity, viz. how

uncertain the output price, or the standard deviation of the price distribution, which is

chosen at random from four distinct values.

The results in Table III show that the ATEs obtained by the FDC are statistically indis-
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TABLE III: Empirical Illustration — Price Risk and Production in the Lab and in the Field

Whole Sample US (Lab, Students) Peru (Field, Farmers)
(1) (2) (3) (4) (5) (6)

Benchmark 0.252** 0.082 0.591***
(0.123) (0.135) (0.227)

Front-Door 0.229** 0.04 0.603***
(0.113) (0.124) (0.209)

Observations 2,339 2,339 1,419 1,419 920 920
Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. No
control variables are included. Columns (1), (3), and (5) represent benchmark
OLS estimates of the ATEs on production of facing a risky price rather than a
certain price. Columns (2), (4), and (6) represent seemingly unrelated regression
estimates of the front-door criterion ATEs. Standard errors in columns (2), (4),
and (6) are estimated by the delta method.

tinguishable from the benchmark ATEs. These results suggest that in the whole sample

(columns 1 and 2), subjects increase their production by a quarter of one unit in response

to price risk. This masks some heterogeneity, however: In US labs (columns 3 and 4),

subjects do not change their production in response to price risk, but in Peru (columns

5 and 6), farmers increase their production by 0.6 units in response to price risk. These

findings are qualitatively invariant between the experimental benchmark estimates and

the FDC estimates.

A few remarks are in order. First, the real-world results in this section are most useful

for highlighting the potential of the FDC approach in estimating treatment effects in set-

tings where each of the conditions hold. Of course, since both Beaman et al. (2013) and

Bellemare et al. (2019) have the benefit of experimentally assigning treatment, the FDC

approach is not necessary to estimate treatment effects in either context.

Second, in these real-world experimental cases, there is no need to condition on the

treatment variable (i.e., X) when estimating the effect of the mechanism (i.e., M) on the

outcome (i.e., Y) since the random assignment of treatment already removes any back-

door path between Y and M. In fact, needlessly conditioning on the treatment variable

in an experimental setting leads to bias in the front-door estimate, due to violating the

assumption that P(Xi|Mi) > 0. We return to this phenomenon in section 4.3.
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4 Departures from the Ideal Case

Having discussed how one can use the FDC to estimate ATEs both in theory and in prac-

tice in section 2, and having illustrated the use of the FDC to estimate ATEs using both

simulation and real-world data in section 3, we now turn to investigate what happens

when some of the assumptions required for the FDC to identify an ATE fail to hold. To do

so, we look in turn at what happens with multiple mechanisms, when the mechanism is

no longer strictly exogenous, and when the treatment is totally defined by the mechanism.

4.1 Multiple Mechanisms

Pearl’s (1995, 2000) canonical treatment of the front-door criterion assumes that M is a

single variable, and not a vector of mechanism variables. Consequently, in the empirical

examples in section 3, we considered cases where the mechanism, M, is defined by a

single variable rather than a vector. In this sub-section we consider how to implement a

case where we have multiple mechanisms.

FIGURE IV: Multiple Mechanisms—Case 1

M2X Y

M1

U

There are two basic cases in which we can imagine multiple mechanisms. Of course,

one can imagine more complicated cases that combine these two basic cases. For the

illustrative purposes, however, we will examine these two cases separately. In the first

case, as shown in Figure IV, the multiple mechanisms are independent from each other.

Specifically, a path flows from X to both M1 and M2, and additionally, a path flows from

both M1 and M2 to Y. In this case, M1 and M2 together intercept all directed paths from
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X to Y and meet the requirement of condition (i). By simply examining Figure IV it is

clear that omitting either M1 or M2 from the estimation will violate condition (i), since

the single mechanism does not intercept all directed paths from X to Y.

FIGURE V: Multiple Mechanisms—Case 2

M1X M2 Y

U

In the second case, as shown in Figure V, the multiple mechanisms both lie on the

same path between X and Y. Specifically, a path flows from X to M1, from M1 to M2, and

finally from M2 to Y. In this case, either M1 or M2 intercept all directed paths from X to

Y and meet the requirement of condition (i). In contrast to the previous case, omitting

either M1 or M2 from the estimation will not violate condition (i), since both mechanisms

individually intercept all directed paths from X to Y. Therefore the FDC approach will

recover the ATE when using either only M1, only M2, or both M1 and M2 as mechanisms

in the FDC estimation. This point should be obvious based on conceptual reasoning, but

a simulation showing this result can be found in the appendix.

We now show simulation results that demonstrate the consequences of multiple mech-

anisms of the sort illustrated in Figure IV, where multiple mechanisms lie on different

paths from X to Y.

Our simulation setup is as follows. Let Ui ∼ N(0, 1), εXi ∼ N(0, 1), Z1i ∼ U(0, 1),

Z2i ∼ U(0, 1), εM1i ∼ N(0, 1), εM2i ∼ N(0, 1), and εYi ∼ N(0, 1) for a sample size of

N = 100, 000 observations. Then, let

Xi = 0.5Ui + εXi, (20)

M1i = Z1iXi + εM1i, (21)

M2i = Z2iXi + εM2i, (22)
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and

Yi = 0.5M1i + 0.5M2i + 0.5Ui + εYi. (23)

As illustrated in Figure IV, this fully satisfies Pearl’s (1995, 2000) three criteria for

the FDC to be able to estimate the average treatment effect of X on Y. By substituting

Equation 20 into Equations 21 and 22, and then substituting these equations into Equation

23, it should be immediately obvious to the reader that the true ATE is equal to 0.500 in

our simulations.

Similar to the previous simulation analysis, we estimate two specifications. The first

specification estimates

Y = α1 + β1Xi + ζ1Ui + ε1i, (24)

where, because both X and U are included on the right-hand-side, E(β̂1) = β, i.e., the

true ATE.

The second specification estimates

M1i = κ1 + γ1Xi + ω1i (25)

M2i = π1 + ρ1Xi + ξ1i (26)

Yi = λ1 + δ1M1i + τ1M2i + φ1Xi + ν1i (27)

where the unobserved confounder U does not appear anywhere. The small difference

in the case of multiple independent mechanisms is the true ATE is calculated by adding

two products together, E[(γ̂1 · δ̂1) + (ρ̂1 · τ̂1)] = β.

Column 1 of Table IV shows our benchmark estimation results for Equation 24. Col-

umn 2 shows estimation results for the naïve version of Equation 24 which omits the

unobserved confounder U. Columns 3, 4, and 5 show FDC estimation results using the

specification outlined in Equations 25 to 27, respectively. Again, the estimates of the ATE

in columns 1 and 2 are quite different, and the ATE estimate is equal to 0.501 in the bench-
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mark case, but it is much larger, at 0.703, in the naïve case.

Given the derivations above, it should come as no surprise that the estimate of the

ATE generated by the FDC approach accurately estimates the ATE. The FDC approach

first multiplies the coefficient on X in column 3 by the coefficient on M1 in column 5.

Next, the FDC approach multiplies the coefficient on X in column 4 by the coefficient on

M2 in column 5. Finally, these two products are summed to estimate the ATE. Assuming

the ATE in column 1 is not correlated with the ATE computed from columns 3 through 5,

the two ATEs are statistically identical. In both cases, the estimated ATE is not statistically

different from its true value of 0.500. Finally, in column 6, the direct effect of treatment

conditional on M1, M2, and U is statistically indistinguishable from zero.

More interesting, however, is investigating and interpreting estimates when we erro-

neously omit one of the mechanisms (say, for example, M2) from the FDC estimation. In

this case, we no longer can correctly assume no “direct effect” of X on Y since there is a

directed path independent of M1 via M2. This violates condition (i) of Pearl (1995, 2000).
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Given the formula for bias in the FDC estimation approach, shown in equation 13, in

the presence of a non-zero “direct effect” when omitting a mechanism, the estimate of

the ATE will be biased by −φ. Columns 7 through 9 in Table IV domonstrate this fact.

When we omit M2 from the FDC estimation the estimated ATE (shown in columns 7 and

8) is 0.246, quite a bit smaller than the true ATE. Column 9 shows that the “direct effect” is

0.254. Indeed, as implied by equation 13, if we add the biased FDC estimate from columns

7 and 8 to the coefficient on treatment from column 9 we recover the the true ATE.

The foregoing shows the consequences of omitting a mechanism when using the FDC

approach to estimate the ATE. With that said, the effect estimated in the biased FDC esti-

mation in columns 7 and 8 of Table IV can be interpreted as the “indirect effect” of X on

Y via M1 and independent of M2 (Judd and Kenny 1981; Sobel 1982; Baron and Kenny

1986; Imai et al. 2010, Acharya et al. 2016). In the literature on causal mediation analysis,

the total causal effect is framed as the aggregation of both the direct and indirect effects

(Imai et al. 2011).

A brief explanation of these existing methodologies for estimating indirect effects, in

reference to the FDC approach, is helpful here. A very common approach for estimat-

ing indirect or mediating effects is to simply condition on potential mediating variables

(Baron and Kenny 1986). Despite the popularity of this approach, conditioning on po-

tential mediating variables can lead to biased estimation—specifically in the case when

omitted variables are affected by the treatment X and affect both the potential mediating

variable M and the outcome Y (see, e.g., Acharya et al. 2016; Imai et al. 2010). The neces-

sary conditions for the FDC approach allow for more credible causal mediation analysis.

That is, if the conditions outlined in Section 2.1 hold, then the FDC approach allows for

credible estimation of indirect effects. More specifically, given the FDC conditions are sat-

isfied, the FDC approach mirrors the "product of coefficients" approach of Sobel (1982).

For matters of completeness, given a corrsponding set of assumptions are satisfied, the

approach of Acharya et al. (2016) mirror the "difference of coefficients" approach of Judd
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and Kenny (1981).

The ability to relax condition (i)—that the M intercepts all paths from X to Y—may

allow for more credible and useful applications of the FDC approach in assisting applied

researchers estimate mediation effects. Of course, whether or not the indirect effect is a

parameter of interest for applied researchers will ultimately depend on the specific em-

pirical application and the research question.

4.2 Violations of Strict Exogeneity

Together, conditions (ii) and (iii) imply that the mechanism M is excludable. More for-

mally, the strict exogeneity of M implies that P(U|M, X) = P(U|X) and P(Y|X, M, U) =

P(Y|M, U). In this sub-section, we examine violations of this assumption. Again, we do

this with a simulation analysis.

Our simulation setup is the same as in section 3, except that here we allow for the

endogeneity of M. Let Ui ∼ N(0, 1), Zi ∼ U(0, 1), εXi ∼ N(0, 1), εMi ∼ N(0, 1), and

εYi ∼ N(0, 1) for a sample size of N = 100, 000 observations. Then, let

Xi = 0.5Ui + εXi, (28)

Mi = ZiXi + ΓUi + εMi, (29)

and

Yi = 0.5Mi + 0.5Ui + εYi. (30)

The critical difference here is that now, when defining M in equation 29, U is included

on the right-hand-side. The parameter Γ defines the strength of the relationship between

U and M. In this simulation analysis we let Γ ∼ U(0, 2). By permitting the values of Γ to

vary allows the degree of endogeneity in our simulations to vary.

We show these simulation results graphically. Figure VI illustrates how having an en-
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FIGURE VI: The Consequences of an Endogenous Mechanism

Notes: This figure illustrates simulation results using 1,000 replications from each estimation ap-
proach. The vertical axis represents the estimated effect. The horizontal axis represents the
Gamma parameter, representing the degree of endogeneity, from equation 29. The benchmark
estimates (black circles) all accurately estimate the true ATE of 0.250. The naive estimates are
shown in blue diamonds and the front-door estimates are shown in red triangles.
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dogenous mechanism influences the credibility of using the FDC approach to estimate the

ATE. This figure shows estimated effects for three estimation approaches. First, the bench-

mark estimates (black circles), which include the confounder U on the right-hand-side of

the regression equation, accurately estimates the true ATE of 0.250. Second, the naïve

estimates (blue diamonds), which omits the confounder U from the regression equation,

consistently overestimates the ATE. The size of this bias is increasing in the strength of

the endogeneity of M. This is because, as Γ increases, the influence of the confounder

U in the relationship between X and Y increases. Finally, the front-door estimates (red

triangles) are estimated as described in equations 18 and 19 in section 2.

Once again, a few remarks are in order. First, and rather unsurprisingly, it is only

when the degree of endogeneity of M is negligible (i.e., when Γ is infinitesimally close

to zero) that the FDC approach accurately estimates the ATE. Second, when M is weakly

endogenous (i.e., when Γ > 0 but still relatively small) the FDC approach produces biased

estimates of the ATE, but these estimates are less biased than the naïve estimates. Third,

when M is strongly endogenous the FDC approach produces estimates of the ATE that

are worse—that is, more biased—than the naïve estimates.

These details lead to an important discussion for applied researchers who may want

to implement the FDC approach in their given empirical setting. In many cases, strict

exogeneity of M may be debatable. Indeed, outside of an experimental setting, convinc-

ingly arguing that P(U|M, X) = P(U|X) and P(Y|X, M, U) = P(Y|M, U) will likely be

challenging. That said, however, if applied researchers can convincingly argue that the

degree of endogeneity of M is relatively weak—that M is not strictly exogenous but that

it is plausibly exogenous (Conley et al., 2012), so to speak—then the FDC approach will

produce more reliable estimates of the ATE compared to the naïve approach which con-

sists in regressing Y on an endogenous X. On the other hand, when the endogeneity of

M is obviously relatively strong, using the FDC approach could lead to more bias in esti-

mates of the ATE than the naïve approach. Specifically in our simulation set-up, the FDC
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estimates begin to become just as biased as the naïve estimates when Γ is equal to one. In

the way we’ve defined our variables, this means that the direct effect of U on M is about

twice as strong as the indirect effect of U on M via X. Of course when using real-world

data, when we cannot observe U, testing the specific size of these relationships is impos-

sible. In nearly all practical settings, the case for the exogeneity of M will rely on careful

reasoning based on the given empirical setting.

4.3 Treatment Totally Defined by Mechanism

Recall that in addition to the three assumptions in section 2.1 for the FDC to identify the

average treatment effect, Pearl (2000) makes a fourth assumption, namely that P(Xi|Mi) >

0. This assumption implies that for every value of the mechanism M, the likelihood that

an observation will receive treatment X is nonzero. In other words, the treatment cannot

be totally defined by the mechanism, and no matter what value the mechanism takes, it

has to be the case that an observation has a nonzero probability of receiving the treatment.

This assumption was satisfied in our simulation results, but in both of our real-world

examples, it failed to hold. In the Beaman et al. (2013) example, a farmer who received no

fertilizer had a likelihood of receiving treatment equal to zero, as they had been assigned

to the control group. Likewise, in the Bellemare et al. (2019) example, a subject who faced

a standard deviation of the price distribution of zero had a likelihood of experiencing

price risk equal to zero, as that subject had been assigned to a price certainty treatment.

Though our two real-world examples come from experiments, cases where P(Xi|Mi) =

0 are not the exclusive preserve of experimental research designs, and it is not difficult to

imagine observational research designs where only those subjects who select into receiv-

ing a given treatment can actually receive that treatment in nonzero amounts.

Preliminary empirical work for this paper, however, uncovered the following fact: It is

only when there are no unobserved confounders that P(Xi|Mi) = 0 is a problem. In such

cases, one only need to omit the treatment variable X from estimation in Equation 8 for
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TABLE V: Over-Controlling for the Treatment — Fertilizer Use in Mali

Use of Fertilizer Fertilizer Quantity Fertilizer Expenses
(1) (2) (3) (4) (5) (6)

Benchmark Front-Door ATE 0.603*** 26.64*** -2,605.3***
(0.030) (3.002) (389.7)

Over-Controlled Front-Door ATE 0.009 17.580*** -882.72
(0.055) (5.920) (776.90)

Observations 378 378 378 378 377 377
Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All columns include the
same control variables as in Beaman et al. (2013). Columns (1), (3), and (5) represent benchmark seem-
ingly unrelated regression FDC estimates of the ATEs of receiving fertilizer on the outcome variables.
Columns (2), (4), and (6) represent seemingly unrelated regression estimates of the front-door criterion
ATEs which over-control for treatment in the outcome regression of the FDC setup. Standard errors are
estimated by the delta method.

the method we outline in section 2 to recover the correct ATE. When there are unobserved

confounders, the method in section 2 applies lock, stock, and barrel.

Why does the treatment need to be omitted from Equation 8 when the assumption

that P(Xi|Mi) > 0 is violated and there are no unobserved confounders? In such cases,

the variation in X is already accounted for in the variation in M. Indeed, when Mi > 0,

we know Xi = 1, and when Mi = 0, we know Xi = 0. Although it is certainly possible to

estimate Equation 8 when the treatment is totally defined by the mechanism, both with

and without unobserved confounders, it is only in the former case that the inclusion of

both M and X as regressors on the left-hand side of Equation 8 will return an unbiased

ATE.

The results in Table V revisit the data in Table II. Here, however, odd-numbered

columns report the correct ATEs (i.e., ATEs obtained as in Equations 9, but omitting the

treatment variable in Equation 8), and even-numbered columns report biased ATEs (i.e.,

ATEs obtained as in Equations 9, but including the treatment variable in Equation 8).

Fortunately, the problem discussed in this section is only a problem in cases without

the same unobserved confounder U affecting both the treatment X and the outcome Y.

Such cases, however, only really arise when X and M are experimentally assigned, in

which case the FDC is not necessary to estimate the ATE—a simple regression of Y on X
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will return that ATE. As such, the fact that P(Xi|Mi) > 0 may not hold remains a largely

theoretical issue compared to the other issues discussed in this paper.

5 Conclusion

This paper has focused on the application of Pearl’s (1995, 2000) front-door criterion. Be-

cause the goal of most empirical social science is to answer questions of the form “Does X

cause Y?,” social scientists should welcome the addition of techniques that allow answer-

ing such questions to their empirical toolkit. Yet the adoption of the front-door criterion

has so far been slow, with the exception of two recent articles by Glynn and Kashin (2017,

2018).

We focus here first and foremost on explaining how to use the front-door criterion

in the context of linear regression, which remains the workhorse of empirical social sci-

ence. We then present three empirical examples: one using simulated data, one relying

on field-experimental data by Beaman et al. (2013), and one relying on experimental data

from lab and lab-in-the-field experiments by Bellemare et al. (2019). Finally, in an effort

to help overcome social scientists’ resistance to incorporating the front-door criterion in

their empirical toolkit, we look at what happens when the assumptions underpinning the

front-door criterion are violated.

Our results lead to the following recommendations for applied work:

1. Because the FDC estimand is the product of two estimated coefficients from two

separate regressions, it is best to estimate those two regressions simultaneously to

account for the correlation in the errors. We do so in this paper by seemingly unre-

lated regression methods.

2. With control variables, both the mechanism and the outcome regression compo-

nents of the FDC setup should include all controls.
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3. Because the FDC estimand is a nonlinear combination of two estimated coefficients,

standard errors can be computed either by the delta method or by bootstrapping. In

small samples, bootstrapping should be preferred to the delta method.

4. When the treatment operates through more than one mechanism, the average treat-

ment effect is the sum of the partial treatment effects (i.e., the “indirect effects”),

defined by the effect of the treatment on outcome through each mechanism.

5. When the mechanism is no longer strictly exogenous, the usefulness of the FDC de-

pends on the degree of exogeneity of the mechanism. In cases where the mechanism

is only plausibly—but not strictly—exogenous (Conley et al., 2012), the estimate of

the ATE obtained by the FDC is closer to the true value of the ATE than the estimate

of the ATE obtained by a naïve regression of outcome on treatment. In cases where

the mechanism is deemed to be strongly endogenous, the estimate of the ATE ob-

tained by the FDC is further from the true value of the ATE than the estimate of the

ATE obtained by a naïve regression of outcome on treatment.

6. In the absence of unobserved confounders, when the treatment is totally defined by

the mechanism, it is necessary to exclude the treatment variable from the outcome

regression component of the FDC setup because the information in the treatment

variable is already contained in the mechanism variable, and including the treat-

ment variable biases the ATE.

7. The FDC is most promising in cases where units of observations are selected into

treatment on the basis of unobservables which also affect the outcome, but for which

treatment intensity can argued to be (as good as) randomly assigned.

Ultimately, the front-door criterion is a useful tool for applied econometricians in-

terested in causal inference with observational data. When selection into treatment is

endogenous but there exists a single, plausibly exogenous mechanism whereby the treat-
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ment causes the outcome, the front-door criterion can be argued to credibly identify the

causal effect of treatment on outcome.
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Appendix

A1. Multiple Mechanisms–Case 2

We now show the results of a simulation that demonstrate the consequences (or lack

thereof) of multiple mechanisms of the sort illustrated in Figure V, where multiple mech-

anisms lie on the same path from X to Y.

Our simulation setup is as follows. Let U ∼ N(0, 1), εX ∼ N(0, 1), Z1 ∼ U(0, 1),

Z2 ∼ U(0, 1), εM1 ∼ N(0, 1), εM2 ∼ N(0, 1), and εY ∼ N(0, 1) for a sample size of

N = 100, 000 observations. Then, let

Xi = 0.5Ui + εXi, (31)

M1i = Z1i · Xi + εM1i, (32)

M2i = Z2i ·M1i + εM2i, (33)

and

Yi = 0.5M2i + 0.5Ui + εYi. (34)

As illustrated in Figure V, this fully satisfies Pearl’s (1995, 2000) three criteria for the

FDC to be able to estimate the average treatment effect of X on Y. By substituting Equa-

tion 31 into Equation 32, then substituting equation 32 into equation 33, and finally sub-

stituting equation 33 into Equation 34, it should be immediately obvious to the reader

that the true ATE is equal to 0.125 in our simulations.

Similar to the previous simulation analysis, we estimate two specifications. The first

specification estimates the true ATE by controlling for the confounder U. The second

specification estimates the ATE using the FDC approach. As the results in Table V show,

estimates of the ATE with the FDC approach in this case are statistically invariant whether

either or both M1 and M2 are included in the estimation procedure.
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