Comparing Planting Technologies for Their Impact on Seed Placement and Yield in Small Grains

Patrick Copeland, Maninder Singh, Dennis Pennington Dept. of Plant, Soil and Microbial Sciences 2021 ASA/CSSA/SSSA Annual meetings

Cropping Systems Agronomy MICHIGAN STATE UNIVERSITY

Project (

Introduction

- Small grains in United States 7.5" Row Spacing traditionally planted with grain drill
- Recent interest in precision planting technology
- Also broadcast incorporation for faster planting

Ideal

Seed dril

Uniform Seed Placement

- Variable planting depth
- Skips and doubles

- Uniform planting depth
- Uniform seed to seed spacing (singulation)

Objectives and Hypotheses

Objective 1: Compare precision planter to traditional drill <u>Hypothesis</u>: Precision planter will improve yields due to precise seed placement.

Objective 2: Compare broadcast incorporation to traditional drill <u>Hypothesis</u>: Broadcast incorporation will have lower yields due to variability in seeding depth.

Objective 3: Compare higher vs. lower seeding rates for broadcast incorporation <u>Hypothesis</u>: Increasing seeding rate under broadcast incorporation will make up for yield lost from seeds planted too deep or too shallow.

Materials and Methods

- Conducted at 5 Michigan farms
- Randomized Complete Block Design, 4 replications
- ➢ 2−5 farms per objective
- ➤ Seeding rates: depended on location and treatment (≥ 3.0 m seeds ha⁻¹)
- Other management per state recommendations:
 - ➢ P and K according to soil test levels
 - \geq 135 kg N ha⁻¹
 - ➢ Fungicide at flowering

Drill (JD 1590 No Till Drill)

Precision Planter-PP (Monosem 4NG Planter)

Broadcast Incorporation- BI: Horsch Joker with Gandy Air Seeder, Degelman Pro Till, Vertical Tillage Tool

Data Collection

- Stand counts (Feekes 1-2)
- Seeding placement: seeding depth and variability (coefficient of variation)
- Tiller and head count before harvest
- > Yield, moisture, and test weight at harvest
- Subsamples for quality parameters (kernel weight, protein, deoxynivalenol)
- Data analysis: using SAS ANOVA procedure (α = 0.1)

Depth Variability – Precision Planting vs. Drill

Yield – Precision Planting vs. Drill

Depth Variability – Broadcast Incorporation vs. Drill

Yield – Broadcast Incorporation vs. Drill

Effective Tillers – Broadcast Incorporation vs. Drill

Yield – Seeding Rates Response in Bl

Higher than

Standard Drill

Yield – Seeding Rate Response in BI vs. Drill

Summary and Future Directions

- > No yield difference observed between drill and broadcast
- Precision planting provided 8–11% yield benefit over drill
- Seeding depth variability was highest with broadcast incorporation and lowest with precision planting
- Improved emergence and plant stand with precision planting than drill, but no discernible trend when comparing against broadcast
- > No yield difference between seeding rates in broadcast

➢ Future Directions

- Evaluate seed spacing uniformity across planting methods
- Compare planting methods under late planting conditions

Tom Siler

Madeline Yaek

Harkirat Kaur

- Cole Mallory
- Farmer Cooperators = Brade
- Lillian Wierenga
- Braden HeimbaughMicalah Blohm

Patrick Copeland

copel113@msu.edu

Thanks!

agronomy.msu.edu

