Planting Date and Seeding Rate decisions for Optimize Winter Barley Yield and Quality

Manni Singh agronomy.msu.edu

msingh@msu.edu (517) 353-0226

January 11, 2024. Michigan's Great Beer State Conference & Trade Show

MICHIGAN STATE

Extension

Cropping Systems Agronomy MICHIGAN STATE UNIVERSITY

Integrated Barley Management: Yield vs Quality

- Crop rotation
- ➤ Variety Selection
- Planting Date
- Plant Population (seed rates)
- ➢ Row Spacing
- Fertility management
- ➢ Pest management
- ➤ Harvest timing

Winter Wheat

Winter Barley

Vs Spring Barley

Hessian fly-free-dates for Michigan

Plant date vs Hessian Fly Free Dates

https://www.canr.msu.edu/news/planting_winter_wheat_crop

County	Sept.	County	Sept. County		Sept.	County	Sept.
Alcona	6	Eaton	16	Lapeer	15	Ogemaw	10
Allegan	20	Emmett	4	Leelanau	8	Osceola	10
Alpena	9	Genesee	17	Lenawee	25	Oscoda	7
Antrim	4	Gladwin	12	Livingston	16	Otsego	6
Arenac	13	Grand Traverse	8	Macomb	18	Ottawa	19
Barry	18	Gratiot	15	Manistee	13	Presque Isle	8
Bay	14	Hillsdale	19	Mason	13	Roscommon	7
Benzie	16	Huron	13	Mecosta	12	Saginaw	16
Berrien	23	Ingham	17	Midland	15	Sanilac	15
Branch	19	Ionia	16	Missaukee	9	St. Clair	16
Calhoun	19	losco	7	Monroe	21	St. Joseph	23
Cass	22	Isabella	11	Montcalm	15	Shiawassee	16
Charlevoix	3	Jackson	16	Montmorency	7	Tuscola	15
Cheboygan	4	Kalamazoo	20	Muskegon	18	Van Buren	22
Clare	12	Kalkaska	5	Newaygo	15	Washtenaw	18
Clinton	17	Kent	18	Oakland	16	Wayne	18
Crawford	6	Lake	13	Oceana	16	Wexford	9

Mason, MI (7.5" rows, followed soybean) Plant dates (PD): Seed rates (SR): Variety: Teepee SR1: 0.8 m/ac N Application 2019–20 growing season: SR2: 1.2 m/ac PD1: Sept 19 2019–20 Growing Season: 30 lbs fall SR3: 1.6 m/ac PD2: Oct 7 75 lbs spring SR4: 2.0 m/ac PD3: Oct 18 2020–21 Growing Season: 36 lbs fall SR5: 2.4 m/ac PD4: Oct 29 65 lbs spring PD5: Nov 15 2021–22 Growing Season: 36 lbs fall 2020–21 growing season: 65 lbs spring PD1: Sept 17 PD2: Sept. 29 PD5 PD3: Oct 14 PD3 PD4: Oct 29 PD4 PD5: Nov 12 PD2 2021–22 growing season: PD1: Sept 19 PD2: Sept. 30 PD3: Oct 16 PD4: Oct 30 PD5: Nov 17

PD1

Planting Date Impacts on Yield: 2019–2020

Yield declined with later planting, but eventually levelled out
Yield response was more significant in barley

Planting Date Impacts on Yield: 2020–2021

- Yield declined with later planting, and response became greater with later planting
- Response was again greater in barley than in wheat

Planting Date Impacts on Yield: 2021–2022

 Yield declined with later planting, and response became greater with later planting (similar to 2020-21 but not 2019-20)
Decline was greater in barley

Planting Date Impacts

Canopy Closure: 2020-21

First 2 planting dates had ideal canopy closure

Planting after mid-Oct resulted in delayed/lower canopy closure

Weather

> 2020 (milder temps., wetter) than 2021, 2022

Wheat vs Barley spring growth

Winter Wheat

Winter Barley

Pictures taken on March 14

🐔 **MICHIGAN STATE** UNIVERSITY

- Manage soybean for early harvest
 - Plant early. Select field where this is possible.
 - Optimal maturity group (e.g., don't use late-maturity after mid-May planting)
 - Use of harvest aids on soybean (desiccants- Gramoxone, Defol 5, Sharpen)

Yield by Seeding rate

Barley more responsive to seeding rate than wheat (minimal response in both crops in 2021-22)

Optimal seeding rate for barley ~1.6–2.0 million seeds/ac

- Optimal seeding rate increases with delay in planting
- > Barley is more responsive to increase in seeding rate than wheat

Tillering

More tillering in barley than wheat

- Does not necessarily equal higher yield (+ quality issues)
- Lower populations and more prostrate growth habit in barley
- Variability in tiller development: can lead to quality issues

Maturity

- High variability among tillers at lower seeding rates (and later plant dates)
- Earlier maturity for barley than wheat (by 7-14 days), heavily influenced by planting date (and seeding rate)- potential for **Double Crop Soybeans**

Seeding rates

- Use seeds/acre (NOT bushels/acre)
- MSU recommendation between 1.6 -2.4 million seeds/acre
- Specific rate depends on planting time

Red Devil Target: 1.8 million 14,996 seeds/pound Calibrate drill to plant: 1,800,000÷14,996 $= 120.0 \div 90\%$ germ= 133 lbs/a

Sunburst

- Target: 1.8 million
- 11,948 seeds/pound
- Calibrate drill to plant: 1,800,000÷11,948 $= 150.7 \div 90\%$ germ = 167 lb/a

Seed drill calibration

Soud size							
(seeds per pound)	1.2	1.4	1.6	1.8	2.0	2.2	
Actual pounds of seed required per acre *							
9,000	133	156	178	200	222	244	
10,000	120	140	160	180	200	220	
11,000	109	127	145	164	182	200	
12000	100	117	133	150	167	183	
13,000	92	108	123	138	154	169	
14,000	86	100	114	129	143	157	
15,000	80	93	107	120	133	147	
16,000	75	88	100	113	125	138	

*Target seeding rate divided by seeds per pound = required pounds of seed per acre.

Malt Quality: 2019-20

Plant date	Protein (%)	Plump kernels (%)	Thin kernels (%)	Germination (4ml 72 hr GE)	
Criteria	≤12%	>90%	<3%	>98%	
19-Sep	10.3 C	84.4 C	2.2 A	99.2 A	
7-Oct	12.6 B	96.1 A	0.2 B	98.4 AB	
18-Oct	14.7 A	95.7 A	0.4 B	93.2 C	
29-Oct	16.4 A	90.8 B	1.7 A	95.5 BC	
15-Nov	15.6 A	92.4 AB	1.4 A	95.9 BC	
P value	<0.001	< 0.001	<0.001	<0.001	

Data from 3 higher seed rates (1.6, 2.0, 2.4 m seeds/ac)

- RVA (for PHS): <120 only for PD 5
- DON (vomitoxin) <0.15 ppm for all samples (low head scab year)

Malt Quality: 2020-21

Plant date	Protein (%)	Plump kernels (%)	Thin kernels (%)	€ (4	Germination (4ml 72 hr GE)	
Criteria	≤12%	>90%	<3%		>98%	
17-Sep	11.5 A	86.9 B	1.4 B		90.1 B	
29-Sep	11.9 A	90.6 AB	1.0 BC		93.7 A	
14-Oct	12.6 A	93.0 A	0.7 C		93.6 A	
29-Oct	12.6 A	94.6 A	0.8 C		91.7 AB	
12-Nov	12.8 A	88.0 A	3.3 A		80.1 C	
P value	0.08	<0.001	<0.002		<0.003	

Data from 3 higher seed rates (1.6, 2.0, 2.4 m seeds/ac)

- DON (vomitoxin) <0.15 ppm for all samples (low head scab year)
- 2021-22: Similar trends (DON <0.30 ppm, RVA >120)

Quality: Winter Wheat planting date

 Kernel weight had minimal impact with delay in wheat planting

 Protein content in wheat increased with delay in planting

Copeland et al., 2023 <u>https://doi.org/10.1002/cft2.20240</u>

Quality: Winer Barley planting date

- Kernel weight had minimal impact with delay in barley planting
- Protein content in barley increased with delay in planting
- Overall, most quality traits had a positive response to increase in seeding rates

Take Home Messages

- Early planting (at or within 2 weeks of fly free date): Target fields where this can be achieved (for both barley and soybean)
- Barley more responsive to seeding rate than wheat, higher rates critical (2 1.6 m seed/ac), along with high seed quality and germ
- Yield penalty from delayed planting not reduced by increasing seeding rate, responses depends on growing season weather
- For high grain quality, managing for crop uniformity critical in addition to chasing high yields

Kernel plumpness might be lower under very-early planting
Low stands can produce good yields, but grain quality is a concern

Planting Systems- achieve faster/early planting?

Drill (JD 1590 No Till Drill)- 7.5" rows

Can lower tiller variability

Precision planter with vacuum that picks up individual seeds and drops one seed at a time down the drop tube.

Precision Planter-PP (Monosem 4NG Planter)- 5" rows

Broadcast Incorporation (BI)?: Horsch Joker with Gandy Air Seeder, Degelman Pro Till, Vertical Tillage Tool (No row spacing)

- Patrick Copeland
- Brook Wilke
- Dennis Pennington
- Kalvin Canfield
- Tom Siler
- Micalah Blohm
- Sam Martin
- Harkirat Kaur
- Lillian Wierenga

MICHIGAN STATE

UNIVERSITY

- Eric Olson
- Kelly Ish

Thanks!

Extension

- Braden Heimbaugh
- Lucas Para
- Chris Kapp (quality)
- Vince Coone (seed)

Manni Singh msingh@msu.edu (517) 353-0226

agronomy.msu.edu

