Truth-telling under Oath*

Nicolas Jacquemet† Stéphane Luchini‡ Julie Rosaz § Jason F. Shogren¶

February 2017

Abstract

Oath-taking for senior executives has been promoted as a means to enhance honesty within and towards organizations. Herein we explore whether people who voluntarily sign a solemn truth-telling oath are more committed to sincere behavior when offered the chance to lie. We design an experiment to test how the oath affects truth-telling in two contexts: a neutral context replicating the typical experiment in the literature, and a “loaded” context in which we remind subjects that “a lie is a lie.” Our results show that the oath reduces lying, but only in the loaded environment—falsehoods are reduced by fifty percent. The oath, however, had no effect on lying in the neutral environment. The oath did affect decision times, though: the average person took significantly more time deciding whether to lie. We confirmed these results by retesting behavior in a between-sample treatment in which each subject made only one lying decision.

Keywords: Deception; Lies; Truth-telling oath; Laboratory Experiment.

JEL Classification: C92, D03, D63.

*This paper is a revised an augmented version of CES Working Paper n°2015-68. We thank Robert-Vincent Joulé, Rosemarie Nagel and Marie-Claire Villeval for their comments. Jacquemet gratefully acknowledges funding from the Institut Universitaire de France and ANR-10-LABX-93-01, part of this work has been completed while he was affiliated at Université de Lorraine (BETA).

‡GREQAM-CNRS, Centre de la Vieille Charité, 13236 Marseille Cedex 02, France. stephane.luchini@univmed.fr

§Université Montpellier 1, UMR5474 LAMETA, F-34000 Montpellier, France. rosaz@lameta.univ-montp1.fr

¶Department of Economics and Finance, University of Wyoming, Laramie, WY 82071-3985, United States. JRamses@uwyo.edu
1 Introduction

Sometimes people lie. Societies have responded to these falsehoods with ex post punishments and ex ante institutions designed to commit people to truth-telling. In Antiquity, a merchant who claimed to have been robbed during his journey was asked to take an oath to avoid retaliation from the person or persons who were supposed to receive those goods (Silver 1995). Today’s business and managerial world is no different. After the 2002 Enron and Worldcom scandals and the 2008 financial crisis, many in the management community grew concerned that business leaders had lost their legitimacy with general public (see for example Khurana and Nohria 2008; Podolny 2009). These authorities proposed that private and public sector executives take an oath of honesty that commits them to have a positive role in society, similar in spirit to the Hippocratic oath used in medicine. The purpose of the oath-taking as a management instrument is to set and commit to standards of behavior—honesty and integrity—to recapture trust with the general public. In practice, the US Security and Exchange Commission (SEC) required in 2002 that the CEOs and CFO 947 largest companies to swear an oath that their financial reports were accurate. In 2010, MBA students at Harvard were concerned enough about mistrust and the lack of self-policing that they created the MBA Oath (see Bishop and Green 2011), which lead to the Oath Project created at the World Economic Forum in Davos. In 2013, senior executives in the Netherlands created the Dutch Bankers’ Oath, which some 90,000 Dutch bank employees were required to sign (de Bruin, 2016), to try and ensure trust and the social norm of honesty.

Despite this growing use of oaths in management practices, little is still known about whether such procedures would make any difference by actually changing behavior. Herein we explore this question—do people who voluntarily sign a solemn truth-telling oath are more committed to sincere behavior when offered the chance to lie. Based on the existing literature on the non-monetary incentives to tell the truth, an oath can be expected to change behavior through two possible channels: a tighter link between words and actions and a moral reminder arising from

1 The Subcommittee on Commerce, Trade, and Consumer Protection in the US House of Representatives held hearings entitled Oath Taking, Truth Telling, and Remedies in the Business World (see of Representatives 2002). Chairman B. Tauzin of the Committee on Energy and Commerce noted for the record: “Swearing an oath has long been a very public way for those in a position of leadership in government and in the private sector to take explicit responsibility for their actions with regard to that position” (p.9). About the subsequent impact on stock prices, see Griffin and Lont (2005); Zhang (2006).

2 See Anderson and Escher (2010)’s book on the path leading to the MBA Oath. Beyond MBA programs, DeMartino (2011) for instance proposed an Economist’s Oath. Also see for example Cohn, Fehr, and Maréchal (2014) for a longer discussion of dishonesty within the banking industry.

3 In economics, this is the topic of studies on strategic communication, which are associated with two strands of literature (Kartik 2009). First, games of persuasion, or verifiable disclosures, are situations in which the information

“And undoubtedly the evil in which oaths take their rise is the prevalence of falsehoods and wrong, and the consequent prevalence of suspicion and mistrust” (Tyler 1834 p.6).
Our aim is to separate and identify these two channels. To that end, we use the social psychology theory of commitment to design a solemn oath of honesty that commit people to truth-telling. We examine how this oath affects truth-telling in two different contexts: a neutral context replicating the typical experiment in the literature, and a context in which subjects are reminded that a lie is a lie. This treatment introduces moral reminders of ethical standards by explicitly labeling untruthful communication as a “lie” and truthful communication as “truth”.

Within the framework of commitment theory, taking an oath works similar to foot-in-the-door experiments: it is a preliminary task that makes people more likely to behave truthfully in subsequent decision problems. In social psychology, commitment is defined as a “binding of the individual to behavioral acts”. Commitment is obtained through preparatory actions, which are purposefully designed to induce a predictable change in subsequent decisions. In a classic field experiment, Harris (1972) asked people for the time before asking them for a dime. People were 4 times more likely to give him a dime if they were first asked to give away the “time” for free—44% time-dime vs 11% no time-dime. Harris found that asking for the time was a costless action that committed the other person to go for a similar and costly second action. People who gave the time away for free were more likely to give away a dime “for free”. People complied freely to what was expected of them. The behavioral mechanism that these procedures have in common is that compliance with demanding requests (e.g., tell the truth) is improved significantly is verifiable and an agent can only under-report [Milgrom 1981, Grossman 1981]. The implicit assumption in this literature is that lying is infinitely costly. In contrast, “cheap talk” games reflect strategic situations in which information is not verifiable and can be manipulated at no cost (see, e.g., Crawford and Sobel 1982). A bridge between these two strands, however, has emerged in the work on the “intrinsic costs of lying”, which suggests that strategic communication results from a trade-off between the individual cost of lying and material consequences (see, in particular, Boles, Croson, and Murnighan 2000, Brandts and Charness 2003, Gneezy 2005, Sutter 2009, Fischbacher and Heusi 2013, Ariely 2012). Several intrinsic motivations for truth-telling have been put forward in the economic literature, in particular guilt aversion—the willingness to avoid letting down the expectations of others (Charness and Dufwenberg 2006)—and pure-lying aversion—the intrinsic willingness to tell the truth. Recent evidence suggests that people cannot be divided into “types”, i.e. either economic liars who only care about consequences or ethical liars who only care about the process that leads to the outcome. Rather, the intrinsic motivation for truth-telling evolves during one’s life and, of particular interest for this paper, depends on context and framing. Houser, Vetter, and Winter (2012) show that truth-telling strongly depends on the sequence of events as people are more willing to lie if they feel unfairly treated in previous interactions. Deception is also more frequent when lies are explicit (through untruthful statements) rather than implicit (through information-revealing actions)—see Kriss, Nagel, and Weber (2013). In the same spirit, Cappelen, Sorensen, and Tungodden (2013) observe that the effect of different kinds of framing (intuitive reasoning or personal content of the message) changes the propensity of lying to the same extent as changes in payoff do. Also see Wang and Murnighan (2016) who find that small monetary bonuses can reduce the likelihood of lying. Evidence suggests that recalling moral standards just before a subject makes a decision can significantly reduce dishonest behavior (see, e.g., Ariely 2012 for a discussion). The explanation of this observation is that when dishonesty pays a person has to balance the desire to grab the monetary gain and the desire to preserve his positive self-view, i.e. not to risk being a “liar”—a self-concept maintenance (see Mazar, Amir, and Ariely 2008). Providing a moral reminder to people gives them less room to rationalize dishonesty and induces them to make choices more in line with truth-telling behavior.
by using a process that first gets a person to commit to being the type of person that does a certain action (e.g., signing an oath), as long as the course of action remains consistent and compliance to the preparatory action is free. Under these conditions, commitment induces strong and lasting changes in behavior (as shown in field experiments by, e.g., Freedman and Fraser, 1966; Pallack, Cook, and Sullivan, 1980; Wang and Katsev, 1990; Katzev and Wang, 1994; Joule, Girandola, and Bernard, 2007; Guéguen, Joule, Halimi-Falkowicz, Pascual, Fischer-Lokou, and Dufourcq-Brana, 2013). The truth-telling oath as a commitment device have proved to be useful in triggering economic commitment in preference elicitation, it increases truth telling in hypothetical settings with no monetary incentives (Jacquemet, Joule, Luchini, and Shogren, 2013; Jacquemet, James, Luchini, and Shogren, 2016) and in coordination games with cheap talk communication (Jacquemet, Luchini, Shogren, and Zylbersztejn, 2017; Kataria and Winter, 2013).

We study the two non-monetary devices in a 2*2 experimental design that combines the oath and a loaded environment. We use Erat and Gneezy (2012)'s white lies experimental game. This game provides incentivized observations of truth-telling through the choice of a signal sent to a receiver, which can be either consistent or inconsistent with the sender’s private information. We consider several payoff configurations among the set introduced by Erat and Gneezy (2012), ranging from purely selfish—self-beneficial lie occurs at the expense of others—to situations in which the organization itself (i.e. both players in the game) benefits from the lie. While selfish lies are the primary target of the use of oaths in organizations, restored trust from the general public can only be achieved if oaths are efficient in a broader range of lying situations. We control for decision time in all conditions to assess the extent of cognitive reasoning in decision making (Kahneman, 2003; Rubinstein, 2007). Compared to typical promises experiments, subjects are committed endogenously to tell the truth by individually deciding whether to make a promise or not. With the oath-procedure, subjects are freely made to commit to tell the truth, that is, they are committed exogenously to truth-telling. It allows to measure the causal effect of commitment on truth-telling motivation unlike in promises experiments where the causal relationship between promises and cooperation can be both ways. The oath also implements commitment to truth telling before the game takes place, rather than in-game promises. Last, it is a real-world and easy to implement procedure, which provides guidance into the design of institutional devices aimed to foster truth-telling.

Our results provide a clear answer to our initial question: Does a solemn oath enhance sincere behavior in truth-telling situations? The answer is ‘yes’ if the social context makes people be

5 Also see the follow-up studies by Carlson, Kataria, Krupnick, Lampi, Lofgren, Qin, Sterner, and Chung (2013) on the oath in non-market valuation surveys; Stevens, Tabatabaei, and Lass (2013) on preference elicitation under oath using a Becker-DeGroot-Marshack mechanism; and de Magistris and Pascucci (2014) on the oath in survey work.

6 As we explained in the experimental design section, the oath is freely taken and signed but is designed in such a way that virtually all subjects comply. In our case, we had 96.5% (222 of 230 subjects in our within and between treatments) sign the oath.
explicitly aware that their insincere behavior is lying: they lie half less frequently relative to those who were not asked to sign a truth-telling oath. But the answer is ‘no’ if people are not explicitly told they would be considered “liars”. Without an explicit reference to the social context of the decision, the oath had no effect on the frequency of lies in our game. The oath did, however, affect decision times when a lie is involved even in the neutral environment. After signing the oath, the average person in the neutral environment took more time to decide when they lie to the other player, which indicates that the oath makes the person ponder their choice to lie a little longer. Subjects under oath in the neutral environment seem to be aware that they were lying, but less reluctantly do so without moral reminders. These results are confirmed by robustness between-sample treatments in which only one lying decision is made by each subject.

2 Empirical strategy

Our baseline condition replicates the sender-receiver game originally proposed by Erat and Gneezy (2012). We study enhanced truth-telling based on commitment thanks to a truth-telling oath, introduced as a between subjects treatment variable. One issue with the commitment interpretation of the oath is it could affect behavior because it contains “moral reminders” and provides cues about the social context in which subjects are taking decisions (see, for example, Haley and Fessler, 2005; Bateson, Nettle, and Roberts, 2006; Rigdon, Ishii, Watabe, and Kitayama, 2009). To disentangle these two dimensions—to what extent the oath commits subject to truth-telling and whether or not commitment works due to its explicit reference to truth-telling—we consider an additional treatment variable that makes explicit the opportunities to lie in the game: decisions are “loaded” according to what they actually are, truth-telling or lies.

2.1 Design of the baseline experiment

Two players, a sender and a receiver (in the instructions, the sender is player A and the receiver is B), are randomly matched. The computer makes a random draw by “rolling” a 6-sided die, and only the sender is informed about the result. The sender is then asked to send a message to the receiver, which has to be one of the six available messages: “The outcome of the roll of die was x”, in which x is any integer between 1 and 6. The sender faces no constraint on whether he or she sends the true outcome to the receiver. One message out of six (the one that matches the actual roll) is an experimental measure of truth-telling, the other five are observations of lies.

Once the message has been received, the receiver chooses a number in the set \([1, 2, 3, 4, 5, 6]\), which determines the payment of both subjects. There are two payment options, \(X\) and \(Y\). Only the sender knows the actual payoffs generated by each option. If the number chosen by the receiver matches the die roll, both subjects are paid based on option \(X\); otherwise, \(Y\) is implemented. This is common knowledge to all subjects.

Erat and Gneezy (2009) defined 9 different payoff configurations to investigate the reaction
Table 1: Design of the baseline experiment

<table>
<thead>
<tr>
<th>Label</th>
<th>Payoff configurations</th>
<th>Sequences of plays</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(2 sessions each)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order 1</td>
</tr>
<tr>
<td>T[-5;10]</td>
<td>altruistic</td>
<td>(20;20)</td>
</tr>
<tr>
<td>T[10;10]</td>
<td>Pareto</td>
<td>(20;20)</td>
</tr>
<tr>
<td>T[1;-5]</td>
<td>selfish</td>
<td>(20;20)</td>
</tr>
<tr>
<td>T[-10;-10]</td>
<td>spite</td>
<td>(30;30)</td>
</tr>
</tbody>
</table>

Note. The four payoff configurations presented in row are implemented together in all experimental sessions in varying order, as described in the right-hand side column. Option X describes the payoff implemented if the receiver choice matches the die roll—(sender; receiver); otherwise subjects earn the payoff described in Option Y.

function of the willingness to lie given different monetary incentives. To assess the robustness and sensitivity of our own treatment variables to monetary incentives, we focus on a subset of 4 of the original payoff configurations, each corresponding to a particular type of lie (see Table 1). The label of each payoff configuration refers to the gain/loss of each player (the sender for the first number, the receiver for the second) when the receiver chooses a number other than the actual outcome of the roll of the die, as compared to their payoff when the receiver chooses the actual roll. In T[-5;10], if the sender chooses to lie and the receiver chooses a number that follows sender’s message, the lie is called altruistic since the receiver gains 10 from the lie but the sender loses 5. Following the same logic, T[1;-5] characterizes a selfish lie, whereas T[10;10] is a Pareto lie since both the sender and the receiver benefit from the sender sending a message that is not the real outcome of the die. The fourth payoff configuration acts as the control configuration since both players lose from the sender’s lie.

We introduce two main changes in the original design. First, while Erat and Gneezy (2009, 2012) paid only one pair of subjects out of 10 pairs, we pay each and every subject based on actual decisions. Second, we implement all payoff configurations one after the other in each session, as opposed to between subjects implementations in Erat and Gneezy (2009) and the main treatment in Erat and Gneezy (2012)—this within subjects implementation has also been used, however, as a robustness treatment in Erat and Gneezy (2012, Section 4).8 We use a perfect stranger design to rule out any incentive to invest in partner-specific reputation by rematching subjects across payoff configurations—i.e., each subject meets any other at most once in the whole session.

7The number of payoff configurations refers here to the working paper version, available for instance at: http://www.stanford.edu/group/SITE/archive/SITE_2009/segment_7/segment_7_papers/gneezy.pdf. Among the four payoff configurations we replicate, 2 are presented in the published version of the paper (Erat and Gneezy 2012), 2 are not. See Table 2 for a comparison between payoff configurations and across experiments.

8Our main reason for choosing the within subject design although it has been less frequently implemented in the literature is that we use Erat and Gneezy (2012) as a benchmark for our study and want to put most of the identification power of the experiment on our treatment variables. Since all our results are derived from comparisons with the baseline, these changes are controlled for in our analysis of the data.
and this is common knowledge among subjects. Such a within-subjects design reduces the noise due to individual heterogeneity in the observed treatment effects, even though its well-known drawback is to confound order and payoff configuration effects. We control for this dimension by implementing three different orders, chosen in such a way that each pay-off configuration appears first in each order (except for the reverse pay-off, which is only used as a control configuration): (1) altruistic / Pareto / selfish / reverse, (2) selfish / altruistic / Pareto / reverse and (3) Pareto / reverse / altruistic / selfish. Individual earnings from the experiment are computed based on one randomly drawn decision out of the four, so as to avoid changes in expected wealth across payoff configurations. This core experimental game is played under two treatment variables, implemented according to a factorial design.

Except for these two changes, the wording and framing of the baseline experimental instructions closely follow Erat and Gneezy (2012). We label this condition the neutral treatment in that the game is described without using words such as “lie, truth, or (dis)honesty”, as follows:

Player A is first informed of the payoffs for two possible options: option X and option Y. These payoffs change from one period to another. Player A must then roll a six sided die, and is the only participant to know the outcome of this roll. Once informed of the die rolls’ outcome, player A must choose a message to send to player B.

Neutral wording is the natural way of testing the effect of monetary incentives on the willingness to lie while neutralizing the effect of the decision context.

2.2 Treatment variable 1: loaded environment

Recent experimental findings suggest that social cues are not only a substitute for learning/experience (Cooper and Kagel, 2003), but also affect subjects’ reasoning process (Cooper and Kagel, 2009). Self-awareness theory (Silvia and Duval, 2001) and self-concept maintenance theory (Mazar, Amir, and Ariely, 2008) put forward the idea that social cues in the form of reminders about what moral behavior is in the situation at stake make it harder for subjects to maintain a positive self-image while engaging in dishonest behavior. In such a context, some have argued that the intrinsic rewards from honesty (and the intrinsic penalty from dishonesty) are likely to be more significant because people are induced to think deeper about honesty and dishonesty in the course of their economic decisions. The context helps people think about moral standards in solving the trade-off between profiting from cheating and allowing oneself to believe he or she is a honest person. As stressed by Bénabou and Tirole (2011) this strengthens “the repudiation of intended untruthful actions from the point of view of the virtual judgments of imagined spectators”—fostering the feeling of guilt experienced by the decision maker. In order to test the effect of moral reminders in the context of our game and to distinguish them from the truth-telling oath, our first treatment variable creates a “loaded environment” in which we provide moral reminders. This is done by explicitly labeling untruthful communication as a “lie” and truthful communication as “truth” in the instructions. To keep the message simple, we add the following paragraph to the instructions:
Player A has a choice between: (1) being honest and telling the truth about the die roll’s outcome; or (2) lying and sending a message that is different from the real outcome. Please note that player B is only shown player A’s message: If player A choose to lie (choice no 2), player B has no way of knowing it.

This change in the wording of the experimental instructions is the only difference between the loaded treatment and the baseline neutral treatment.

2.3 Treatment variable 2: commitment through a truth-telling oath

Our second and main treatment variable is a truth-telling oath. Our oath procedure, first designed by Jacquemet, Joule, Luchini, and Shogren (2013), is based on findings in social psychology. The social-psychological theory of commitment investigates several institutions that induce people to “comply without pressure” (see the review in Joule, Girandola, and Bernard, 2007; Cialdini and Sagarin, 2005). Social psychologists have observed that commitment is stronger if it has been made freely, and/or publicly expressed, or signed. The truth-telling oath procedure is fulfilling these conditions: the oath is taken freely and publicly signed. We consider the slightest possible change to the baseline game, so as to ease comparison with the original design of Erat and Gneezy (2012). Only senders are offered to sign the oath. Receivers in this game play a rather passive role (very much like receivers in dictator games), and only senders are given an opportunity to cheat.

Subjects are offered to sign a truth-telling oath before entering the lab and they are unaware at that time of the subsequent assignments to their roles, only the experimenter is.

Each subject enters alone and is directed to a monitor at the front of the laboratory. Each subject that will play as sender in the experiment is then offered a form to sign entitled “solemn oath” (see Figure 1). The monitor explicitly points out to the subject before she reads the form that she is free to sign the oath or not, and that participation and earnings are not conditional on signing the oath. Importantly, subjects are not informed about the topic of the experiment when asked to take the oath. The subject reads the form, which asks whether she agrees “to swear upon my honor that, during the whole experiment, I will tell the truth and always provide honest answers” (in bold in the original form). The word “oath” is written on the form and read by the subject, but never said aloud. Regardless of whether the subject signs the oath, he is thanked and invited to enter the lab. The exact wording used by the monitors to offer the oath to respondents was scripted to standardize the phrasing of the oath. One monitor stayed in the lab until all subjects had been presented with the oath, to avoid communication prior to the experiment. Subjects waiting their turn could neither see nor hear what was happening at the oath-desk. In particular, no information is given to subjects about neither whether other subjects has been exposed to the oath procedure, nor whether they decided to sign the oath. Again, the oath procedure before entrance in the laboratory is the only difference with the baseline experiment. To be sure that it is the oath that produces a change in behavior, it was important that almost all subjects sign the oath, which is also what we observed. In all experimental sessions reported on in Section 3 the compliance rate with the oath is 95.8% (115 amongst 120 subjects signed the
Figure 1: Oath form used in the experiment

Solemn Oath

I undersigned swear upon my honor that, during the whole experiment, I will:

Tell the truth and always provide honest answers.

Montpellier, Signature...................

2.4 Experimental procedures

Upon arrival, subjects randomly draw a tag from a bag assigning them to a role: sender or receiver. This draw is performed in a separate room before entering to the laboratory. After drawing their oath).
tag, receivers are asked to enter the lab and seat in front of the computer indicated on their tag. Only the senders are asked to sign a solemn oath (in the oath treatments) and then seat in the lab.

Once all subjects are seated in the room, written instructions are distributed and read aloud. Subjects then observe their type displayed on the screen, A (sender) or B (receiver), which remains the same for the whole experiment. The experiment then consists of four periods. The only difference between the periods is the payoff configuration used. At the beginning of each period, the subjects are paired (one player A, one player B in each pair) and they are informed that they will never play twice with the same partner. The experiment ends with a demographic questionnaire. One of the four decision rounds is randomly drawn and each player receives the amount in Euros corresponding to her gains in that round, plus a show-up fee equal to 5 Euros.

We combine our two treatment variables according to a 2*2 factorial design, resulting in four experimental treatments: baseline (no oath, neutral framing), loaded frame without and under oath and last, oath in the baseline. All sessions took place in the experimental lab of LAMETA\footnote{Laboratoire Montpelliérain d’Économie Théorique et Appliquée, \url{http://leem.lameta.univ-montp1.fr/}} (France) between March and June 2012. For each treatment, we ran six 20-subjects sessions (two for each order defined in Table 1): this generates 480 observations of sender’s decisions from 120 different individuals. Overall 480 subjects participated to the experiment, 220 males and 260 females. 91.67% were students, among which 38.86% were likely to have some background in game theory due to their field of study\footnote{Disciplines such as economics, engineering, management, political science, psychology, mathematics applied in social science, mathematics, computer science, sociology.}. Participants’ average age is about 24 years old. No subject participated in more than one experimental session. Each session lasted about 50 minutes, with an average payoff of 11.70€ (including a 5€ show-up fee).

3 Results

For the sake of statistical analysis, we define lying as any decision in which player A deceives player B by sending a message which does not match the roll of the die. We first benchmark the internal validity of our study by comparing the results to Erat and Gneezy\cite{Erat2009, Erat2012}. We then move to our main treatment effects: loaded environment and commitment.

Table 2 provides a benchmark comparison of observed behavior in our baseline treatment (neutral, no oath) with previous evidence. Pooling all payoff configurations, we observe that a significant fraction of our subjects, 34.2%, are willing to lie. Lying is the more likely when (i) it is in the subject’s monetary interest to lie (selfish lie = 41.7%) and (ii) when the other player also gains from the lie (Pareto lie = 68.3%). These results are in line with those obtained in both a classroom setting and over the internet by Erat and Gneezy\cite{Erat2009, Erat2012}. The order in terms of intensity of lying is also preserved in all instances: lies are more likely in the Pareto payoff

\footnote{The recruitment uses Orsee\cite{Greiner2015}.}
Table 2: Comparison with Erat and Gneezy experimental results

<table>
<thead>
<tr>
<th>Payoffs</th>
<th>Type</th>
<th>Erat and Gneezy (2009)</th>
<th>Erat and Gneezy (2012)</th>
<th>This paper (Laboratory)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Internet)</td>
<td>(Classroom)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Between</td>
<td>Between Within</td>
<td>Within Between</td>
</tr>
<tr>
<td>[-1;10]</td>
<td>Altruistic</td>
<td>33%</td>
<td>33%</td>
<td>43%</td>
</tr>
<tr>
<td>[-5;10]</td>
<td>Altruistic</td>
<td>29%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>[1;10]</td>
<td>Pareto</td>
<td>46%</td>
<td>49%</td>
<td>66%</td>
</tr>
<tr>
<td>[10;10]</td>
<td>Pareto</td>
<td>61%</td>
<td>65%</td>
<td>76%</td>
</tr>
<tr>
<td>1;0</td>
<td>Pareto</td>
<td>41%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1;-1</td>
<td>Selfish</td>
<td>32%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1;-5</td>
<td>Selfish</td>
<td>20%</td>
<td>37%</td>
<td>52%</td>
</tr>
<tr>
<td>10;0</td>
<td>Pareto</td>
<td>47%</td>
<td>52%</td>
<td>–</td>
</tr>
<tr>
<td>Reverse</td>
<td>Spite</td>
<td>6%</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Note. For each payoff configuration in row, the Table reports the share of senders who decide to lie in each experiment presented in column. The last column reports the results from the baseline treatment—neutral, no oath.

The left-hand side of Table 3 provides the results of a panel Logit regression with random effects that controls for payoff configuration, order effects and demographics. The dependent variable is whether the subject lies and three demographics are considered: gender, living as a couple and being religious. The reference person is an atheist single female observed in the selfish-lie payoff configuration (since demographics are only included as control variables, to strengthen identification, the results are not reported in the tables: they are available from the authors upon request). First, conditional statistics confirm that lying is significantly and less likely for altruistic and spite lies relative to selfish lie. Second, subjects are more likely to make Pareto lies. According to odds ratios, the probability of making a Pareto lie is three times greater than making a selfish lie. The probability of making an altruistic and a spite lie are 20% lower than a selfish lie. All three dummy variables are significant at a 1% threshold. Third, order effects are present in baseline: lying is fostered by facing a Pareto or an Altruistic lie first in the sequence. Only one demographic configuration, lower in the selfish condition, and (slightly) lower in the altruistic condition. The main qualitative difference is that our study produces less altruistic lies than previous experiments. In Erat and Gneezy (2009, 2012), 33% of subjects engage in altruistic lying behavior in between subjects implementations (subjects face only one payoff configuration) and 43% in the within subjects implementation (subjects face four payoff configurations). These results are obtained for an altruistic lie configuration with a low cost-benefit ratio, as it costs 1 to the sender for the receiver to gain 10. Our altruistic payoff configuration has only been implemented in Erat and Gneezy (2009) in a between subjects context and over the Internet, in which it results in a 29% share of liars—a figure lower than between subjects implementation, but still higher than the one we observe.
Table 3: Random effect panel Logit regressions: baseline versus loaded treatment

<table>
<thead>
<tr>
<th></th>
<th>Baseline treatment ((n = 240, ♯ subjects = 60))</th>
<th>Baseline & Loaded treatments ((n = 480, ♯ subjects = 120))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimated Parameter</td>
<td>Odds-ratio</td>
</tr>
<tr>
<td>Constant term</td>
<td>-0.587</td>
<td>-</td>
</tr>
<tr>
<td>Payoff dummies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altruistic lie</td>
<td>-1.615</td>
<td>0.198</td>
</tr>
<tr>
<td>Pareto lie</td>
<td>1.188</td>
<td>3.283</td>
</tr>
<tr>
<td>Spite lie</td>
<td>-1.615</td>
<td>0.198</td>
</tr>
<tr>
<td>Order effect dummies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pareto first</td>
<td>1.084</td>
<td>2.957</td>
</tr>
<tr>
<td>Altruistic first</td>
<td>0.843</td>
<td>2.323</td>
</tr>
<tr>
<td>Treatment effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loaded treatment</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note. The endogenous variable is whether sender \(i\) sends a message which does not match the actual roll of the die in the \(t^{th}\) game. Dummy variables control for order effect, payoff configurations, and demographics (not reported in the table, we include gender, marital status and religion); the reference person is an atheist single female in selfish lie payoff configuration. The left-hand side regression is performed on data from neutral treatment (no oath) only, the right-hand side regression is performed on pooled data from both the neutral and the loaded framing (no oath) treatments.

3.1 Truth-telling in a loaded environment

Figure 2 illustrates the effect of our first treatment variable through the fraction of subjects who lie by payoff configuration, in both the baseline and the loaded treatments. Overall, lying occurs in 25.4% of observed decisions, which is a 25% decrease in lying behavior in comparison to the baseline treatment. We test for the effect of loading the game by computing a bootstrap unconditional proportion test that accounts for within correlation. According to this testing procedure, the decrease in lying behavior is significant, with \(p = 0.022\). This allows us to state our first result:

Result 1 Lying is less likely in the loaded environment.

11 The correlation between decisions comes from the within subject implementation of the payoff configurations—uncorrected \(p\)-values mistakenly consider each individual decision as independent. The bootstrap procedure is implemented by bootstrapping subjects and their 4 behaviors in the sample rather than observations. We also allow for asymmetry in the empirical distribution of lying behavior (Davidson and MacKinnon 2006). The procedure is accurate only when applied to pooled data, i.e. when testing the proportion of lie between treatments for all four payoff configurations. Due to within subject correlation, it is not possible to test the proportion of lie for only one payoff configuration using this test. We do not provide \(p\)-values when we discuss proportions for each pay-off configuration. Rather, we use conditional tests on parameters from econometric regressions, which account for order effects.
Conditional regressions confirm the overall decrease in lying behavior. On the right-hand side of Table 3, we report the results from a panel Logit regression that pools the data from baseline and loaded treatments. A dummy variable that equals 1 if the subject was in the loaded treatment and 0 otherwise is introduced in the regression. The parameter associated with this variable is negative and significant at a 5% threshold. The odds ratio indicates that the probability to lie in baseline decreased by 61.5% when subjects face loaded instructions with explicit wording.

3.2 Truth-telling under oath

Figure 3 contrasts observed behavior in both the neutral and loaded environment according to whether subjects are offered to sign a truth-telling oath or not. The upper part of the figure shows the effect of the oath when the environment is neutral. The oath only marginally decreases lying behavior in the altruistic, selfish and spite payoff conditions, whereas it has no effect on Pareto lies. The bootstrap proportion test cannot reject the null of no difference in overall lying with and without the oath (p = .631) in the neutral treatment. Conditional regressions that pool data without and with oath are presented in Table 4. As in the regressions presented earlier, we control for demographics, payoff configuration and order effects. A dummy variable that equals 1 if the subjects was asked to take an oath prior to entering the lab and 0 otherwise is introduced. The results presented on the left-hand side, pooling data from the neutral environment and the neutral environment with oath, confirm that lying behavior is the same with and without oath in this context (p = .263).

Result 2 Having subjects sign a truth-telling oath before participating in the neutrally framed lying game leaves truth-telling behavior unchanged.

We now turn to the comparison of loaded treatments with and without oath. Overall, lying
amounts for 17.1% of all messages sent when the oath is combined with a loaded environment. This corresponds to a 33% decrease as compared to lying behavior when only loaded environment is carried out. The decrease is significant according to a bootstrap proportion test (p = .008). In particular, we observe that Altruistic lies decrease by 52.2% (from 35% to 16.7%) and Pareto lies decrease by 38.3% (from 60% to 36.7%). Selfish lies are slightly increased from 5.0% to 6.7%. Spite lies are more frequent than without an oath, but remain at a low level. A bootstrap proportion test indicates that the difference in overall lying is statistically different in neutral under oath and loaded under oath with p<.001.

Result 3 The oath decreases lying when lies are made explicit in the loaded environment.

The Logit regression presented in the right-hand side of Table 4 pools data from the loaded environment and the loaded environment with oath and again controls for the lie type, order effects and demographics and includes a dummy variable that equals 1 if the subjects was asked to take an oath prior to entering the lab, 0 otherwise. The estimated parameter associated with
Table 4: Random effect panel Logit regressions: subjects under oath

<table>
<thead>
<tr>
<th></th>
<th>Neutral & neutral oath treatments</th>
<th>Loaded & Loaded oath treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 480, ♯ subjects = 120)</td>
<td>(n = 480, ♯ subjects = 120)</td>
</tr>
<tr>
<td>Constant term</td>
<td>Estimated Parameter</td>
<td>Odds-ratio</td>
</tr>
<tr>
<td></td>
<td>-0.429</td>
<td>-</td>
</tr>
<tr>
<td>Payoff dummies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altruistic lie</td>
<td>-1.594</td>
<td>0.202</td>
</tr>
<tr>
<td>Pareto lie</td>
<td>1.301</td>
<td>3.675</td>
</tr>
<tr>
<td>Spite lie</td>
<td>-1.954</td>
<td>0.141</td>
</tr>
<tr>
<td>Order effect dummies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pareto first</td>
<td>0.495</td>
<td>1.641</td>
</tr>
<tr>
<td>Altruistic first</td>
<td>0.538</td>
<td>1.713</td>
</tr>
<tr>
<td>Treatment effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oath</td>
<td>-0.291</td>
<td>0.747</td>
</tr>
</tbody>
</table>

Note. The endogenous variable is whether sender i sends a message which does not match the actual roll of the die in the t^{th} game. Dummy variables control for order effect, payoff configurations and demographics (not reported in the table, we include gender, marital status and religion); the reference person is an atheist single female in selfish lie payoff configuration. The left-hand side regression is performed on pooled data from neutral treatments, the right-hand side regression is performed on pooled data from loaded treatments.

this variable is significant at a 5% threshold with $p = .022$\(^{12}\)

3.3 Treatment effects at the individual level

We further explore the effect of the treatment on lying behavior by looking more closely to the within individual dimension of our data. First, we compute a truth ratio for each subject, i.e. how many times out of the four observed decisions a subject tells the truth. Figure 4 provides two-by-two comparisons of the Empirical Distribution Functions (EDF) of the truth ratio for our treatments. Figure 4.a plots the EDF of the baseline along with the loaded framing (both with no oath). The EDF of loaded treatment first order dominates the EDF of the baseline at a 10% threshold, $p = .097$\(^{13}\). The two subsequent figures contrast behavior under oath with the no oath situation in the neutral and loaded treatment. In the neutral treatment (Figure 4.b), the only visible difference between the two curves is a small increase of truth ratios that equal 4, i.e. subjects who always tell the truth. This increase is however not significant ($p = 0.269$). Consequently, the EDF from the oath(-neutral) treatment does not first order dominate the EDF from the baseline treatment ($p = 0.549$). In the loaded environment (Figure 4.c), by contrast,

\(^{12}\) The p-value of the estimated parameter associated with the oath is highly significant with $p<.001$ when we restrict the sample to the oath treatments only.

\(^{13}\) This result comes from a bootstrap version of the univariate Kolmogorov-Smirnov test. This modified test provides correct coverage even when the distributions being compared are not entirely continuous and, unlike the traditional Kolmogorov-Smirnov test, allows for ties (see Abadie 2002, Sekhon 2011).
the oath unambiguously first order dominates the EDF of the no oath loaded environment—the difference is highly significant, with $p < .001$. Truth ratios are also highly significantly different in the two oath treatments: the EDF of truth ratio in loaded first order dominates the EDF of truth-telling ratio in neutral with $p < .001$.

The truth ratios inform us about the intensity of lying at the individual level, but do not account for the types of lie in each payoff configuration. To better investigate possible variations in that regard, Table 5 reorganizes observed behavior on an individual basis according to the lying pattern over all four treatments. For each treatment, the table provides the number of subjects whom decisions match each of the 16 potential combinations of lies. In the baseline treatment, we observe three main lying patterns:

(i) No lie (7 subjects, 11.7%), (ii) Pareto lie only (25 subjects, 41.7%) and (iii) Selfish and Pareto lie (14 subjects, 23.3%). In the loaded environment, the number of subjects who engage in “nothing-but-the-truth” behavior, i.e. who never lie, happens to double. They are now 23.3% in comparison to 11.7% in the baseline. A bootstrap proportion test indicates that this change is however not significant, with $p = 0.189$. We observe smaller differences for subjects who choose to make a Pareto lie only or a selfish and Pareto lie. The main lesson from this comparison is that the overall decrease in lying observed in Result 1 cannot be attributed to a decrease in only one specific type of liar.

The comparison between oath and no oath treatments when instructions are neutral confirm that Result 2 applies to all lying patterns. The lying patterns are similar under both conditions, the dominant patterns under oath being: no lie at all, only Pareto lie and selfish and Pareto lies only. Again, this is in sharp contrast with the variation in lying patterns when lies are made explicit in the instructions. When this is combined with an oath, we now observe that 32 subjects engage in truthful behavior for all four payoff configurations. Nothing-but-the-truth behavior equals 53.3% of the sample. This increase is significant at a 1% level in comparison to loaded environment without oath—a bootstrap proportion test yields $p = .003$. The decrease in Pareto
Table 5: Lying patterns by treatment

<table>
<thead>
<tr>
<th>Lying patterns</th>
<th>← Nothing but the truth</th>
<th>All lies →</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altruist</td>
<td>0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Selfish</td>
<td>0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1</td>
<td>0 0 0 0 1 1 1 1 1</td>
</tr>
<tr>
<td>Pareto</td>
<td>0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>Spite</td>
<td>0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of subjects</th>
<th>Neutral</th>
<th>Neutral oath</th>
<th>Loaded</th>
<th>Loaded oath</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 0 25 1 4 1 14 0 2 0 0 0 0 5 0 1</td>
<td>13 0 19 1 3 0 16 1 3 0 1 1 0 0 2 0</td>
<td>14 0 23 0 8 0 11 1 1 0 1 0 1 0 0 0</td>
<td>32 0 12 2 3 1 5 0 1 0 2 0 0 0 0 1</td>
</tr>
</tbody>
</table>

Note. The upper part of the table describes all possible lying patterns in all four games of the experiment—\(i.e.\) all combinations of sender’s decision in each game. The bottom part describes for each treatment in row the number of subjects for whom the corresponding lying pattern has been observed.

lie only is significant with \(p = .039\). We also observe less selfis-lie-only behavior: 8.3% of subjects make selfish and Pareto lies under oath whereas 18.3% do so without it—the decrease is however not significant, \(p = .231\).

Now we pool all four treatments to jointly test Results 1, 2 and 3. We estimate a random effect panel Logit regression based on the 960 observations from the four treatments. Along with lie type, order effects and demographics, we introduce three dummies—one for each of the three results. A first dummy, *loaded treatment*, equals 1 (0 otherwise) for all subjects in the loaded environment—providing a robustness test of Result 1 to further conditioning. A second dummy, *oath neutral*, tests Result 2 equals 1 when respondents were in the neutral oath treatment and equals 0 otherwise. Third, we test Results 3 by introducing a dummy variable, *oath-loaded treatment*, that equals 1 when the subject was in the loaded treatment with oath. Table 6 presents the estimations and confirms that all three results jointly hold when pooling the data: the parameter associated with the dummy variable *oath neutral* is not significant (\(p = .420\)) while parameters associated with the dummies *loaded environment* and *oath-loaded environment* are both statistically significant at a 5% level (\(p = .044\) and \(p = .014\)).

3.4 Why the oath (sometimes) works: evidence from decision times

Our main findings are twofold. First, we find that “loading” the decision problem with an explicit mention of its truth-telling content drastically affects a subject’s willingness to lie—half of the original lies disappear. Second, a truth-telling oath strongly reinforces the non-monetary incentives to tell the truth—one third more being eliminated under oath. There are good reasons to expect an effect of each of the two non-monetary devices on truth-telling behavior based on the literature in social psychology. It is more surprising, and puzzling, that the oath works only in the loaded
Table 6: Joint test - Random effect panel Logit regression

<table>
<thead>
<tr>
<th></th>
<th>Estimated Parameter</th>
<th>Odds-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant term</td>
<td>-0.520</td>
<td>-</td>
<td>0.168</td>
</tr>
<tr>
<td>Payoff dummies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altruistic lie</td>
<td>-1.712</td>
<td>0.180</td>
<td>0.000</td>
</tr>
<tr>
<td>Pareto lie</td>
<td>1.222</td>
<td>3.396</td>
<td>0.000</td>
</tr>
<tr>
<td>Spite lie</td>
<td>-2.007</td>
<td>0.134</td>
<td>0.000</td>
</tr>
<tr>
<td>Order effect dummies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pareto first</td>
<td>0.405</td>
<td>1.500</td>
<td>0.091</td>
</tr>
<tr>
<td>Altruistic first</td>
<td>0.141</td>
<td>1.152</td>
<td>0.555</td>
</tr>
<tr>
<td>Treatment effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loaded treatment</td>
<td>-0.545</td>
<td>0.579</td>
<td>0.044</td>
</tr>
<tr>
<td>Neutral oath</td>
<td>-0.215</td>
<td>0.805</td>
<td>0.420</td>
</tr>
<tr>
<td>Oath-loaded treatment</td>
<td>-0.715</td>
<td>0.488</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Note. The endogenous variable is whether sender \(i \) sends a message which does not match the actual roll of the die in the \(t \)th game. Dummy variables control for order effect, payoff configurations and demographics (not reported in the table, we include gender, marital status and religion); the reference person is an atheist single female in selfish lie payoff configuration. The regression is performed on pooled data from all four treatments.

We now discuss possible reasons for these results given evidence on observed decision times.

Two hypothesis are consistent with the observed asymmetric effect of the oath across experimental environments: that subjects do not recognize their behavior as a matter of truth-telling, or they do but find it acceptable in the neutral environment. The first hypothesis corresponds to a well-grounded argument within the social psychology of commitment and action identification theory. Action identification theory posits that the way people label their behavior while they are performing an action (e.g., “I am driving”, “I am preparing dinner”, “I am lying”) matters for decision-making (see e.g., Vallacher, Wegner, and Somoa, 1989; Vallacher and Wegner, 1989). People behave in accordance with what they think they are doing. A decision maker can associate his or her action with a different identification, which will result in different choices of actions. This phenomenon has been shown to matter for commitment because some identifications are more appropriate than others for maintaining the action, or for the emergence of new actions. For commitment to induce a significant change in behavior, preliminary behavior and target behavior should share the same level of action identification (Joule and Beauvois, 1998; Wegner, Vallacher, Macomber, Wood, and Arps, 1984). Commitment binds the person to a behavioral act, but it must also belong to the same category of identification. For example, a person responding to
someone asking for “the time” might trigger “helping” behavior but not honesty or truth-telling.\footnote{14} Accordingly, a requirement for the oath to be effective at mitigating dishonest behavior is that subjects think that what they are doing is “lying” when they send a false message. If subjects do not realize they are lying in the neutral condition, then consistent with the social psychology of commitment, the oath would have no or weak effect on behavior because the truth-telling prescription from the oath is meaningless.

The second explanation, also from social psychology, is illustrated by the famous Stanford jail experiment \footnote{15} \footnote{Zimbardo, 2007}. In Stanford, in 1971, students were randomly selected to be either guards or prisoners in what students knew to be a fake jail\footnote{16} After only a few days, Zimbardo and his colleagues stopped the experiment before the end because the guards were adopting dangerous and psychologically harming behavior. One of Zimbardo’s conclusion from this failure is that situational forces are crucial to generate detrimental behavior. One important driving force is that a legitimate authority explicitly banishes, or implicitly allows, certain types of behavior\footnote{17}. Because the neutral condition does not mention either truth-telling or honesty, subject may consider that lying is implicitly “allowed”—i.e. sending a false message to obtain more money is not perceived to go against any norm, at least in the laboratory. In other words, the neutral environment gives more room for subjects to rationalize lying behavior.

The two explanations are consistent with the oath affecting behavior in the loaded environment while letting it unchanged in the neutral context\footnote{17} They are observationally identical in the game.

\footnote{14}Joule and Beauvois (1998), for instance, provide a good example of a commitment device that failed to produce the expected change of behavior because of a mis-aligned level of identification. In a field experiment on promoting condom use against HIV/AIDS, they randomly asked high school students to make a short film about the issue. At first, they thought that the film would be a perfect commitment device: students had to spend time on the project, it was a public action, and students were free to comply. But Joule and Beauvois found out that making the short film had no effect on condom use. They asked students what they thought they were doing, using the elicitation method of “Inventories of Action Identifications” developed by Vallacher and Wegner\footnote{19}. They found out that making the film had a low level of identification with safer sexual behavior: rather they stated that “we are making a movie”, “we learned how to make a movie”, “we are doing an art piece”, or “we are having a good time”. Joule and Beauvois\footnote{19} argue that while the students were committed (for instance: students were asking for cinema magazines, for more lectures on the movie making, and so on), their commitment was not aligned with the expected change of behavior (i.e., use condoms more frequently).

\footnote{15}Students were selected for their maturity and stability using personality questionnaires and interviews.

\footnote{16}On a side note, Zimbardo was an expert in the Abou Ghraib case, where he greatly insisted on the fact that although torture was prohibited in the military code, the military hierarchy was asking for results in terms of obtaining information from the prisoners—without insisting on how the information was to be obtained. In Ariely\footnote{2012}'s terms, there were no “moral reminder” about torture.

\footnote{17}Another hypothesis could be that putting lying into the rules of the game makes lying more legitimate. However, the existing literature in psychology and economics supports the idea that the more explicit we make lying within the instructions of the game, the lower the likelihood of lying due to strengthened morality. Kriss, Nagel, and Weber\footnote{2013} p.338) for instance shows that “even if the ability to deceive and the monetary gain from doing so are equivalent between situations involving explicit and implicit deception, the willingness to deceive may be lower with explicit deception”. In a recent survey, Rosenbaum, Billinger, and Stieglitz\footnote{2014} provides a review of studies on priming effects on truth-telling behavior, and concludes that moral norms and reminders have been
One important difference between the two, though, is whether subjects recognize their actions as lies when they decide on a message. According to the first explanation, subjects do not realize that some actions in the game are "lies": the oath is ineffective because it is irrelevant. According to the second explanation, they realize what actions mean in terms of honesty, but they view lying in that way as something allowed by the experimenter—making the oath ineffective. This difference has testable consequences on the time subjects take to choose their message. Response times has been promoted as a tool to better understand how people make decision (Rubinstein, 2007, 2012). In line with the System 1 / System 2 hypothesis put forward by Kahneman (2003), “choices made instinctively, that is, on the basis of an emotional response, require less response time than choices that require the use of cognitive reasoning” (Rubinstein 2007, p.1243). Such a pattern produces a strong correlation between mistakes and short decision times in decision problems for which there is an unambiguous solution. In settings close to ours, longer decision times have been observed in social preferences games when subjects face higher moral dilemmas—such as, e.g., higher pay-off inequalities in a Dictator Game (Piovesan and Wengstrom, 2009). Similarly, when emotions linked to instinctive behavior are at stake, it takes more time for subjects to go against the emotionally-charged instinctive action (Greene, Sommerville, Nystrom, Darley, and Cohen, 2001).

Our working hypothesis is the following: if the not-knowing-you-are-lying explanation holds, response time in the neutral environment should be of comparable magnitude whether subjects are under oath or not—the oath should make no difference because subjects would not consider untruthful communication as “lies” in the neutral environment. In contrast, longer response time under oath would favor the second explanation: subjects under oath face a greater moral dilemma.

Following a standard definition in the literature, we measure response times as the time elapsed from the moment the choice is presented to the subject on the computer screen until the choice is robustly found to foster truth-telling. In line with the reasoning we suggest in the paper, Aveyard (2014) notes that “religious priming and monitoring are related: when primed (for example, by the call to prayer), devotees of religions with omnipresent gods will be reminded that their actions are being observed”; similarly, priming works to foster truth-telling through a stronger signal to participants that lying is morally loaded.

In more complex environment, such as decision under risk, short decision time is not correlated with choice anomalies, suggesting that such anomalies are not “mistakes”.

This interpretation holds only if the oath has no direct effect on response times. Otherwise, the correlation of response times with lying behavior could be a spurious consequence of the simultaneous effect of the oath on both lying and response times. In an unrelated study, we carry out two treatments (oath and no oath, between subjects) of a earned money task put forward by Alm, Cherry, Jones, and McKee (2012) which consists of sorting 9 numbers as fast as one can in a matrix. The task is replicated 5 times and subjects are rewarded according to their response time: the fastest they are the more money they earn. Based on a sample of 66 subjects in the oath treatment and 63 in the no oath treatment, we find very similar distributions of response times in the two treatments. Mean response time under oath is 30.3s and 29.8s without the oath; Median response time is 29.9s and 29.0s respectively. A Kolmogorov-Smirnov bootstrap test indicates that there is no significant difference between the distribution of response times in the oath and no oath treatment with $p = .827$.

18 In more complex environment, such as decision under risk, short decision time is not correlated with choice anomalies, suggesting that such anomalies are not “mistakes”.

19 This interpretation holds only if the oath has no direct effect on response times. Otherwise, the correlation of response times with lying behavior could be a spurious consequence of the simultaneous effect of the oath on both lying and response times. In an unrelated study, we carry out two treatments (oath and no oath, between subjects) of a earned money task put forward by Alm, Cherry, Jones, and McKee (2012) which consists of sorting 9 numbers as fast as one can in a matrix. The task is replicated 5 times and subjects are rewarded according to their response time: the fastest they are the more money they earn. Based on a sample of 66 subjects in the oath treatment and 63 in the no oath treatment, we find very similar distributions of response times in the two treatments. Mean response time under oath is 30.3s and 29.8s without the oath; Median response time is 29.9s and 29.0s respectively. A Kolmogorov-Smirnov bootstrap test indicates that there is no significant difference between the distribution of response times in the oath and no oath treatment with $p = .827$.

20
Figure 5: Empirical Distribution Function of Response times by treatment

(a) Truth in neutral

(b) Lies in neutral

(c) Truth in loaded

(d) Lies in loaded

Response time (in second)

Response time (in second)

Oath

No oath

We observe no change in response time for honest decisions ($p = .544$).
previously complied with a truth-telling oath, as compared to no oath, which seems to generate
greater difficulties to overcome the oath prescription. This tends to rule out the possibility of a
mismatch between the oath behavioral prescription and the behavior emphasized in the game;
and rather favors the second interpretation: the oath is meaningful to subjects, but it is ineffective
due to the norms suggested by the neutral condition.

This is reinforced by the pattern of response times in the loaded environment, reported in the
bottom panel. While response time of liars are both observationally and statistically ($p = .610$)
the same, honest subjects in this loaded condition take less time to answer when under oath. The
EDF of response time in loaded environment-no oath first order dominates that of response time
in loaded environment-oath ($p = .002$). Median response time in the loaded environment-no oath
condition is 30 seconds while median response time is 26 seconds in the oath condition, inducing
a 13.3% decrease. Again, under the assumption of a positive correlation between response time
and the intensity of the dilemmas subjects have to solve, this tends to suggest that loading the
instructions with explicit wording removes any ambiguity as to what is the norm in the game, and
indicates that honesty matters. Such correlations are consistent with the second interpretation:
the instructions in the neutral conditions suggests that lying in that way is allowed in the lab and,
although surprising at first glance, the oath is ineffective on lying. In the loaded treatment, by
contrast, the oath eases the decision to tell the truth because subjects face a lower moral dilemma
in the course of sending a truthful message.

4 Robustness check: truth-telling under oath in between-subject
design

Only one decision out of four is binding in the within-subject design. Subjects thus have some
moral wiggle room to rationalize their behavior to lie even with the oath. We address this open
issue by rerunning our experiment using a between-subject design with only binding choices.
This between-subject design is identical to our within-subject design with one exception: we
focus strictly on the two payoffs that generate the most lying—Selfish and Pareto lies treatments,
without/with a loaded environment and without/with an oath. Now each subject faces only one
of the two payoff configurations and take only one decision. All sessions took place in the same
experimental lab (at LAMETA, France) between March and October 2016. The same monitors
who ran the within-treatments sessions ran these new between-treatment sessions. The identical

\[^{21}\text{The two main results—first order dominance of the EDF of response times in the loaded environment without}
\text{oath as compared to oath, reversed in the neutral environment—still hold when the comparison is performed on}
\text{pooled data. Even if we increase the noise by pooling the data, the signal we see is still sufficiently strong that we}
\text{we can say our results are robust. The full results are available from the authors upon request.}
\]

\[^{22}\text{As shown in Table 2 above, the magnitude of lying behavior documented in the literature tends to be sensitive}
\text{to the repetition design. In their classroom experiment, Erat and Gneezy (2012) for instance observe a lower share}
\text{of lying in between subjects implementation of the treatments as compared to a within subjects design.}
\]
monitor administered the oath to all subjects. For each treatment and pay-off configuration, we run three 20-subjects sessions. In total, 448 subjects (224 senders) participated in the between-subject design treatments (249 males/199 females). Among participants who were offered to sign the oath, 97.3% (107 subjects out of 110) complied with the request. Participants average age is about 23 years old. No subject participated in more than one experimental session and no subject had participated in any of our other oath experiments. Each session lasted about 50 minutes, with an average payoff of 22.7 euros (including a 5 Euros show-up fee).

Overall, our new results support our early findings in the within-subject design. If anything the new results make a stronger case for using the oath to create more commitment to truth. This is confirmed with both unconditional and conditional empirical tests. We find two key results. First and most important, the oath reduces lying significantly in both treatments within the loaded environment (see Figure 6). Selfish lies decrease to 3.7% from 20.0% (\(p = .071\)) and Pareto lies decrease to 21.4% from 48.1% (\(p = .035\)). Together, lies in the loaded environment are around 2.5 times less likely when subjects are under the oath compared to no-oath (33.3% in loaded-no oath vs. 12.7% under oath, \(p = .009\)). Second, the oath reduces lying in the neutral Pareto lie environment, albeit with a bit less influence: Pareto lies are 67.9% without vs. 42.9% under oath, with \(p = .053\). The drop in selfish lies in this condition is statistically not significant (\(p = .271\)).

The econometric regressions presented in Table 7 confirm the overall effectiveness of the oath in both neutral and loaded environments once we account for the pay-off configurations and socio-demographics. In both environments, the parameter associated with the oath dummy is statis-

23 Due to technical problems with computers, some sessions were carried out with less than 20 subjects.
24 In line with existing evidence, we observe a lower rate of lies in the between subjects treatment. The ranking between pay-off configurations remains unchanged.
25 We apply here a standard proportion test as there is no need to account for within subject correlation in between-treatment sessions.
Table 7: Probit regressions: subjects under oath

<table>
<thead>
<tr>
<th></th>
<th>Neutral & neutral oath treatments (2 subjects = 112)</th>
<th>Loaded & Loaded oath treatments (2 subjects = 102)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimated Parameter</td>
<td>Odds-ratio</td>
</tr>
<tr>
<td>Constant term</td>
<td>-0.238</td>
<td>-</td>
</tr>
<tr>
<td>Payoff dummies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pareto lie</td>
<td>1.122</td>
<td>3.173</td>
</tr>
<tr>
<td>Treatment effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oath</td>
<td>-0.535</td>
<td>0.179</td>
</tr>
</tbody>
</table>

Note. The endogenous variable is whether sender \(i\) sends a message which does not match the actual roll of the dice. Dummy variables control for payoff configurations and demographics (not reported in the table, we include gender, marital status and religion); the reference person is an atheist single female in selfish lie payoff configuration. The left-hand side regression is performed on pooled data from neutral treatments, the right-hand side regression is performed on pooled data from loaded treatments (one session is omitted in the right-hand side regression due to missing information on demographics—10 observations are dropped).

The oath-enhances truth-telling given all choices are binding. This gives less room for subjects to rationalize lying under oath ([Ariely 2012](#)).

5 Conclusion

Current management practices have increasingly turned to the oath as a device to enhance truth-telling and foster honesty. Herein we explore the behavioral consequences of a truth-telling oath and disentangle between its two possible components: commitment, and moral reminders. We implement the two non-monetary incentives to tell the truth one by one in a 2×2 design. The first treatment variable is a truth-telling oath designed so as to elicit full compliance—hence providing identification of its causal effect on truth-telling behavior. The second treatment variable introduces moral reminders through a loaded environment. Both devices appear influential on the willingness to tell the truth. When the game is described to explicitly refer to truth/lie-telling, we observe one half less lies. In a neutral framing, we do not observe any improvement in truth telling after having subject sign an oath to tell the truth before entering the laboratory. It is only when this commitment device is associated with reminders of ethical standards, that the oath drastically improves truth-telling behavior—with a further one third drop in the share of liars.

Our results complement the growing literature on lying behavior in strategic communication and the ways to undermine it. [Gneezy, Meier, and Rey-Biel 2011](#) illustrate how non-monetary incentives can work to contradict monetary incentives in several situations. Our results suggest that the social context of non-monetary commitment can make decisions to lie more difficult. These results are also in line with recent findings from psychology. First, in accordance with [Mazar, Amir, and Ariely 2008](#) self-concept maintenance theory, we find a strong effect of internal rewards to honesty when people are induced to think in terms of dis/honesty in taking their decisions.
To strengthen the interpretation of these results, we provide evidence based on response times, showing that subjects decide more quickly to (i) tell the truth under oath in the loaded environment and (ii) to lie with no oath in the neutral environment. Under the assumption that higher response times are associated with more intense moral dilemmas, these correlations suggest that the oath is ineffective in the neutral condition not because it is misaligned with the game, but rather because the neutral condition suggests that lying does not contradict the norms implemented in the laboratory. Non-monetary incentives implemented through an oath do have a strong impact on lying behavior, but social context matters for commitment. Our next step is to explore whether and to what degree an oath-of honesty can create, restore, and maintain trust within alternative exchange institutions.

References

