

2022 MICHIGAN CORN HYBRIDS COMPARED

EXTENSION BULLETIN E-431

College of Agriculture and Natural Resources

RESEARCH CONDUCTED BY MICHIGAN STATE UNIVERSITY Results of the 2022 Growing Season

COMPANY INDEX

BRAND	CONTACT	BRAND	CONTACT
AG ARMOUR	Ag Armour Seeds 8236 North Williams Rd. St. Johns, MI 48879 https://ag-armourseeds.com/	M & W SEEDS	M & W Seeds Incorporated 8443 Wilcox Road Eaton Rapids, MI 48827 www.mwseeds.com
CHANNEL	Channel Seed 1299 N 5th Street Columbus, OH 43201 www.channels.com	NK Brand	Syngenta Seeds, Incorporated 2001 Butterfield Rd Suite 1600 Downers Grove, IL 60515 www.syngenta-us.com/seeds/nk
DAIRYLAND	Dairyland Seed P.O. Box 958 West Bend, WI 53095 www.dairylandseed.com	RENK	Renk Seed Company 6809 Wilburn Road Sun Prairie, WI 53590 www.renkseed.com
DYNA-GRO	Dyna-Gro Seed 4648 S. Garfield Road Auburn, MI 48611 www.dyna-groseed.com	ROB-SEE-CO	Rob-See-Co 1015 N. 205th St. Elkhorn, NE 68022 www.ruppseeds.com
GOLDEN HARVEST	Syngenta Seed 11055 Wayzata Boulevard Minnetonka, MN 55440 www.syngenta.com	SEEDWAY	Seedway LLC 1734 Railroad Place Hall, NY 14463 www.seedway.com
LEGACY SEEDS	Legacy Seeds, Incorporated P.O. Box 68 - 290 Depot St. Scandinavia, WI 54799 www.legacyseeds.com	SPECIALTY	Specialty Hybrids 306 N Main Street Monticello, IN 47960 www.specialtyhybrids.com
LEGEND	Legend Seeds P.O. Box 241 De Smet, SD 57231 www.legendseeds.com	VIKING	Albert Lea Seeds 1414 West Main Street P.O. Box 127 Albert Lea, MN 56007 www.seedhouse@alseed.com
LG SEEDS	LG Seeds 1122 169th St. Westfield, IN 46074 www.lgseeds.com		

2022 MICHIGAN CORN PERFORMANCE TRIALS

M. P. Singh and M. M. Blohm Department of Plant, Soil and Microbial Sciences Michigan State University

Introduction

The Michigan State University (MSU) Department of Plant, Soil and Microbial Sciences conducts the Michigan Corn Performance Trials (MCPT) each year in cooperation with Michigan State University AgBioResearch, The Ohio State University, seed corn companies, and farmers, to determine yield and quality performance for corn hybrids throughout the state of Michigan.

Entries

Seed companies are invited to enter their hybrids in the trials and a fee is charged to cover incurred expenses. Separate indices for grain (pg. 10 and 11) and silage (pg. 25) provide a list of all hybrids entered in the 2022 trials. A total of 204 hybrids from 15 brand names make up the 230 entries, which translates into 2,760 separate plots planted across 12 grain locations and 9 silage locations in Michigan in 2022. Hybrids are entered into zones based upon growing degree days and then grouped into Early and Late trials based upon relative maturities. Company names used in association with hybrid numbers refer to the brand. Hybrid numbers are designated by the company.

Hybrids may have a seed-applied insecticide that is not listed in the bulletin. These seed-applied insecticides may enhance yield. The "TRAIT" column lists the abreviation for a hybrids technology package, Hybrid technologies and their respective abbreviations can be found in Table D.1 (pg. 7). Trait codes used to define these hybrid technologies can be found in Table D.2 (pg. 7). All other hybrid traits not listed in Tables D.1 or D.2, pertaining only to hybrids with the given superscript per the hybrid index (page 10, 11 and 25, respectively), can be found in Table D.3 (pg. 7).

How to Use This Bulletin

Tables list hybrids alphabetically and contain yield results for each location along with trial averages within each zone. Complete one-year yield results are listed in tables for each trial within each zone, where data is available. Two-year yield results can be found on our website listed below. Oneyear single-site results are less reliable than multiple year and multiple location averages, therefore one-year singlesite results should be interpreted with more caution. Confidence in corn performance data increases as the number of years and the number of testing locations increase. Results for corn grain and corn silage trials are also listed on our website:

https://www.canr.msu.edu/varietytrials

Results are the average of four replications grown in close proximity to one another. Two or more plots of the same hybrid in the same field may produce somewhat different results because of uncontrolled variability in the soil and other environmental factors. Replication and randomization of entries are two methods employed to reduce this variability. Because these methods do not eliminate all variability, the magnitude of difference necessary for statistical significance has been calculated for yield, moisture content, and test weight. The least significant difference (LSD) is the amount an individual hybrid would have to differ from another hybrid to be considered significantly different. The coefficient of variability (CV) is indicative of a trial's precision. Trials with low levels of error variation have lower CV values.

The highest yielding hybrid in each trial is indicated with a double asterisk (**), hybrids that are not significantly different from the highest yielding hybrid are indicated with a single asterisk (*). Other agronomic information relative to each trial is given in Table B for the grain trials (pg. 9) and Table C for the silage trials (pg. 24). Fertilizer amounts are shown as total pounds per acre of N, P2O5, and K2O applied during the season.

Season in Summary: 2022

Entry forms for participating companies were due March 15th; by the end of March seed was starting to arrive. After a lot of paperwork, printing labels, and placing labels on packets, we began counting seeds and filling packets. Seed packets were sorted by trial and location and organized according to the randomization for each location.

Planting commenced in Ingham County on May 11th and ended in losco and Osceola Counties on June 3rd. Changes in county locations for the 2022 season included moving the Missaukee County location to Gingrich Meadows in Osceola County.

Weed control was applied at trial locations as needed. Fertilizer applications were consistent with rates that were necessary based on soil type, soil samples, and cooperator recommendations for the field. Stand counts were conducted at all trial locations between the V4 and V6 growth stages.

Silage harvesting began on September 13th in Branch County, and finished on September 22nd in losco and Presque Isle Counties. Grain harvest started on October 22nd in Ingham County and ended November 29th in Presque Isle County.

Due to various uncontrollable circumstances, the Wood and Huron County locations have been dropped. Due to severe lodging, Presque Isle - Early Grain trial was also dropped.

Table A (pg. 5) presents 2022 accumulations of temperature, rainfall, and heat units plus their deviation from 30-year norms. Data is obtained from Michigan State University weather stations located closest to each trial location. Actual accumulation at each location may vary slightly. The weather summary is provided by Dr. Jeff Andresen from the Department of Geography using data from the Michigan State University Agricultural Weather Office.

2022 GROWING SEASON WEATHER SUMMARY

Jeff Andresen, Extension Agricultural Meteorologist | Department of Geography, Michigan State University

Overall for Michigan, the 2022 May through September growing season averaged out warmer and somewhat drier than normal. Mean temperatures for the state averaged out at 64.1°F, which was 2.8°F above normal and the 17th warmest on record since 1895 and ranks among the warmest 15% of growing seasons. It also was consistent with an upward trend of mean growing season temperatures of about 0.2°F per decade during the past few decades. Base 50°F seasonal growing degree day accumulations ranged from less than 2100 units across far northern sections of the state to more than 3000 units along the Indiana and Ohio state lines (Figure 1). Those totals generally range from more than 50 units below normal across sections of Upper Michigan to more than 200 units above normal across the extreme south. The mean precipitation total for the state was 15.38" which was 0.52" below average and the 44th driest May-September since 1895. However, seasonal precipitation totals varied considerably by location across the state (Figure 2), ranging from less than 12.00" across sections of east central and northern Lower Michigan to more than 20.00" across portions of the southwestern Lower and western Upper Peninsulas.

Prior to the 2022 growing season, the winter of 2021/2022 (December-February) was slightly milder than normal (the state average temperature departure was $+1.5^{\circ}$ F), but that masked large variability across the state with winter mean values ranging from near to slightly milder than normal levels across southern sections to more than 4°F below normal across western Upper Michigan. Extreme minimum temperatures during the season were not too far from normal, ranging from -25.0°F in south central Upper Michigan to +3.9°F in west central Lower Michigan. Extreme minimum soil temperatures at a 2" depth during the season ranged from +16.9°F in west central Lower Michigan.

Seasonal precipitation totals averaged across the state were just above normal at 5.50" (0.20" above normal) with observed individual site totals ranging from less than 4.00" across northern Lower Michigan to more than 7.00" across northern portions of the Upper Peninsula. At the beginning of April, the U.S. Drought monitor categorized much of the northern half of the Lower Peninsula and southern sections of the Upper Peninsula as either 'Abnormally Dry' (category D0) or in 'Moderate Drought' (category D1) with more normal conditions observed elsewhere.

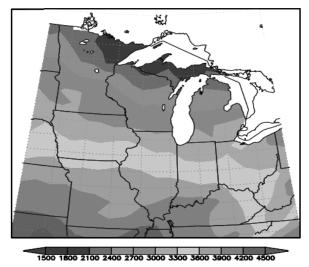
A progressive upper air pattern across North America during much of late March and April led to the sequential passage of a number of alternating troughing (with precipitation and relatively cold weather) and ridging (with warmer than normal weather) features across the Great Lakes region resulting in regular wide swings in temperature and above normal precipitation totals in most areas. Temperatures associated with some of the passing troughing features resulted in some significant late season snowfall in many areas. The combination of cooler and wetter than normal weather led to significant challenges and delays in early season fieldwork statewide. It also suppressed early growth and phenological development of overwintering crops.

During early May, the formation of large ridging features across the center of the country led to extended periods of mostly sunny, warm, and rain-free weather that accelerated drying of topsoils which allowed rapid progress of spring planting and other fieldwork operations. By the end of May most spring planting totals were at or even ahead of long-term averages for the date. In addition, topsoil temperatures warming quickly into the 60s and 70s during those periods favored rapid, uniform germination and early growth of planted crops in most areas. Across all the swings in temperature, mean temperatures for May ranged from cooler than normal levels (generally 1-2°F below normal) across northwestern sections of the state to warmer than normal levels across much of Lower Michigan (generally 2-4°F above normal). Precipitation totals for the month varied greatly across the state, ranging from less than 2.00" across northern Lower Michigan (less than 50% of normal) to more than 4.00" across southern and western sections of the Lower Peninsula and western Upper Michigan (120-160% of normal).

In June, Michigan and the Great Lakes region remained on the northern periphery of a large upper air ridging feature that led to periodic heat wave conditions across much of the central and southern USA. In Michigan this resulted occasional incursions of both hot, humid air from the south and relatively cooler air masses from Canada with wide swings in temperature. Mean temperatures across the state averaged out close to the climatological normals for the month, ranging from near normal across northern sections to 1-2°F above normal in the south. Precipitation totals were variable, ranging from 3.00-4.00" or more across northern sections of the state to less than 1.50" (40-70% of normal) across central sections. Just as importantly, potential evapotranspiration rates, the rate at which water could evaporate if it were available on plant and/or soil surfaces, were much above normal over most of the state due to sunnier than normal weather. This combination of conditions led to rapid drying of topsoils, high crop water demands, and to the appearance of water stress symptoms later in the month, especially on coarse-textured soils. By the end of the month, an area of D0 or 'abnormally dry' conditions as categorized by the U.S. Drought Monitor had rapidly developed across central and northern sections of Lower Michigan (26% of the state by area). Seasonal base 50°F growing degree day accumulations (since May 1st) across the state ranged from about 50 units below normal across sections of the Upper Peninsula (2-4 calendar days behind) to more than 100 units above normal (3-6 days ahead) across the southeastern Lower Peninsula.

Mean temperatures for July averaged out close to normal over most of the state, with monthly departures ranging from near zero across northern sections of the state to 1-2°F above normal in the south. Precipitation totals were highly variable depending on location but mostly below normal, ranging from less than 2.00" across northwestern sections of the Lower Peninsula to 4.00" or more across southwestern sections of the state. Dry soils and lack of water became an increasing challenge during the month, especially across central sections of the state. A widespread rain event on the 24th brought relief to some sections of the state, but as of the end of the month, 46% of the state was still classified as unfavorably dry (category D0) or in moderate drought (category D1). As is the case with many weather-related crop effects, the impacts of the dryness varied greatly by location but resulted in elevated levels of moisture stress for corn nearing or entering silking/pollination stages in some areas.

TABLE A.


GROWING SEASON SUMMARY - TEMPERATURE, PRECIPITATION AND GROWING-DEGREE-DAY ACCUMULATIONS

100 000 <th></th> <th></th> <th></th> <th></th> <th>MAY</th> <th></th> <th></th> <th>JUNE</th> <th></th> <th></th> <th>JULY</th> <th></th> <th></th> <th>AUGUST</th> <th></th> <th>S</th> <th>SEPTEMBER</th> <th></th> <th></th> <th>SEASON</th> <th></th>					MAY			JUNE			JULY			AUGUST		S	SEPTEMBER			SEASON	
TerP 603 669 134 688 855 103 713 516 637 71 FTM 338 4.24 -0.26 1.49 4.26 5.87 8.86 6.97 7.13 0.11 6.93 6.95		COUNTY	1	OBS	NORM	DEV	OBS	NORM	DEV	OBS	NORM	DEV	OBS	NORM	DEV		NORM	DEV	OBS	NORM	DEV
PF 338 4.24 0.26 1.46 4.36 2.47 6.39 2.47 6.39 2.47 6.39 6.37 6.33 6.37 6.37 6.			TEMP	60.3	46.9	13.4	68.8	58.5	10.3	71.3	67.7	3.6	69.7	71	-1.3	63	69.3	-6.3	66.62	66	0.62
CCD T20 S22 S26 S26 <th></th> <td>CASS (Vandalia)</td> <td>ррт</td> <td>3.98</td> <td>4.24</td> <td>-0.26</td> <td>1.49</td> <td>4.26</td> <td>-2.77</td> <td>8.68</td> <td>4.09</td> <td>4.59</td> <td>2.87</td> <td>4.12</td> <td>-1.25</td> <td>3.58</td> <td>3.38</td> <td>0.2</td> <td>20.6</td> <td>20.09</td> <td>0.51</td>		CASS (Vandalia)	ррт	3.98	4.24	-0.26	1.49	4.26	-2.77	8.68	4.09	4.59	2.87	4.12	-1.25	3.58	3.38	0.2	20.6	20.09	0.51
TFM 608 866 68 06 714 713 011 699 690 690 PT 303 412 -109 233 397 -174 593 413 715 887 440 PT 333 412 -109 233 39 56 65 718 722 0.17 619 663 PT 404 056 416 4.11 005 358 344 054 508 346 CO 399 361 101 233 713 523 713 524 509 505 PT 475 581 31 001 233 314 051 357 348 516 PT 342 581 313 101 233 335 219 516 537 348 517 348 516 PT 342 581 519 513 513 513 513			GDD	270	352	-82	546	538	8	662	638	24	614	600	14	433	423	10	2525	2551	-26
PT 303 412 -109 203 379 1.74 593 473 887 473 CID 311 322 49 561 545 155 173 550 173 503 373 CID 335 55 53	τ		TEMP	60.8	58.6	2.2	68.6	68	0.6	71.4	71.3	0.1	6.69	69.5	0.4	62.4	62.4	0	66.62	99	0.62
GDD 31 342 49 561 545 15 667 650 17 619 603 TTMP 62 33 63 34 51 34 0.05 713 7.0 700 702 TTMP 652 57.9 53 71 67.5 35 713 5.2 72 70 70 70 70 TTMP 652 57.9 53 71 67.5 35 713 52.7 72 72 72 72 72 72 73 34 64 65 53 34 65 65 73 34 66 65 73 34 64 66	əu		РРТ	3.03	4.12	-1.09	2.23	3.97	-1.74	5.93	4.18	1.75	8.87	4.42	4.45	1.59	3.41	-1.82	21.65	20.1	1.55
TEMP 62 32 64 665 655 613 712 704 70 703 PT 5 404 0.96 416 411 0.05 3.98 3.44 0.54 5.08 3.44 600 339 361 1.8 6.45 5.3 713 7.13 7.21 7.03 7.3 FTM 3.55 3.56 1.11 1.55 3.85 7.23 7.33 7.33 3.46 5.71 6.05 3.48 6.15 6.65	οz	(columater)	GDD	391	342	49	561	545	16	667	650	17	619	603	16	415	403	12	2653	2543	110
PT 5 4.04 0.96 4.16 4.11 0.05 3.98 3.44 0.54 5.06 3.14 GDD 339 361 38 436 554 -118 573 5.73 5.73 5.71 5.73 5.71 5.97 3.65 TT 765 557 5.15 5.15 5.15 5.23 5.73 5.71 5.73 5.71 5.95 3.43 TT 751 516 537 529 5.73 5.71 5.71 5.71 5.73 3.43 5.95 TT 342 510 513 520 529 5.72 5.84 5.71 5.71 7.13 7.14 7.13 7.23 3.85 5.91 3.85 5.95 <		I ENIAWER	TEMP	62	59	с	69	68.5	0.5	71.8	72.2	-0.4	70	70.2	-0.2	61.4	63.1	-1.7	66.84	99	0.84
G00 390 361 38 436 53 71 673 621 713 527 713 527 713 527 713 627 635 FTM 64.5 345 11 1.55 335 735 713 224 657 686 533 538 514 605 611 FTM 342 341 010 533 356 613 738 616 649 695 614 FTM 343 66 551 542 95 53 357 156 643 695 649 665 655 FTM 541 010 233 316 513 325 316 645 649 649 649 649 649 649 645 649 649 645 649 649 649 649 649 649 649 649 649 649 649 649 649 640 <td< th=""><th></th><td></td><td>ррт</td><td>5</td><td>4.04</td><td>0.96</td><td>4.16</td><td>4.11</td><td>0.05</td><td>3.98</td><td>3.44</td><td>0.54</td><td>5.08</td><td>3.4</td><td>1.68</td><td>0.28</td><td>3.32</td><td>-3.04</td><td>18.5</td><td>18.31</td><td>0.19</td></td<>			ррт	5	4.04	0.96	4.16	4.11	0.05	3.98	3.44	0.54	5.08	3.4	1.68	0.28	3.32	-3.04	18.5	18.31	0.19
TFM 632 573 573 735 713 723 723 723 723 723 723 723 723 723 723 733 663 653 335 613 010 451 341 010 151 653 133 665 733 733 716 053 653		(ואוטופווטו)	GDD	399	361	38	436	554	-118	673	662	11	597	616	-19	267	431	-164	2372	2624	-252
PT 4.76 3.66 1.1 1.56 3.35 2.29 2.33 2.04 5.97 3.48 GDD 451 342 109 614 539 753 713 654 658 611 TTMP 61.1 531 660 673 105 105 733 605 708 605 TMP 61.2 581 3.1 660 673 405 713 703 70 603 605 TMP 539 510 601 733 70 603 604 605 TMP 1.9 530 640 653 10 653 669 673 649 640 640 640 669 673 669 673 669			TEMP	63.2	57.9	5.3	71	67.5	3.5	73.5	71.3	2.2	72.1	69.5	2.6	64.2	62.1	2.1	68.8	99	2.8
GDD 451 342 109 614 539 75 719 654 65 688 611 FHP 612 58.1 31 68.6 57.9 0.7 71.1 71.6 0.5 70.8 69.5 FHP 3.42 3.41 0.01 2.33 95.1 52.7 95.9 533 16 6.99 60.9 <th></th> <td>ואפרוטעוו באכנימב ו</td> <td>РРТ</td> <td>4.76</td> <td>3.66</td> <td>1.1</td> <td>1.56</td> <td>3.85</td> <td>-2.29</td> <td>2.3</td> <td>2.94</td> <td>-0.64</td> <td>5.97</td> <td>3.48</td> <td>2.49</td> <td>2.17</td> <td>2.75</td> <td>-0.58</td> <td>16.76</td> <td>16.68</td> <td>0.08</td>		ואפרוטעוו באכנימב ו	РРТ	4.76	3.66	1.1	1.56	3.85	-2.29	2.3	2.94	-0.64	5.97	3.48	2.49	2.17	2.75	-0.58	16.76	16.68	0.08
TEMP 61.2 58.1 3.1 6.66 6.79 0.7 7.21 7.16 0.55 7.0.8 6.69 PPT 3.42 3.41 0.01 2.23 3.28 1.05 2.39 0.16 3.87 3.85 FTMP 6.1 58.8 5.21 54.2 54 -1.2 7.3 3.86 6.01 4.05 6.09 6.09 6.09 6.09 6.00 3.95 3.45 4.05 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 5.55		LdIIISI	GDD	451	342	109	614	539	75	719	654	65	688	611	77	455	414	41	2927	2560	367
PF 3.42 3.41 0.01 2.23 3.28 -1.05 2.99 2.83 0.16 3.87 3.85 GDD 399 333 66 551 542 9 663 16 649 668 PT 235 3.99 -1.64 1.04 3.94 -2.9 3.75 -1.1 70.2 406 PT 2.35 3.99 -1.64 1.04 3.94 -2.9 3.75 -1.1 70.2 406 GD 390 350 -1.64 1.04 3.94 -2.9 3.75 -1.1 70.2 406 GD 390 350 -40 499 553 1.61 4.27 3.55 FTMP 602 543 4.87 3.65 -1.35 1.21 1.01 2.13 3.16 4.67 3.16 FTMP 559 543 4.61 1.01 2.23 3.51 1.51 3.16 4.05 3.16	2		TEMP	61.2	58.1	3.1	68.6	67.9	0.7	72.1	71.6	0.5	70.8	69.5	1.3	63.2	62.3	0.9	67.18	99	1.18
GDD 339 66 51 542 9 679 663 16 649 603 TEMP 61 588 2.2 67.2 68.4 -1.2 71.3 72.4 -1.1 70.2 40.6 PT 2.35 3.99 -1.64 1.04 3.94 -2.9 3.75 -1.1 70.2 40.6 GDD 390 350 4.0 4.99 559 -6.0 657 68.4 -7.7 603 64.9 68.5 FTMP 6.02 54.9 53.3 1.6 64.9 657 64.9 67.8 64.9 65.8 FTMP 6.02 54.9 53.3 1.6 67.3 1.73 1.35 1.73 1.35 1.35 1.46 68.5 FTMP 55.8 2.13 64.1 64.1 0.73 67.9 67.3 65.9 67.3 65.7 FTMP 53.6 53.7 1.33 33.4 1.2 <th>əu</th> <td></td> <td>ррт</td> <td>3.42</td> <td>3.41</td> <td>0.01</td> <td>2.23</td> <td>3.28</td> <td>-1.05</td> <td>2.99</td> <td>2.83</td> <td>0.16</td> <td>3.87</td> <td>3.85</td> <td>0.02</td> <td>2.44</td> <td>2.81</td> <td>-0.37</td> <td>14.95</td> <td>16.18</td> <td>-1.23</td>	əu		ррт	3.42	3.41	0.01	2.23	3.28	-1.05	2.99	2.83	0.16	3.87	3.85	0.02	2.44	2.81	-0.37	14.95	16.18	-1.23
TEMP 61 58.8 2.2 67.2 68.4 -1.2 71.3 72.4 -1.1 70.2 40.6 PPT 2.35 3.99 -1.64 1.04 3.94 -2.9 3.75 3.86 -0.11 4.27 3.55 6D0 390 350 40 499 559 -60 657 684 -27 603 640 FFM 60.2 54.9 5.3 66.9 65.3 1.6 70 0.3 649 685 FFM 60.2 54.9 5.3 66.9 65.3 1.6 70 0.3 64.9 555 FFM 57.9 55.8 2.1 64.1 5.2 3.12 1.01 2.3 3.55 552<	οz	(Freeland)	GDD	399	333	66	551	542	6	679	663	16	649	608	41	426	413	13	2704	2559	145
PFI 2.35 3.39 -1.64 1.04 3.34 -2.9 3.55 -0.11 4.27 3.55 GDD 330 350 40 499 559 -60 657 684 -27 603 640 PT 1.9 3.55 -1.35 2.22 3.21 -1.01 2.23 3.57 -1.34 3.59 3.4 GDD 345 2.55 80 486 468 1.8 621 602 553 3.4 GDD 345 2.56 80 486 468 1.24 3.56 57.9 55.9 <		OTT ANNA	TEMP	61	58.8	2.2	67.2	68.4	-1.2	71.3	72.4	-1.1	70.2	40.6	29.6	63.7	63.1	0.6	66.68	99	0.68
GD 390 350 40 499 559 -60 657 684 -27 603 640 TMP 60.2 54.9 5.3 66.9 65.3 1.6 70.3 70 0.3 69.4 68.5 PT 1.9 3.25 -1.35 2.2 3.21 1.01 2.23 3.57 -1.34 3.59 3.4 GD 345 265 80 486 468 1.8 621 69.4 68.5 559 3.4 GD 345 25.8 2.1 64.1 64.5 -0.4 69.4 69.3 3.4 559 559 559 552 553 552 <			ррт	2.35	3.99	-1.64	1.04	3.94	-2.9	3.75	3.86	-0.11	4.27	3.55	0.72	1.91	3.42	-1.51	13.32	18.76	-5.44
TEMP 60.2 54.9 5.3 66.9 65.3 1.6 70.3 70 0.3 69.4 68.5 PPT 1.9 3.25 -1.35 2.2 3.21 -1.01 2.23 3.57 -1.34 3.59 3.59 GD 345 265 80 486 468 18 61 60.2 19 559 559 559 TMM 57.9 55.8 2.1 64.1 64.5 -0.4 69.4 69.1 69.5 559 559 557 TMM 57.9 55.8 2.1 3.65 1.22 4.8 316 68.9 68.9 68.9 555 TMM 587 57.7 1 67.8 67.7 51.7 316 59.2 55.2 55.2 55.2 55.7 55.7 55.7 55.7 55.7 55.7 55.7 55.7 51.4 50.5 55.3 53.4 TMM 556 54.7		(Allendale)	GDD	390	350	40	499	559	-60	657	684	-27	603	640	-37	437	427	10	2586	2660	-74
PFT 1.9 3.25 -1.35 2.2 3.21 -1.01 2.23 3.57 -1.34 3.59 3.4 GD0 345 265 80 486 468 18 621 602 19 595 559 559 FTMP 57.9 55.8 0.33 4.87 3.65 1.22 4.88 3.38 1.5 4.77 3.16 FTMP 559 55.7 1 67.9 68 9.3 3.16 9.3 3.16 9.3 3.16 9.3 3.16 9.3 3.16 9.3 4.9 4.6 1.2 7.2 8.3 1.12 7.12 7.12 0.13 5.1 7.1 9.3 3.5 9.3 3.5 9.3 3.5 9.3 3.5 9.3 3.5 9.3 3.5 9.3 3.5 9.3 3.5 9.3 3.5 9.3 3.5 9.3 3.5 9.3 3.5 9.3 3.5 9.3 3.5 <th></th> <td></td> <td>TEMP</td> <td>60.2</td> <td>54.9</td> <td>5.3</td> <td>6.99</td> <td>65.3</td> <td>1.6</td> <td>70.3</td> <td>70</td> <td>0.3</td> <td>69.4</td> <td>68.5</td> <td>0.9</td> <td>63</td> <td>62.1</td> <td>0.9</td> <td>65.96</td> <td>99</td> <td>-0.04</td>			TEMP	60.2	54.9	5.3	6.99	65.3	1.6	70.3	70	0.3	69.4	68.5	0.9	63	62.1	0.9	65.96	99	-0.04
GDD 345 265 80 486 468 18 621 602 19 555 559 559 559 559 559 559 559 559 559 559 559 559 559 559 559 559 559 559 550 561 601 033 679 68 63 63		HURON (Pigeon)	РРТ	1.9	3.25	-1.35	2.2	3.21	-1.01	2.23	3.57	-1.34	3.59	3.4	0.19	3.24	3.11	0.13	13.16	16.54	-3.38
TEMP 57.9 55.8 2.1 64.1 64.5 -0.4 69.4 69.1 0.3 67.9 68 PT 3.69 3.36 0.33 4.87 3.65 1.22 4.88 3.38 1.5 4.27 3.16 GD 318 295 2.3 4.49 462 -1.3 6.99 5.94 1.5 4.27 3.16 FEMP 58.7 57.7 1 67.8 67.7 70.5 0.7 69.8 68.9 FEMP 58.7 57.7 1 67.9 56.7 57.1 69.9 59.4 51.2 54.2 56.7 57.2 FEMP 58.6 57.7 1.18 57.2 53.3 53.4 33.2 53.2 57.4 53.9 53.9 53.4 57.3 54.7 54.7 54.7 54.7 FTMP 55.6 55.7 1.8 53.2 53.4 3.3 53.4 57.3 54.7 57.8			GDD	345	265	80	486	468	18	621	602	19	595	559	36	406	393	13	2453	2287	166
PFI 3.69 3.3.6 0.33 4.87 3.65 1.22 4.88 3.38 1.5 4.27 3.16 GDD 318 295 23 449 462 -13 609 594 15 562 562 FIMP 58.7 57.7 1 67 67 67 67 59 55 55 FIMP 58.7 57.7 1.89 3.67 0.75 659 559 55 55 35 55 35	8	NAACON	TEMP	57.9	55.8	2.1	64.1	64.5	-0.4	69.4	69.1	0.3	67.9	68	-0.1	61.6	61.9	-0.3	64.18	99	-1.82
GDD 318 295 23 449 65 -13 609 594 15 562 562 TEMP 58.7 57.7 1 678 67 0.8 71.2 70.5 0.7 69.8 68.9 PT 2.68 4.05 -1.37 1.89 3.62 -1.73 3.41 2.12 70.5 69.3 55.9 55.9 3.55 GDD 352 354 -2 533 532 534 64.7 0.7 69.3 68.9 35.9 FTMP 58.6 54.2 44.4 65.4 64.7 0.7 69.3 68.9 35.9 FTMP 58.6 54.2 1.49 65.4 64.4 -1.6 63.3 63.3 63.4 63.3 63.4 63.3 63.4 63.3 63.4 63.3 63.4 63.3 63.4 63.3 63.4 63.3 63.4 63.3 63.4 63.3 63.2 63.4 63.	϶u	/ucturint/	ррт	3.69	3.36	0.33	4.87	3.65	1.22	4.88	3.38	1.5	4.27	3.16	1.11	2.34	3.23	-0.89	20.05	16.78	3.27
TEMP 58.7 57.7 1 67.8 67.8 67.8 67.8 68.9 68.9 68.9 68.9 55.9 3.5 65.0 7.12 7.05 0.77 69.8 68.9 3.5 6D 352 354 -2 533 523 524 64.7 0.7 69.3 69.9 352 354 3.5 FMP 58.6 54.2 4.4 65.4 64.7 0.7 69.3 68.8 67.4 PT 52.1 3.11 -0.9 3.23 3.54 -0.31 3.24 3.5 69.3 57.4 57.9 57.9 57.9 57.9 57.9 57.9 57.4 4.07 57.5 55.7 1.8 63.5 65.4 61.4 57.3 54.9 54.7 57.5 55.7 1.8 53.3 54.1 57.5 54.8 54.7 57.8 54.9 54.7 57.8 54.8 54.7 54.8 54.7 57.8 54.8	οz	(LUUIIIBLOUI)	GDD	318	295	23	449	462	-13	609	594	15	562	562	0	394	393	1	2332	2306	26
PPT 2.68 4.05 -1.37 1.89 3.62 -1.37 0.36 5.9 5.9 3.5 GDD 352 354 -2 533 528 5 650 629 21 620 592 535 TEMP 58.6 54.2 4.4 65.4 64.7 0.7 69.3 68.8 0.5 69 67.4 67.4 PT 52.1 3.11 -0.9 3.23 3.54 -0.31 3.24 3.5 69.3 69.3 69.3 67.4 67.4 PT 2.21 3.11 -0.9 3.23 3.54 -0.26 4.59 3.4 4.07 GDD 357 57.7 1.8 63.3 53.2 -1.9 69.1 69.5 67.4 67.3 TEMP 57.5 55.7 1.8 63.3 3.32 1.47 58.0 54.2 54.2 54.2 TEMP 58.1 54.3 3.46 3.3		A 10NITCAL N	TEMP	58.7	57.7	1	67.8	67	0.8	71.2	70.5	0.7	69.8	68.9	0.9	62.2	61.6	0.6	65.94	99	-0.06
GDD 352 354 -2 533 528 5 650 629 21 620 592 TEMP 58.6 54.2 44 65.4 64.7 0.7 69.3 68.8 0.5 69 67.4 PT 221 3.11 -0.9 3.53 3.54 -0.31 3.54 5.57 69 67.4 67.4 PT 2.11 1.05 3.23 3.54 -0.31 3.54 57.7 55.7 55.7 57.8 57.4 57.4 57.3 57.4		(Entrican)	ррт	2.68	4.05	-1.37	1.89	3.62	-1.73	3.4	3.12	0.28	5.9	3.5	2.4	1.53	3.04	-1.51	15.4	17.33	-1.93
TEMP 58.6 54.2 4.4 65.4 64.7 0.7 69.3 68.8 0.5 69 67.4 PPT 2.21 3.11 -0.9 3.23 3.54 -0.31 3.24 3.5 69.3 67.4 GDD 350 273 77 490 465 25 597 57.4 23 34 TEMP 57.5 55.7 1.8 63.5 65.4 -1.9 69.1 69.5 67.4 67.3 TEMP 57.5 55.7 1.8 63.5 65.4 -1.9 69.1 67.4 67.3 542 542 TEMP 57.5 55.7 1.8 63.3 64.4 -1 67.4 67.3 542 542 TEMP 58.1 54.9 3.46 51.7 580 595 51.7 328 542 542 FTMP 58.1 54.9 3.4 51.3 51.3 51.3 542 542		ורוורמוו)	GDD	352	354	-2	533	528	5	650	629	21	620	592	28	400	416	-16	2555	2519	36
PPT 2.21 3.11 -0.9 3.23 3.54 -0.31 3.24 3.5 -0.26 4.59 3.4 GDD 350 273 77 490 465 25 597 574 23 592 531 TFMP 57.5 55.7 1.8 63.5 65.4 -1.9 69.1 69.5 -0.4 67.4 67.3 PT 568 3.73 1.95 1.34 3.32 -1.98 3.46 3.3 0.16 6.74 67.3 67.5 GDD 337 308 299 3.34 5.35 -1.5 5.48 5.42 5.43			TEMP	58.6	54.2	4.4	65.4	64.7	0.7	69.3	68.8	0.5	69	67.4	1.6	61.7	60.1	1.6	64.8	99	-1.2
GDD 350 273 77 490 465 25 597 574 23 592 531 TEMP 57.5 55.7 1.8 63.5 65.4 -1.9 69.1 69.5 -0.4 67.4 67.3 PT 5.68 3.73 1.95 1.34 3.32 -1.98 3.46 3.3 0.16 67.4 67.3 GD 337 308 29 332 -1.98 3.46 3.3 0.16 67.4 67.3 FTMP 581 549 3.32 -1.97 580 595 -1.5 548 542 FTMP 58.1 54.3 3.48 -1.47 580 595 -1.5 542 542 FTMP 58.1 54.4 -1 67.8 68.8 -1 3.24 1.71 3.74 3.28 FTMP 30.1 58.3 1.53 3.24 -1.71 3.74 3.28 GDD		IOSCO (Hale)	РРТ	2.21	3.11	-0.9	3.23	3.54	-0.31	3.24	3.5	-0.26	4.59	3.4	1.19	1.59	2.83	-1.24	14.86	16.38	-1.52
TEMP 57.5 55.7 1.8 63.5 65.4 -1.9 69.1 69.5 -0.4 67.4 67.3 PPT 5.68 3.73 1.95 1.34 3.32 -1.98 3.46 3.3 0.16 6.74 4.07 GDD 337 308 29 338 485 -147 580 595 -15 548 542 TEMP 58.1 54.9 3.32 63.4 64.4 -1 67.8 68.8 -1 65.9 67.6 PT 58.1 54.9 3.25 2.87 0.38 15.3 3.24 -1.71 3.74 3.28 PT 1.42 3.04 1.65 3.28 458 -1.79 3.10 55.3 67.6 PT 1.42 3.04 -1.65 3.28 1.53 3.24 -1.71 3.74 3.28 GDD 310 302 8 289 468 -1.71 3.74 552 (*f) 310 583 -2.73 3.44 552 <t< th=""><th></th><td></td><td>GDD</td><td>350</td><td>273</td><td>77</td><td>490</td><td>465</td><td>25</td><td>597</td><td>574</td><td>23</td><td>592</td><td>531</td><td>61</td><td>399</td><td>358</td><td>41</td><td>2428</td><td>2201</td><td>227</td></t<>			GDD	350	273	77	490	465	25	597	574	23	592	531	61	399	358	41	2428	2201	227
PPT 5.68 3.73 1.95 1.34 3.32 -1.98 3.46 3.3 0.16 6.74 4.07 GDD 337 308 29 338 485 -147 580 595 -15 548 542 TEMP 58.1 54.9 3.2 64.4 -1 67.8 68.8 -1 65.9 67.6 PT 1.42 3.04 -1.62 3.25 2.87 0.38 1.53 3.24 -1.71 3.74 3.28 GDD 310 302 8 289 468 -1.73 3.74 -1.71 3.74 3.28 GDD 310 302 8 289 468 -1.79 3.14 552 (*F) 310 583 -2.73 444 552 (*F) 0.85 1.44 552 (*F)	Þ ;		TEMP	57.5	55.7	1.8	63.5	65.4	-1.9	69.1	69.5	-0.4	67.4	67.3	0.1	60.5	59.7	0.8	63.6	99	-2.4
GDD 337 308 29 338 485 -147 580 595 -15 548 542 742 TEMP 58.1 54.9 3.2 63.4 64.4 -1 67.8 68.8 -1 65.9 67.6 PPT 1.42 3.04 -1.62 3.25 2.87 0.38 1.53 3.24 -1.71 3.74 3.28 GDD 310 302 8 289 468 -179 310 583 -273 444 552 ("F) 310 302 8 289 468 -179 310 583 -273 444 552 ("F) . 0.05 583 7.03 64.4 552 085 543 522 ("F) . . . 0.585 Totals observed in 2022 ("F) <	əuo	USUEULA (LE	РРТ	5.68	3.73	1.95	1.34	3.32	-1.98	3.46	3.3	0.16	6.74	4.07	2.67	2.14	3.01	-0.87	19.36	17.43	1.93
TEMP 58.1 54.9 3.2 63.4 64.4 -1 67.8 68.8 -1 65.9 67.6 PPT 1.42 3.04 -1.62 3.25 2.87 0.38 1.53 3.24 -1.71 3.74 3.28 GDD 310 302 8 289 468 -179 310 583 -273 444 552 (*F) 0B5 = Totals observed in 2022 0B5 = Totals observed in 2022 (*F) 0FV = Normals calculated over 30 year period (1931-2 calculated at base 50°F, with an 86°F cutoff DEV = Deviation of observed from normal	οz	(ADA)	GDD	337	308	29	338	485	-147	580	595	-15	548	542	9	364	369	-2	2167	2299	-132
PPT 1.42 3.04 -1.62 3.25 2.87 0.38 1.53 3.24 -1.71 3.74 3.28 GDD 310 302 8 289 468 -179 310 583 -273 444 552 (*F) 310 302 8 289 468 -179 310 583 -273 444 552 (*F) 0BS = Totals observed in 2022 0BS = Totals observed in 2022 0BS = Totals observed from normals calculated over 30 year period (1981-2 2041 2022 calculated at base 50°F, with an 86°F cutoff DEV = Deviation of observed from normal 2021			TEMP	58.1	54.9	3.2	63.4	64.4	-	67.8	68.8	-	65.9	67.6	-1.7	59.1	60.4	-1.3	62.86	99	-3.14
GDD 310 302 8 289 468 -179 310 583 -273 444 552 (°F) (°F) OBS = Totals observed in 2022 OBS = Totals observed in 2022 NORM = Normals calculated over 30 year period (1981-2014) 1381-2014) <td< th=""><th></th><td></td><td>РРТ</td><td>1.42</td><td>3.04</td><td>-1.62</td><td>3.25</td><td>2.87</td><td>0.38</td><td>1.53</td><td>3.24</td><td>-1.71</td><td>3.74</td><td>3.28</td><td>0.46</td><td>1.84</td><td>3.17</td><td>-1.33</td><td>11.78</td><td>15.6</td><td>-3.82</td></td<>			РРТ	1.42	3.04	-1.62	3.25	2.87	0.38	1.53	3.24	-1.71	3.74	3.28	0.46	1.84	3.17	-1.33	11.78	15.6	-3.82
(°F) 085 = Totals observed in 2022 NORM = Normals calculated over 30 year period (1981-2 calculated at base 50°F, with an 86°F cutoff DEV = Deviation of observed from normal		(ruseri)	GDD	310	302	8	289	468	-179	310	583	-273	444	552	-108	241	377	-136	1594	2282	-688
NORM = Normals calculated over 30 year period (1981-2 calculated over 30 year period (1981-2 DEV = Deviation of observed from normal	TEMP =	: Mean temperature	(°F))BS = Totals	s observed i	n 2022									
DEV = Deviation of observed from normal	PPT = P	recipitation (inches	-						~	NORM = No	rmals calcu	ated over 3	30 year per	iod (1981-2	010)						
Table courtesy of MSU Aericultural Weather Office (51).	GDD = (Growing Degree Da	y calculat	ed at base 5	50°F, with a	n 86°F cuto	ff			DEV = Devia	tion of obse	erved from	normal								
														•	Table courte	esy of MSU	Agricultural	Weather C	Office (517-3	\$55-0231)	

- Weather Continued From Page 4

Following a hot, humid start of August and a cooler than normal second week, temperatures during the second half of the month stabilized close to the long term normals. A widespread heavy rain event on the 3rd and 4th of the month brought relief and significantly improved growing conditions in many central and southern areas of the state. Immediately following that event, there was a stretch of unusually warm, humid weather from the 3rd-8th of August during which the dewpoint temperatures (a direct measure of humidity, the higher the dewpoint, the greater the humidity) in most southern and central sections of the state never fell below 70F (climatologically very uncommon) with extended evening/ overnight wetting events (some in excess of 12 hours per day) that led to a sudden and recent surge of plant disease pressure. Mean temperatures for the month averaged out close to slightly above normal levels, with departures generally ranging from 1-2°F in most areas of the state. Monthly precipitation totals were well above normal in most areas, ranging from just over 3.00" across extreme southwestern and southeastern sections of Lower Michigan to more than 5.00" across large portions of the western Lower Peninsula (generally from 100-150% of normal). Besides the heavy rain event on the 3rd-4th, the monthly totals also included two widespread heavy rain events across western and northern sections of the state on the 13th-14th and the 28th-29th. The passage of a strong cold front on the 29th led to a major severe weather outbreak across the southern half of the Lower Peninsula with more than 50 reports of weather-related damage, mostly the result of damaging straight-line winds. With wetter than normal conditions in many sections of the state. soil moisture levels increased relative to levels earlier in the growing season, although dryness continued as a problem in some central and eastern sections of Lower Michigan.

A broad upper air ridging feature across central sections of North America resulted in mostly warmer and drier than normal weather across Michigan and the Great Lakes region during early September.

Figure 1. Base 50°F growing degree day totals from May 1st-September 31st, 2022. Daily degree day totals are calculated with 86°F and 50°F upper and lower cutoffs (the "corn" method). Image courtesy of the Midwestern Regional Climate Center, West Lafayette, IN.

With the exception of western portions of Upper Michigan and the northwestern Lower Peninsula where rainfall was heavier than normal, most areas of Michigan recorded below normal precipitation totals during the month of September. Monthly rainfall totals ranged from less than 1.50" across southern and eastern portions of Lower Michigan to more than 4.00 across northwestern Lower Michigan. Many of the days during late September and early October were fair, mild, and dry which favored harvest activities and winter wheat planting in most areas. Mean temperatures for September generally ranged from near normal across northern sections of the state to 1-3°F above normal elsewhere. The first freezing temperatures (32°F or lower) of the season were observed across some northern and central sections of the state during the last week of the month and the first few days of October. However, very few locations had recorded a first killing freeze (28°F or lower) as of the first week of October.

The formation of a deep upper air low across the Great Lakes region late during the second week of October brought unseasonably cool temperatures, frequent precipitation and an early taste of winterlike weather to Michigan. The system brought the first significant snowfall of the season to many northern areas of the state with accumulations more than 1 foot in some sections of western Upper Michigan. The combination of wet snow and strong winds with the system with leaves still on many trees led to a number of power outages. In general, the weather system brought most outdoor fieldwork activities to a halt by the middle of the month. Fortunately, warmer and drier than normal weather prior to the event during late September and early October and again in late October led to rapid progress in most harvest activities and the season ended near or even slightly ahead of normal for many growers. At the end of the month and season, abnormally dry conditions as defined by the U.S. Drought Monitor continued across 41% of the state including eastern and southern sections of the Lower Peninsula and western sections of Upper Michigan.

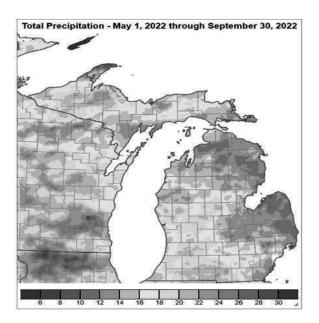


Figure 2. Total precipitation (inches), May 1- September 30, 2022. Figure courtesy of Northeastern Regional Climate Center, Ithaca, NY.

HYBRID TECHNOLOGIES

|--|

TECHNOLOGY	TECH. ABBREVIATION	TRAITS ¹
AcreMax	AM	GT, LL, CB
Agrisure 3120 E-Z	BZ	GT, LL, CB
Agrisure 3122 E-Z	3122 E-Z	GT, LL, CB, RW
Agrisure Duracade 5122 E-Z	D1	GT, LL, CB, RW
Agrisure Duracade 5222 E-Z	D2	GT, LL, CB, RW
Agrisure Viptera 3110	VR	GT, LL, CB
Agrisure Viptera 3220 E-Z	VZ	GT, LL, CB
CONV	CONV	CONV
Powercore	PW	GT, LL, CB
Powercore Enlist	PWE	GT, LL, CB
Qrome	Q	GT, LL, CB, RW
SmartStax	STX	GT, LL, CB, RW
SmartStax RIB Complete	STXRIB	GT, LL, CB, RW
Trecepta	TRE	GT, CB
Trecepta RIB	TRERIB	GT, CB
VT DoublePRO	VT2P	GT, CB
VT DoublePRO RIB Complete	VT2PRIB	GT, CB

¹ Traits found in Trait Codes Table

OTHER Table D.3 HYBRID TRAITS

1	Drought Tolerant
2	Viptera (BL: Broad Leaf)
3	Western Bean Cutworm
4	Rootworm
5	Artersian
6	Rootworm; Corn Earworm; European Corn Borer; Fall Armyworm; Stalk Borer; Sugarcane Borer; Southwestern Corn Borer; Corn Rootworm
7	Corn Earworm; Fall Armyworm; Stalk Borer; Sugarcane Borer; Southerwestern Corn Borer
8	Black Cutworm; Corn Earworm; Fall Armyworm; Stalk Borer; Sugarcane Borer; Southwestern Corn Borer
9	Black Cutworm; Corn Earworm; European Corn Borer; Fall Armyworm; Stalk Borer; Sugarcane Borer; Southwestern Corn Borer; True Armyworm; Western Bean Cutworm

* Only pertains to hybrids with the given superscript in Hybrid Index

Table D.2	TRAIT CODES
Code	Trait
CONV	Conventional
GT	Glyphosate Tolerant (RR)
LL	Liberty Link
СВ	Corn Borer

RW Corn Rootworm

2022 GRAIN PERFORMANCE TRIALS

Introduction

The grain index (pg. 10 and 11) contains a list of all hybrids planted in the 2022 grain trials. County results are reported in the following tables:

Tables 1E/1L Zone 1 - Branch, Cass, and Lenawee

Tables 2E/2L Zone 2 – Ingham, Ottawa, and Saginaw

Tables 3E/3L Zone 3 - Huron*, Mason, and Montcalm

Tables 4E/4L Zone 4 – losco, Presque Isle, and Osceola

Tables 5E/5L Conventional Trial – Ingham (Z2), Montcalm(Z3), and Saginaw (Z2)

*Locations dropped due to uncontrolable events

The map of Michigan (lower right) shows each zone and the locations where the trials were located.

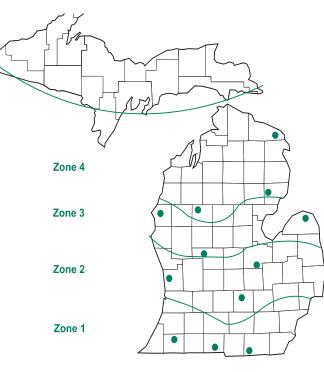
Methods

Three trial locations were planted in each of four maturity zones. These zones were based on available growing degree-day units (GDU) established from long-term weather records. Hybrids entered in a zone were tested in each of the three designated locations. Entries for zone 1, zone 2, zone 3, and zone 4 were divided into two maturity groups, early and late, based on the relative maturity (RM) of each hybrid provided by the seed companies.

Variety trials were conducted on farmers' fields, Michigan State University AgBioResearch Stations, and The Ohio State University Ohio Agricultural Research and Development Center. Planting was accomplished with an Almaco Seed Pro 360 vacuum planter equipped with precision metering units, Kinze planting units and, Trimble GFX-750 paired with a NAV-900 controller provided the GPS signal. Four row plots were planted at a uniform length of 22 feet with a 3-foot alleyway at 30-inch row spacing. Plots were planted at a population of 33,264 seeds per acre. Experimental design, data acquisition, analysis of variance, and data summarization were facilitated in part by Agronomix software, Genovix. The experimental layout was a four-replication, randomized complete block design. Hybrid performance is reported as the adjusted mean averaged from four replicated plots.

All plots within a location were managed uniformly with the same date of planting, fertilizer applications, pest control, harvest date and other management practices. In the field, hybrids were identified only by a plot number to assure unbiased comparisons. Trials in Branch, Cass, and Ottawa counties were irrigated.

Data was collected on the center two rows of each plot. Target population rates and average trial populations are listed with other important agronomic information in Table B (pg. 9). Stalk lodging (%SL) measurements were recorded during harvest. All plants broken below the ear and/or leaning more than 45 degrees were counted as a lodged plant. Moisture content (%H2O) and field weights were measured by a Harvest MasterTM single plot high capacity Grain GageTM HM800 System that is mounted on the Kincaid 8-XP plot combine.


Grain yields are reported in bushels per Acre (Bu/A) and is adjusted to a standard of 15.5 percent moisture. Data was recorded on a Panasonic FZ-G1 Toughpad using Harvest MasterTM Software.

Grain test weight (Twt) is reported at harvest moisture. Automated test weight equipment loses some accuracy as harvest moistures increase. Test weight values should be used to determine relative rank and not as a precise weight.

Results

The tables report the following information about the hybrids tested:

- 1. Moisture content at harvest (%H20)
- Yield of shelled corn corrected to 15.5 percent moisture (Bu/A)
- 3. Test weight at harvest moisture (Twt)
- 4. Percent stalk lodging (plants broken below the ear and/ or 45 degrees off vertical at harvest) (%SL)
- 5. Percent stand of target population (%Sd)

2022 Grain Trial Locations

TABLE B.

AGRONOMIC TABLE FOR GRAIN TRIAL LOCATIONS

	County	Planting Date	Grain Harvest	Previous Crop	Fertilizer N-P-K	Soil Type	Soil Test ¹	Cooperator	Location
	CASS (Irrigated)	5/24	11/11	Soybean	174-10-3	Loam	PH 6.5, P 20, K 157	Brossman's Farm George Brossman	Vandalia
î ənoz	BRANCH (Irrigated)	5/24	11/14	Soybean	199-8-2	Loamy Sand	PH 7.3, P 98, K 104	Huff Farms Kyle Huff	Coldwater
	LENAWEE	6/1	11/17	Corn	167-7-2	Loamy Sand	PH 6.6, P 160, K 166	Raymond & Stutzman Farm Tim Stutzman	Seneca
	INGHAM	5/11	10/22	Soybean	169-8-2	Sandy Clay Loam	PH 6.1, P 23, K 90	Plant, Soil and Microbial Sciences Facility MSU	East Lansing
2 ənoz	OTTAWA (Irrigated)	5/17	11/10	Corn	202-10-3	Sand	PH 6.6, P 74, K 132	Ottawa Station Farms Adam Geertman	West Olive
	SAGINAW	5/25	11/7	Soybean	171-9-3	Sandy Clay Loam	PH 6.4, P 45, K 132	Fred Gross Farms Peggy Gross, Dick Birchmeier	New Lothrop
	HURON			ΓΟC	LOCATION DROPPED	Q		Wil-Le Farms Ron, Ed and Chris McCrea	Bad Axe
£ ənoZ	MONTCALM	6/2	11/23	Soybean	171-9-3	Sandy Loam	PH 6, P 22, K 76	Karnatz Farms Scott Karnatz	Greenville
	MASON	6/2	11/9	Corn	174-10-3	Sandy Loam	PH 6, P 66, K 96	Robert Ohse Ryan Ohse	Scottville
	IOSCO	6/3	11/8	Corn	171-9-3	Sandy Loam	PH 7.3, P 57, K 191	Double B Dairy Jeremy, Tim and Roger Beebe	Hale
₽ 9noZ	OSCEOLA	5/13	11/9	Soybean	26-11-3	Sand	PH 6.7, P 47, K 90	Gingrich Meadows Brandon Gingrich	Le Roy
	PRESQUE ISLE	6/3	11/29	Corn	170-8-2 + manure	Sandy Loam	PH 7.5, P 63, K 111	Ponik Farms Paul Ponik, Jeremy Karsten	Posen

 1 - P and K reported in m3-ppm

GRAIN HYBRID INDEX

COMPANY/HYBRID	RM	TECHNOLOGY	TABLE	COMPANY/HYBRID	RM	TECHNOLOGY	TABLE
AG ARMOUR				GOLDEN HARVEST	(cont)		
AA9100 AA9304 AA10253 AA10848 DAIRYLAND SEED	91 93 102 108	VR D1 PWE D1	3E 3E 2L 1L	G00A97-3120A G02K39-5122 G07G73-5122 G08R52-3220 G10L16-5222A G12S75-5122	100 102 107 108 110 112	BZ ¹ D1 VZ ² D2 ^{1,2} D1	2E,3L 2L,3L 1E 1L 1L 1L
-	80	A M	4E				
DS-2080AM DS-2505Q DS-2531AM DS-2919AM DS-3022AM DS-3162Q DS-3203AM DS-3477AM DS-3550Q DS-3601AM DS-3727AM DS-3959AM DS-3900AM DS-4014Q DS-4018AM DS-4018AM DS-4018AM DS-4310Q DS-4510Q DS-4878AM DS-4917AM DS-5095AM DS-5161Q DS-5250AM	80 85 85 90 91 92 94 95 96 97 99 90 100 101 103 105 108 109 110 111 112	AM Q AM AM Q AM AM AM AM AM Q AM AM Q AM AM AM AM AM AM AM AM AM AM AM	4E 4E 3E,4L 3E,4L 3E,4L 3E,4L 3E 2E,3E 2E,3E 2E,3E 2E,3L 1E,2L,3L 1E,2L,3L 1E,2L,3L 1E,2L 1L,2E 1L 1L 1L	LEGACY LC334-21 VT2P LC354-20 3110 LC414-21 VT2P LC444-21 LC451-21 VT2P LC-3517 LC482-21 VT2P LC464-21 3120 LC482-21 LC474-20 TRE LC493-21 5122 LC-4248 LC-4248 VT2P LC511-21 SSX LC-5217 VT2P LC525-21 PW LC-5217 LC525-21 LC554-21 DGVT2P LC544-22	83 85 91 94 95 96 96 96 97 99 100 100 100 100 102 102 102 102 104	VT2P VR VT2P CONV VT2PRIB CONV VT2P BZ CONV TRERIB D1 CONV VT2PRIB STXRIB VT2PRIB STXRIB VT2PRIB PW CONV CONV VT2P ¹ CONV	4E 4L 5E 3E 3E 3E 2E,3E 2E,3L 5E 3L 2E,3L 2L,3L 2L,3L 5L 5L 5L 5L
DS-5279Q DYNA-GRO SEED	112	Q	1L	LC564-20 PW LC564-20 LC594-21 VT2P	106 106 109	PW CONV VT2P	1E,2L 5L 1L
D31VC23 D34VC93 D36VC66 D40VC41 D41SS60 D44DC73 D45TC55 D48VC84 D50VC09	91 94 96 100 102 104 105 108 110	VT2PRIB VT2PRIB VT2PRIB VT2PRIB STXRIB VT2PRIB VT2PRIB VT2PRIB VT2PRIB	4L 2E,3E,4L 2E,3E,4L 2E,3L 3L 2L 1E,2L 1L 1L	LEGEND 9191VIP3110A 48392 SS RIB 9V20AM 4397 TRE RIB 9200 VT2P RIB 5800 VT2P RIB	91 92 96 97 100 100	VR STXRIB AM TRERIB VT2P VT2P	3E 3E 3E 2E 2E 2E
GOLDEN HARVEST							
G87A53-3220 G91V51-5222A G93A49-5122 G95D32-3220 G97A36-3220 G99A37-5222	87 91 93 95 97 99	VZ ² D2 ^{1,2} D1 VZ 2 VZ 2 D2 2	4E 3E,4L 3E 2E,3E 2E,3E 2E,3L				

OTHER HYBRID TRAITS:

1 DT

² VIPTERA (BL: BROAD LEP.)

³ WBC

⁴ RW

⁵ ARTESIAN

⁶ BCW, CEW, ECB, FAW, SB, SCB, SWB, CR

⁷ CEB, FAW, SB, SCB, SWB

⁸ BCW, CEW, FAW, SB, SCB, SWB

⁹ BCW, CEW, ECB, FAW, SB, SCB, SWB, TAW, WBC

GRAIN HYBRID INDEX (cont.)

COMPANY/HYBRID	RM	TECHNOLOGY	TABLE	COMPANY/HYBRID	RM	TECHNOLOGY	TABLE
M&W				ROB-SEE-CO			
MW97A VT2P	97	VT2PRIB	2E,3E,4L	RC4166-DV	91	VZ	3E
MW98A TRE	98	TRERIB ³	2E,3L	RC4518-VT2P	94	VT2P	2E,3E
46T29	99	VT2PRIB	2E,3L	D98-43-TRE	98	TRE	1E,2E,3L
46T28	99	CONV	5E	D99-08-VT2P	99	VT2P	1E,2E
45T56	100	VT2PRIB	2E,3L	RC5134-PCE	101	PW	1E,2E
45T55	100	CONV	5E	D05-16-VT2P	105	VT2P	1E
45V21	103	VT2PRIB	1E,2L,3L	RC5768-VT2P	107	VT2P	1E
MW103A VT2P	103	VT2PRIB	1E,2L,3L	RC6038-DV	108	D2	1L
44V74	105	D2 ³	2L	D10-16-VT2P	110	VT2P	1L
MW105A CNV	105	CONV	5L	RC6170-DV	111	D1	1L
44R33	106	CONV	5L				
44V42	107	VT2PRIB	1E,2L	SEEDWAY			
44V40	107	CONV	5L			071	~ =
44V83	107	VZ ^{3,4}	1E	SW 9333SS	93	STX ⁸	3E
43V69	111	TRERIB ³	1L	SW 9375VT	93	VT2P ⁷	3E
43V43	113	VT2P ¹	1L	SW 9726TR	97		3E
				SW 0030VT	100	VT2P ⁷	3L
RENK				SPECIALTY HYBRID	c		
RK297VT2P	88	VT2P	4E		-		
RK400VT2P	93	VT2P	4L	27D728	97	VT2P	2E
RK485DGVT2P	94	VT2P ¹	3E	30DT192	100	TRE	2E
RK444VT2P	94	VT2P	4L	34D651	104	VT2P	2L
RK561DGVT2P	96	VT2P 1	3E	36D260	106	VT2P	1E
RK593VT2P	97	VT2P	3E	37D832	107	VT2P	1E,2L
RK590VT2P	98	VT2P	3L	38D871	108	VT2P	1L,2L
RK579DGVT2P	99	VT2P ¹	3L	39G569	109	VT2P ¹	1L
RK600VT2P	100	VT2P	2E	41A392	111	STX	1L
RK600	100	CONV	5E				
RK609VT2P	101	VT2P	2E	VIKING			
RK615SSTX	102	STX	2L	O.52-96P	96	CONV	5E
RK642	103	CONV	5L	0.45-97UP	97	CONV	5E
RK642VT2P	103	VT2P	2L	0.85-00P	100	CONV	5E
RK625DGVT2P	104	VT2P ¹	2L	0.46-02P	102	CONV	5L
RK715SSTX	105	STX	2L	O.84-04	104	CONV	5L
RK710DGVT2P	107	VT2P ¹	2L	0.0101	101	00111	02
RK700SSTX	108	STX	1L				
RK774VT2P	108	VT2P	1L				
RK805VT2P	110	VT2P	1L				
RK801SSTX	110	STX	1L				
RK821SSTX	111	STX	1L				
		VITOD	41				

OTHER HYBRID TRAITS:

RK826VT2P

1 DT

² VIPTERA (BL: BROAD LEP.)

³ WBC

⁴ RW

⁵ ARTESIAN

VT2P

111

⁶ BCW, CEW, ECB, FAW, SB, SCB, SWB, CR

1L

⁷ CEB, FAW, SB, SCB, SWB

⁸ BCW, CEW, FAW, SB, SCB, SWB

⁹ BCW, CEW, ECB, FAW, SB, SCB, SWB, TAW, WBC

ZONE 1

TABLE 1E.

BRANCH, CASS & LENAWEE COUNTY GRAIN TRIALS - EARLY (107 Day and Earlier)

2022		_	Ë	Early - TRI/	- TRIAL AVERAGE	RAGE			Branch - Early	. Early			2	Cass - Early	arly			Lenaw	enawee - Early	arly	
BRAND / HYBRID	RM .	TRAIT	%H20	BU/A	Twt	% SL %	%Sd %	%H2O I	BU/A	Twt %SI	SL %Sd	6d %H2O		BU/A T	Twt %SI	L %Sd	d %H20	BU/A	Twt	%SL	%Sd
Dairyland Seed DS-3900AM	66	AM	17.2	219.3 *	55.6	0			218.6 5	56.7 0	<u>1</u> 6	17	.1 251.0		56.0 0	64		188.4	54.0	0	96
Dairyland Seed DS-4014Q	100	Ø	17.7	213.6 *	53.7	0	98	15.5 20	205.9 5	56.3 0	76 (18.	.1 245.5		54.3 0	97		189.4	50.6	0	66
Dairyland Seed DS-4018AM	101	AM	17.5	227.1 *	55.2	0		15.9 23	234.4 * 5	57.0 0	6	3 17.7	.7 242.7	~	5.4 0	94	18.9	204.3 *	53.1	0	92
Dairyland Seed DS-4310Q	103	ø	17.8	223.8 *	54.1			15.6 21	213.1	56.2 0		3 19.0			3.7 0	98	3 18.6	216.4 **	* 52.5	0	93
Dairyland Seed DS-4510Q	105	ø	17.6	228.4 *	54.1	0	97 1:	15.5 21	213.6 5	55.9 0			18.8 257.5		54.3 0	101	1 18.4	214.1 *	52.0	0	93
Dyna-Gro Seed D45TC55	105 T	TRERIB	18.2	225.8 *	54.3	0	`	15.9 23	233.0 * 5	56.2 0	6	19.4			53.7 0	101		191.4	53.1	0	102
Golden Harvest G07G73-5122	107	5	19.2	213.6 *	53.6	0	•	17.4 21	214.5	55.7 0	<u>1</u> 6	20.5	.5 238.9		2.1 0	96	19.8	187.3	53.0	0	88
Legacy Seeds LC554-21 DGVT2P	104	VT2P	17.3	233.8 **	54.4	0	100	15.2 22	222.1 5	55.6 0	98	3 18.6	.6 279.6	*	54.5 0	103	3 18.1	199.9 *	53.1	0	98
Legacy Seeds LC564-20 PW	106	PW	18.6	219.2 *	52.9	0	-	16.3 21	214.1 5	54.9 0	6	3 19.4	.4 242.3		51.7 0	91	20.1	201.2 *	52.3	0	82
M&W Seeds 44V42	107 V	VT2PRIB	17.9	201.1	57.1	0		15.6 23	235.0 * 5	58.7 0		18.8	.8 238.2		56.9 0	96	19.3	130.1	55.6	0	86
M&W Seeds 44V83	107	ZV	19.6	224.4 *	53.3	0			247.3 ** 5	54.8 0	16 (20.9	.9 250.4		2.4 0	91		175.7	52.7	0	91
M&W Seeds 45V21	103 V	VT2PRIB	17.4	214.7 *	55.2	0		15.2 22	226.3 5	57.0 0) 97	18.1	.1 244.9		5.5 0	97		172.9	53.2	0	92
M&W Seeds MW103A VT2P	103 V	103 VT2PRIB	17.7	207.7	55.9		-			57.1 0) 92				55.9 0	96			54.6	0	92
NK Seeds Nk0696-5122	106	5	19.0	198.5	53.7		-	16.3 22	222.5 E			20.2	.2 233.9		2.0 0	94			52.5	0	98
Rob-See-Co D05-16-VT2P	105	VT2P	17.9	213.6 *	55.5	0	-	15.7 22	225.4 5	57.5 0		3 18.7	.7 264.6	*	54.4 0	92	19.2	151.0	54.8	0	95
Rob-See-Co D98-43-TRE	98	TRE	16.7	220.2 *	54.8	0	101 1	15.0 23	238.4 * 5	56.0 0		0 17.4	.4 255.9		55.2 0	100	0 17.8	166.3	53.1	0	103
Rob-See-Co D99-08-VT2P	66	VT2P	17.2	214.4 *	55.4	0	`		230.3 * 5	56.8 0	ю́	8 17.4	.4 242.6		55.9 0	6	19.1	170.5	53.7	0	87
Rob-See-Co RC5134-PCE	101	ΡW	17.3	216.1 *	53.2	0	<u>`</u>	15.6 24	244.8 * 5	54.9 0	<u>1</u> 6	18.4	.4 248.9		2.7 0	6	18.0	154.5	51.9	0	98
Rob-See-Co RC5768-VT2P	107	VT2P	19.2	227.7 *	54.9	0	-		*	56.4 0	96 (20.2 244.7		1.4 0	97	20.9	197.1 *	53.9	0	96
Specialty Hybrids 36D260	106	VT2P		221.6 *	55.5	0	-		215.8 5	57.1 0	8(19.6 244.2		55.3 0	36	20.2	204.8 *	54.0	0	96
Specialty Hybrids 37D832	107	VT2P	18.9	227.3 *	54.1	0	-	16.3 21		56.0 0		19.4	.4 263.7	.7 * 54.	t.1 0	95	21.1	200.2 *	52.0	0	94
AVERAGE			18.0	218.7	54.6	0	`		225.3 5	56.3 C) 95			*	54.3 0	96	19.3	181.3	53.1	0	94
HIGHEST			19.6	233.8	57.1		`	17.9 24	47.3 {	58.7 0	100	0 20.9	.9 279.6	*	56.9 0	103	3 21.1	216.4	55.6	0	103
LOWEST			16.7	198.5	52.9	0	-	5.0 20	205.9 5	54.8 0	80	17	.1 233.9	.9 * 5.	1.7 0	90	17.8	130.1	50.6	0	82
CV (%)				16.7	3.1	0	6	2.7	7.1	1.4 0	8		5 7	*	1.5 0	2	3.6	9.2	1.1	0	11
LSD (5%)			1.2	24.6	1.1	0		0.5	18.8	1.0 0	6			20.8 * 0	0.9 0	9		19.7	0.7	0	13

- 12 -

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

L	
ш	
Ω	
F	

BRANCH, CASS & LENAWEE COUNTY GRAIN TRIALS - LATE (108 Day and Later)

~	
ONE	%Sd
Z	ate %SL
	¥ F

_	<u> </u>	<u> </u>																				-									-				_
	%Sd	86	96	92	92	93	94	86	95	86	93	96	101	100	92	92	96	92	67	66	96	83	94	82	96	97	66	93	8	83	93	101	82	12	13
ate	%SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lenawee - Late	Twt	54.6	53.6	54.3	54.6	54.3	54.4	54.1	54.0	52.9	52.3	52.8	53.3	54.8	54.1	53.9	52.5	52.8	53.6	54.3	55.7	53.9	55.0	54.4	55.1	52.5	54.6	53.1	52.5	55.3	53.9	55.7	52.3	1.1	0.7
Lenav	BU/A	181.6	205.0	215.9	213.7	244.6 **	201.3	185.4	222.6	207.0	214.4	200.2	204.0	220.6	219.2	199.6	221.2	204.4	220.2	208.9	227.2 *	212.9	202.6	201.2	200.7	198.5	179.0	216.3	188.6	211.1	207.9	244.6	179.0	7.5	18.2
	%H20	20.5	19.7	19.4	20.5	20.1	19.7	20.5	19.8	19.3	20.8	21.3	22.3	20.4	21.5	20.4	20.2	20.7	18.0	19.2	18.8	20.3	19.2	20.3	20.1	21.3	21.0	19.8	20.9	18.9	20.2	22.3	18.0	3.3	0.8
_	-	97	97	97	66	92	97	98	98	96	96	100	66	101	92	95	98	98	97	94	66	98	94	94	97	96	98	96	96	99	97	101	92	4	5
	%SL (0				0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0
Late	-	51.7	52.0	52.9	51.7	52.6	51.6	52.3	53.1	51.0	51.5	51.2	50.9	53.7	52.8	52.4	50.7	51.2	51.3	52.5	53.9	51.8	53.4	51.8	53.6	51.3	51.6	51.7	50.9	53.8	52.1	53.9	50.7	1.3	0.8
Cass - Late	BU/A	7.3 5	245.6 !						*	233.8 (*			**	*					*	*		*						*	*			210.5	7.9	2.8
		3 22																																~	2
	I %H20	22.	21.4	22.	23.	22.	22.	22.	21.	21.	21.	22.	26.	20.	22	22.	21.	22	21.	20.	22.	21.	21.	22.	20.	22.	22.	21.	21.	21.	22.	26.	20.7	3.3	0.0
	%Sd	67	97	95	98	93	<u> 8</u> 6	97	98	66	98	67	97	97	94	91	<u> 8</u> 6	100	97	98	97	96	97	100	98	98	66	94	66	97	67	100	91	ę	4
e	%SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	-	0	0
Branch - Late	Twt	55.6	53.9	55.6	55.3	56.4	55.1	55.2	55.7	55.1	53.8	53.6	54.7	56.8	54.7	55.3	53.5	54.4	54.8	55.4	57.2	56.3	56.6	55.6	56.8	53.6	55.9	55.3	52.7	57.6	55.3	57.6	52.7	1.2	0.8
Bran	BU/A	193.2	245.2 *	236.9 *	225.1	234.4	255.7 *	250.9 *	255.8 **	240.0 *	251.2 *	237.8 *	232.8	252.3 *	229.1	245.9 *	242.6 *	252.6 *	212.8	243.3 *	243.4 *	213.1	233.8	224.4	234.4	237.8 *	220.6	231.9	233.0	226.3	235.7	255.8	193.2	7.0	19.3
	%H2O	17.5	17.5	18.0	16.9	19.1	17.3	18.6	17.2	17.0	18.3	18.6	18.5	16.8	17.8	17.6	17.9	18.7	16.0	16.5	17.8	16.5	17.2	17.4	16.5	19.0	17.3	16.9	17.4	16.7	17.5	19.1	16.0	3.5	0.7
	%Sd	97	97	95	97	93	96	97	97	94	95	86	66	66	93	93	97	96	97	97	97	92	95	92	97	97	66	94	33	93	96	66	92	7	5
RAGE	%SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AL AVERAGE	Twt		53.2	54.3	53.9	54.4	53.7	53.9	54.3	53.0	52.5	52.5	53.0	55.1	53.8	53.8	52.2	52.8	53.2	54.1	55.6	54.0	55.0	54.0	55.2	52.5	54.0	53.4	52.0	55.6	53.7	55.6	52.0	1.2	0.4
Late - TRI/	BU/A	200.7	232.0	232.2	228.1	238.0 *	233.0	226.6	247.0 *	226.9	239.0 *	226.0	226.6	248.4 **	236.7	227.3	233.1	232.9	222.9	235.9	245.6 *	222.2	230.0	220.7	224.6	219.7	203.4	231.5	225.8	229.7	229.2	248.4	200.7	7.5	11.6
La	%H2O	20.1			20.1	20.4		20.5		19.4	20.1				20.5	20.2		20.5			19.5	19.4			19.1	21.0			20.0	19.1	19.9	22.3	18.5	3.4	0.5
		-	×	2			AM	ø		VT2PRIB					VT2P	TRERIB								~		D2		0	VT2P 2						—
	I TRAIT		× ×	A	MM (ø	A	0	3 VT2F) D2		7	5	I TRE	>		8 STX	-	STX (TV (I STX	I VT2F) VT2F		D1	-	-	I STX					
	RM	108	108	109	110	111	112	112	108	110	108	11(112	100	1	1	108	110	108	108	110	11(1	Ţ	110	108	11,	108	109	11,					
2022	BRAND / HYBRID	Ag Armour AA10848	Dairyland Seed DS-4878AM	Dairyland Seed DS-4917AM	Dairyland Seed DS-5095AM	Dairyland Seed DS-5161Q	Dairyland Seed DS-5250AM	Dairyland Seed DS-5279Q	Dyna-Gro Seed D48VC84	Dyna-Gro Seed D50VC09	Golden Harvest G08R52-3220	Golden Harvest G10L16-522A	Golden Harvest G12S75-5122	Legacy Seeds LC594-21 VT2P	M&W Seeds 43V43	M&W Seeds 43V69	NK Seeds NK0877-3220	NK Seeds NK1082-522A	Renk RK700SSTX	Renk RK774VT2P	Renk RK801SSTX	Renk RK805VT2P	Renk RK821SSTX	Renk RK826VT2P	Rob-See-Co D10-16-VT2P	Rob-See-Co RC6038-DV	Rob-See-Co RC6170-DV	Specialty Hybrids 38D871	Specialty Hybrids 39G569	Specialty Hybrids 41A392	AVERAGE	HIGHEST	LOWEST	CV (%)	LSD (5%)

** Highest Yielding Hybrid
 * Not Significantly Different from Highest Yielding Hybrid

ш	
2	
ш	
Ω	
•	
F	

INGHAM, OTTAWA & SAGINAW COUNTY GRAIN TRIALS - EARLY (101 Day and Earlier)

2022				Early - TRIAL	NL AVERAGE		_		Ottawa	Ottawa - Early		_		Ingham - Early	- Early		_		Saginaw - Early	- Early		_
BRAND / HYBRID	RM	TRAIT	%H20	BU/A	Twt	%SL 0	%Sd	%H2O	BU/A	Twt	%SL 3	% ps%	%H2O	BU/A	Twt 9	%SL 9	-	%H2O	BU/A	Twt %	% SL %	%Sd
Dairyland Seed DS-3550Q	95	a	15.6	178.0	54.0	0	100	18.3	199.0	54.5	0			13.6	51.6	` 0	100			55.8	0	98
Dairyland Seed DS-3601AM	96	AM	15.4	189.8	55.9	0	97		206.1 *	56.9	0			45.0	54.1	0	66			56.7	0	94
Dairyland Seed DS-3727AM	97	AM	16.9	184.3	56.5	0	66	16.7	189.7	57.4	0	-		50.0	54.4	0	66			57.8	0	98
Dairyland Seed DS-3900AM	66	AM	17.4	201.8	55.8	0	96		212.0 *	56.7	0			78.4	53.6	0	98			57.3	0	93
	66	AM	15.9	195.5	54.7	0	66		209.9 *	55.8	0		_	159.9	52.5	0	103	17.3 2		55.7	C	94
W		AM	20.4	228.6 ***	53.7	0	96	19.9	222.7 *	53.8	0			47.1 ***	53.5	0	97	19.7 2		53.8	0	91
Dyna-Gro Seed D34VC93	-	VT2PRIB	14.3	175.6	54.8	0	<u> 8</u>		191.0	56.3	0		11.0 1	04.1	51.1	` 0	100		*	57.1	0	97
Dyna-Gro Seed D36VC66	96	VT2PRIB	16.2	185.3	55.8	0	97		197.8	57.4	0			28.9	52.4	0	66		*	57.5	0	96
		VT2PRIB	16.5	207.4	55.1	0	97		206.8 *	55.6	0			80.5	53.1	0	97		*	56.7	0	95
A	100	ΒZ	17.1	199.3	56.3	0	96		180.9	56.3	0			05.3	55.3	0	97			57.1	C	90
	95	۲Z	15.4	173.2	55.9	0	94	17.0	190.1	57.2	0		12.3 1	113.3	52.2	0	98		216.2	58.3	_	91
	97	۲Z	17.4	198.0	56.6	0	66		201.5	57.5	0			58.0	54.9	0			*	57.4	0	98
	66	D2	16.5	197.2	54.8	0	66		194.7	55.0	0			96.8	54.1	0		17.4 2		55.2	0	97
	67	TRERIB	16.6	221.6 **	55.2	0	100		204.0	55.1	0			34.9 **	54.4	0				56.0	_	86
	66	D1	16.8	192.8	55.5	0	97		194.1	56.1	0			68.5	54.4	0				56.1		96
	101	STXRIB	18.3	212.7	55.5	0	98		194.2	56.2	0			24.7 *	53.3	0				57.0	_	86
	67	TRERIB	16.3	220.1 *	55.3	0	100		206.8 *	56.0	0			236.8 *	53.8	` 0				56.1	<u> </u>	00
Legend Seeds 5800 VT2P RIB	100	VT2P	15.7	179.9	55.3	0	98		183.3	56.2	0			27.1	51.8	0			×	57.9	0	97
Legend Seeds 9200 VT2P RIB	100	VT2P	16.1	190.5	55.5	0	91		199.3	56.6	0			51.7	53.3	0				56.7	0	35
M&W Seeds 45T56	100	VT2PRIB	15.8	200.8	55.6	0	95	15.2	209.6 *	56.0	0			64.8	54.1	0		16.9 2	*	56.9	0	92
M&W Seeds 46T29	-	VT2PRIB	14.8	184.9	56.1	0	86		202.4	57.0	0			20.3	53.6	0			*	57.8	0	97
M&W Seeds MW97A VT2P	97	VT2PRIB	14.6	191.1	54.6	0	98		204.0	56.0	0			35.9	51.0	0			*	56.8	0	97
M&W Seeds MW98A TRE	86	TRERIB	17.1	215.8	55.2	0	95		210.5 *	56.1	0			23.8 *	53.9	0				55.8	0	92
NK Seeds NK0007-3120	100	ΒZ	17.3	207.4	55.6	0	96		191.1	55.9	0			02.0	53.4	0	97		*	57.4	0	93
NK Seeds NK9231-3120	92	ΒZ	14.7	177.3	54.7	0	98		213.4 *	55.4	0			12.8	52.5	0	86			56.1	0	97
NK Seeds NK9874-3220	98	۲Z	17.1	188.6	56.2	0	98		181.1	56.9	0			70.4	54.9	0					0	97
NK Seeds NK9922-5222	66	D2	16.6	196.2	54.8	0	98		174.3	55.2	0			06.6	53.6	0		17.1 2				95
-5122	66	5	17.5	191.5	55.4	0	97		178.9	55.8	0			70.6	54.5	0				26.0		95
-	100	VT2P	16.0	217.1	55.2	0	98		224.1 **	56.5	0			88.9	52.3	0			*	56.9	0	97
	101	VT2P	16.3	201.4	55.6	0	95		196.6	56.4	0			79.8	54.0	0	_	17.9 2	*			92
Rob-See-Co D98-43-TRE	98	TRE	16.8	214.4	55.1	0	98		206.6 *	55.0	0			16.1	54.5	0					0	66
Rob-See-Co D99-08-VT2P	66	VT2P	15.2	195.6	55.2	0	06	16.4	192.8	56.3	0		11.9 1	54.0	52.5	0	6		239.9 **			06
0	94	VT2P	14.6	182.7	55.3	0	97		210.6 *	56.2	0			02.3	52.8	0	97		*	56.9	0	80
	101	PW	17.8	217.0	53.9	0	66		210.4 *	53.5	0			13.5	54.3	0	86			53.7	0	98
Specialty Hybrids 27D728	97	VT2P	15.2	189.5	55.9	0 0	100		197.7	56.1	0 0	99	12.8	148.4	53.8	00	101	16.5	222.3	57.8	~ ~	66
Specially Hybrids 3001192	001	ЦХ Ц	10.7	210.2	00.0 EE 2		20		212.1	0.00				0.21	00.U		3 8			01.0		92 DE
			0.0	0.761	0.00	5 0	200	0.0		0.00	5 0			10.0	4. C		00			0.0		200
			20.4	0.022	0.00		3 8	2.0	474.1	C. / C				247.1	20.0		3 6	19.1	239.9	00.0		0.1
LOWESI CV/ ///			14.0	2.61	1.00		۲ ۵	2.CI	0 2 0	20.0		_	_	C.20	0.10		ۍ م			10.1		co •
			0.0 4.0	ά. Ο Ο		0 0	4,	с. С. С.	0.7	ν. 	5 0	4.	vi o	17.1	0.7		η γ	5.0 1.0	7. 4 2. 4	0.0	-	4 1
LSU (5%)			0.2	3.2	7.0	D	_	0.7	18.3	0.X	0	4	o.	24.2	0.1	0	4	0.7	12.4	0.0	-	G

*** Highest yielding hybrid, however RM is out of range ** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

ZONE 2

INGHAM, OTTAWA & SAGINAW COUNTY GRAIN TRIALS - LATE (102 Day and Later)

TABLE 2L.

	ā		~	~	10	~	15	•	~	6	•	-	10			10	•	15	~	10	10	0		~	~	10	-	~		—
	L %Sd	94	86	92	36	36	96	97	98	36	97	10	36	6	94	95	97	96	<u> 3</u> 6	36	36	10	92	66	94	96	10	36	က	4
-ate	t %Sl		0			0	_	0		4			0	0		000			4		1	2 0		0	0	2		9 0	0	0
Saginaw - Late	Twt	54.	* 55.6	56.1	* 56.7	54.9	** 54.4	*	54.2	55.4	54.8	*	52.9			*	*	*	*	56.3	*	* 54.7	56.4	** 54.3	* 54.0	55.2	57.2	52.9	1.2	0.8
Sagi	BU/A	210.6	217.3	206.4	227.2	208.8	233.6	224.0	204.5	209.3	207.2	216.6	185.3	210.7	185.5	214.7	217.2	213.7	220.3	206.2	226.3	219.7	208.7	233.6	214.7	213.4	233.6	185.3	8.5	21.3
	%H20	18.2	17.5	18.4	18.0	18.6	18.5	18.8	18.0	17.2	17.0	17.9	18.6	18.8	18.2	17.9	17.5	18.3	15.7	16.9	19.0	18.6	16.9	20.1	19.6	18.1	20.1	15.7	3.6	0.8
	%Sd	100	86	96	66	66	95	86	97	66	86	111	100	97	94	98	95	66	96	101	96	93	66	97	98 8	98	111	93	9	7
te	%SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ingham - Late	Twt	51.6	46.9	51.1	52.0	48.2	49.9	52.6	47.0	49.5	53.0	50.5	51.1	53.6	48.6	52.5	54.6	52.4	50.5	50.3	52.9	52.0	52.1	49.9	52.3	51.0	54.6	46.9	3.1	1.9
Ingha	BU/A	211.9	104.0	181.2	192.8	188.5	212.8	229.7	117.7	172.3	195.8	205.7	218.1	226.3	186.9	219.8	235.1	202.5	204.5	176.2	225.8	247.6 *	203.3	258.6 **	254.2 *	203.0	258.6	104.0	7.9	18.8
	%H2O	19.4	11.5	14.7	17.4	15.4	15.2	18.8	11.8	12.5	17.2		18.8	19.4	13.1	15.7			14.9	12.5	21.4	18.0	19.9	22.1	22.2	16.8	22.2	11.5	8.4	1.7
	%Sd	98	66	94	66	66	96	98	6	92	66	101	94	66	95	66	95	95	97	97	86	96	92	92	98	96	101	90	9	7
đ	%SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ottawa - Late	Twt	54.7	56.3	57.4	56.6	55.9	55.4	56.0	55.2	55.7	54.4	55.1	53.4	59.0	54.3	56.9	57.4	56.7	54.4	56.6	56.4	55.2	56.1	56.3	54.9	55.8	59.0	53.4	1.2	0.8
Ottaw	BU/A	196.5	186.9	181.5	208.5 *	212.0 *	191.4	225.7 **	184.6	195.3	200.4	212.5 *	197.4	185.9	171.9	202.5	209.3 *	196.0	200.8	197.8	219.0 *	198.6	202.0	207.6 *	199.8	199.3	225.7	171.9	8.6	20.1
	%H20	17.3	17.2	16.1	17.7	17.4	15.3	17.6	18.1	17.5	17.6	15.8	17.8	17.7	17.7	16.6	17.2	17.2	16.1	17.1	18.2	18.4	17.6	18.2	18.5	17.3	18.5	15.3	4.1	0.8
	%Sd	97	98	94	98	66	96	98	95	96	86	104	96	96	94	97	96	97	97	98	96	96	95	94	97	97	104	94	ß	-
RAGE	%SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- TRIAL AVERAGE	Twt	53.5	52.9	54.9	55.1	53.0	53.2	54.4	52.1	53.5	54.1	53.5	52.4	56.5	52.4	55.1	56.4	55.0	53.4	54.4	54.8	54.0	54.9	53.5	53.7	54.0	56.5	52.1	2.0	0.3
e - TRIA	BU/A	206.3	169.4	189.7	209.5	203.1	212.6	226.5	168.9	192.3	201.1	211.6	200.3	207.6	181.4	212.4	220.6	204.0	208.5	193.4	223.7	222.0	204.7	233.3 **	222.9	205.2	233.3	168.9	8.3	4.1
Late	%H2O	18.3	15.4	16.4	17.7	17.1	16.4	18.4	15.9	15.7	17.2	16.2	18.4	18.6	16.3	16.7	17.9		15.5	15.5	19.5	18.3	18.1	20.1	20.1	17.4	20.1	15.4		0.2
	TRAIT %	PWE	ø	AM	ø	ø	VT2PRIB	TRERIB	5	VT2PRIB	PW	VT2P	ΡW	VT2PRIB	D2	103 VT2PRIB	VT2PRIB	STX	VT2P	VT2P	VT2P	STX	/T2P	VT2P	VT2P					—
			0		e	5				102 VT2			90 F			3 VT2	103 VT:						_		-					
	RM	102	100	101	103	105	104	105	102	10	102	104	10	107	105	10	10	102	104	103	107	105	104	107	108					
2022	BRAND / HYBRID	Ag Armour AA10253	Dairyland Seed DS-4014Q	Dairyland Seed DS-4018AM	Dairyland Seed DS-4310Q	Dairyland Seed DS-4510Q	Dyna-Gro Seed D44DC73	Dyna-Gro Seed D45TC55	Golden Harvest G02K39-5122	Legacy Seeds LC-5217 VT2P	Legacy Seeds LC525-21 PW	Legacy Seeds LC554-21 DGVT2P	Legacy Seeds LC564-20 PW	M&W Seeds 44V42	M&W Seeds 44V74	M&W Seeds 45V21	M&W Seeds MW103A VT2P	Renk RK615SSTX	Renk RK625DGVT2P	Renk RK642VT2P	Renk RK710DGVT2P	Renk RK715SSTX	Specialty Hybrids 34D651	Specialty Hybrids 37D832	Specialty Hybrids 38D871	AVERAGE	HIGHEST	LOWEST	CV (%)	LSD (5%)
																					-	1	5	-						

** Highest Yielding Hybrid
 * Not Significantly Different from Highest Yielding Hybrid

ш	
က	
ш	
Ω	
.<	

HURON, MASON & MONTCALM COUNTY GRAIN TRIALS - EARLY (97 Day and Earlier)

2022			ш	Early - TRI⊉	RIAL AVERAGE	SAGE			Huron	Huron - Early		Mas	Mason - Early	>			Montcalm - Early	n - Early		
BRAND / HYBRID	RM	TRAIT	%H2O	BU/A	Twt	%SL 0	% PS%	%H2O	BU/A	Twt %SL %Sd	d %H2O	BU/A	Twt	%SL	75	%H2O	BU/A		%SL %	%Sd
Ag Armour AA9100	91	VR	21.9	170.4	50.1	0	91				21.0	167.1	48.6	0	86		173.7	51.6		97
Ag Armour AA9304	93	Б	21.9	173.2	49.8	0	91				20.6	184.2	48.3	0	83	23.2 1	162.1	51.2	0	66
Dairyland Seed DS-3022AM	06	AM	20.7	189.7 **	52.1	0	89				19.8	195.2	49.9	0	85		184.2 *	54.3	0	93
Dairyland Seed DS-3162Q	91	Ø	19.3	161.5	51.2	0	86				19.0	147.1	50.2	0			175.9	52.3		97
Dairyland Seed DS-3203AM	92	AM	21.2	186.9 *	50.9	0	86				20.2	197.6	** 49.4	0	77	22.2 1	76.3	52.4	0	94
Dairyland Seed DS-3477AM	94	AM	21.7	183.6 *	51.4	0	89				21.3	193.3	* 49.6	0			73.8	53.2	0	100
Dairyland Seed DS-3550Q	95	Ø	23.9	186.8 *	47.7	0	83				23.2	186.7	46.3	0			186.9 *	49.1	0	97
Dairyland Seed DS-3601AM	96	AM	22.6	188.7 *	50.0	0	94				22.5	187.8	47.9	0			* 9.68	52.0		94
Dairyland Seed DS-3727AM	97	AM	21.5	171.7	51.3	0	92				20.6	177.0	49.4	0			166.5	53.2		66
Dyna-Gro Seed D34VC93		VT2PRIB	21.2	178.5 *	50.9	0	82				20.1	159.8	49.1	0			97.3 **	52.7	0	93
Dyna-Gro Seed D36VC66	96	VT2PRIB	21.7	174.3	50.2	0	87				20.5	182.4	* 48.7	0			66.3	51.6	0	98
Golden Harvest G91V51-5222A	91	D2	22.4	172.0	50.7	0	94				22.2	155.9	48.8	0			88.2 *	52.5	0	101
Golden Harvest G93A49-5122	93	Б	21.5	147.5	49.7	0	89				20.5	138.8	47.9	0			56.2	51.5	0	66
Golden Harvest G95D32-3220	95	ZV	20.5	165.8	51.6	0	91				19.6	160.4	51.1	0		21.4 1	171.2	52.1	0	98
Golden Harvest G97A36-3220	97	VZ	22.8	171.4	50.0	0	95				21.2	159.0	48.5	0			83.8 *	51.5	0	98
Legacy Seeds LC451-21 VT2P	95	VT2PRIB	21.2	164.6	51.1	0	84				20.1	148.7	49.3	0			180.6	52.8	0	66
Legacy Seeds LC464-21 3120	96	ΒZ	22.4	167.4	50.2	0	91				20.8	159.4	49.5	0			75.3	50.9	0	66
Legacy Seeds LC474-20 TRE	97	TRERIB	21.9	176.1	49.4	0	94				21.7	170.1	47.4	0			182.1 *	51.4	0	101
Legacy Seeds LC482-21 VT2P	96	VT2P	21.0	172.7	50.6	0	97				20.4	162.5	49.1	0	96	21.7 1	183.0 *	52.0	0	97
Legend Seeds 48392 SS RIB	92	STXRIB	20.9	171.5	52.0	0	79				19.7	175.0	50.6	0			68.1	53.4	0	97
Legend Seeds 9191VIP3110A	91	VR	21.4	184.4 *	51.5	0	86				20.5	176.6	50.5	0		22.2 1	192.2 *	52.6	0	100
Legend Seeds 9V20AM	96	AM	21.3	180.9 *	49.9	0	93				20.7	168.8	48.5	0			193.0 *	51.3	0	96
M&W Seeds MW97A VT2P	67	VT2PRIB	21.0	168.0	50.6	0	83				20.0	158.9	48.6	0			177.0	52.6	0	95
NK Seeds NK9347-5122	93	D	21.0	164.7	50.9	0	86				20.1	167.4	49.2	0		21.9 1	162.0	52.5	0	100
Renk RK485DGVT2P	94	VT2P	22.5	173.8	52.1	0	76				22.0	159.3	50.7	0			88.3 *	53.5	0	96
Renk RK561DGVT2P	96	VT2P	21.8	171.2	49.7	0	91				20.8	164.7	48.1	0			177.7	51.2	0	66
Renk RK593VT2P	97	VT2P	21.7	179.6 *	51.0	0	84				20.5	168.4	50.0	0			190.9 *	52.0	0	97
Rob-See-Co RC4166-DV	91	ZV	22.6	181.7 *	50.6	0	87				22.6	175.8	49.0	0			187.6 *	52.3	0	98
Rob-See-Co RC4518-VT2P	94	VT2P	21.2	179.0 *	51.1	0	88				20.1	165.5	49.3	0		22.3 1	192.6 *	53.0	0	66
Seedway SW 9333SS	93	STX	21.3	161.1	50.6	0	89				20.4	168.3	49.6	0			153.9	51.7	0	100
Seedway SW 9375VT	93	VT2P	20.3	163.0	51.3	0	81				20.5	175.9	50.2	0	67	20.2 1	150.2	52.5	0	96
Seedway SW 9726TR	97	TRE	23.0	162.8	48.9	0	91				21.1	168.4	48.5	0	84		57.3	49.4		98
AVERAGE			21.6	173.3	50.6	0	88				20.8	169.6	49.1	0	79		177.0	52.1		98
HIGHEST		_	23.9	189.7	52.1	0	97				23.2	197.6	51.1	0	96		197.3	54.3	0	101
LOWEST			19.3	147.5	47.7	0	76				19.0	138.8	46.3	0	56	19.6 1	50.2	49.1		93
CV (%)		_	4.1	8. 0 0. 0	2.3	0 0	16				4.6	10.0	2.6	0 0	25	3.6	7.6	2.1	0 0	4 1
LSU (5%)			0.7	12.6	1.0	D	1z					19.8	C.I	Э	23	1.0	15.9	<u>, ,</u>	0	ۍ ا

- 16 -

** Highest Yielding Hybrid* Not Significantly Different from Highest Yielding Hybrid

TABLE 3L.

HURON, MASON & MONTCALM COUNTY GRAIN TRIALS - LATE (98 Day and Later)

_	%Sd	94	66	94	93	100	66	95	98	66	66	66	100	98	98	96	97	97	95	98	94	97	101	66	66	96	101	97	101	93	ო	с
	%SL 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Late	Twt %	1.5	50.8	2.9	0.2	50.4	51.1	50.1	49.2	<u>8</u> .9	0.2	51.5	50.3	0.1	46.3	9.7	48.8	1.3	0.6	0.0	1.3	52.4	8.5	51.1	50.7	49.8	1.9	50.4	2.9	46.3	5.0	1.7
Montcalm - Late						*				*	*	*		*		*			*	*		*	*	*	*		*				~	O
Mon	BU/A	169.8	161.3	164.3	162.2	183.1	171.9	170.7	162.3	173.5	181.8	173.6	171.5	176.6	160.7	181.2	170.9	171.4	185.5	185.9	168.5	183.2	175.1	172.7	177.6	164.8	180.7	173.1	185.9	160.7	6.8	13.9
	%H20	22.7	23.2	25.9	23.5	23.6	22.9	23.9	24.4	24.2	23.6	23.6	23.1	23.1	27.9	23.8	25.2	21.5	23.9	22.7	23.5	23.6	24.9	22.9	23.2	22.5	22.4	23.7	27.9	21.5	2.8	0.8
	%Sd	75	88	81	68	75	77	74	70	77	80	66	83	74	69	69	81	82	76	71	70	71	81	60	51	72	90	74	6	51	28	24
	%SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Late	Twt	47.5	42.4	45.7	47.2	48.0	48.9	48.6	45.3	45.4	55.0	53.5	42.5	50.9	45.4	53.2	46.6	49.0	49.6	47.2	48.4	57.1	45.8	49.1	48.0	47.2	47.7	48.3	57.1	42.4	11.7	6.6
Mason - Late	BU/A	182.9 *	180.4 *	173.4	168.8	148.0	2.9	170.0	142.9	150.5	7.0	193.3 **	150.1	178.0 *	169.6	5.4 *	160.4	191.3 *	9.6 *	0.4	164.0	6.0 *	2.2	0.3 *	7.3	3.6	183.0 *	9.3	3.3	42.9	9.1	8.2
		5 18			•		-															Ľ								-	œ.	、
_	J %H20	22	22	25.9	25.7	24.7	22	22	26.2	26	24	22.5	24	22	29	25	25.8	22	23	22	23	23.7	24	22	22	22.0	23.	24.0	29.7	22.0	ö	<u>-</u>
	- %Sd																															
ate	t %SL																															
Huron - Late	V Twt																															
Hur	BU/A																															
	%H2O																															
	%Sd	85	93	88	81	87	88	84	84	88	6	82	92	86	83	83	89	89	86	84	82	84	91	79	75	84	96	86	96	75	22	16
RAGE	%SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AVEF	Twt	49.5	46.6	49.3	48.7	49.2	50.0	49.3	47.2	47.1	52.6	52.5	46.4	50.5	45.9	51.4	47.7	50.2	50.1	48.9	49.8	54.7	47.1	50.1	49.4	48.5	49.8	49.3	54.7	45.9	8.9	3.6
TRIAL AVERAGE	N/A	5.4 *	* 6.(3.8	5.5	5.6	2.4 *	.3 *	2.6	2.0	t.4 *	3.4 **	<u>8.</u>	*	Ņ	* ب	5.6	1.3 *	2.5 *	3.2	5.3	9.6 *	3.7	.5 *	4.	t.2	* 8.	2	8.4	2.6		
Late -	B	176	-	168	165	165	172	170	152	162	174	183	160	177	165	. 183	165	181	182	. 168	166	179		176	167	164		171	183	152	6	13
	%H2O	22.6	23.1	25.9	24.6	24.2	22.8	23.2	25.3	25.2	23.8	23.0	23.9	22.8	28.8	24.4	25.5	21.8	23.6	22.4	23.5	23.6	24.8	22.6	22.9	22.3	22.9	23.8	28.8	21.8	5.4	1.1
	TRAIT	AM	AM	ø	AM	VT2PRIB	STXRIB	ΒZ	5	D2	VT2PRIB	D1	STXRIB	VT2PRIB	ΡW	VT2PRIB	VT2PRIB	VT2PRIB	VT2PRIB	FRERIB	ΒZ	۲Z	D2	VT2P	VT2P	TRE	VT2P					
	RM T	66	6	100	101	100 VT	02 S ⁻	100	102	66	100 VT	66	101 S ⁻	102 VT	102	100 VT	103 VT	99 VT	103 VT	98 TF	100	98	6			86	100 \					
	R	6	6	Ę	1	1	1(1	1	0	1	0	1	6	6	6	റ	0	1(
2022	BRAND / HYBRID	Dairyland Seed DS-3900AM	Dairyland Seed DS-3959AM	Dairyland Seed DS-4014Q	Dairyland Seed DS-4018AM	Dyna-Gro Seed D40VC41	Dyna-Gro Seed D41SS60	Golden Harvest G00A97-3120A	Golden Harvest G02K39-5122	Golden Harvest G99A37-5222	Legacy Seeds LC-4248 VT2P	Legacy Seeds LC493-21 5122	Legacy Seeds LC511-21 SSX	Legacy Seeds LC-5217 VT2P	Legacy Seeds LC525-21 PW	M&W Seeds 45T56	M&W Seeds 45V21	M&W Seeds 46T29	M&W Seeds MW103A VT2P	M&W Seeds MW98A TRE	NK Seeds NK0007-3120	NK Seeds NK9874-3220	NK Seeds NK9922-5222	Renk RK579DGVT2P	Renk RK590VT2P	Rob-See-Co D98-43-TRE	Seedway SW 0030VT	AVERAGE	HIGHEST	LOWEST	CV (%)	LSD (5%)

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

2-Year Averages Available in online version at https://www.canr.msu.edu/varietytrials

ZONE 3

- 17 -

TABLE 4E.	IOSC	Ó, C	SCEC	IOSCO, OSCEOLA &	PRESQUE ISLE COUNTY GRAIN TRIALS - EARLY (89 Day and Earlier)	QUE	ISLE	COU		BRAII	N TR	IALS	- EAI	3LY (8	9 Day	and	Earli	er)		Z	ZONE 4
2022				TRIAL /	AVERAGE	ш			losco	losco - Early	_			Osceo	Osceola - Early	~		4	resque l	Presque Isle - Early	
BRAND / HYBRID	RM TRAIT	I.	%H2O	BU/A	Twt %	% SL %	% PS%	%H2O	BU/A	T	°SL (%Sd	%H2O	BU/A	Twt	%SL %	%Sd 9	%H2O	BU/A	Twt %SL	%Sd
Dairyland Seed DS-2080AM	80 /	AM	17.9	139.6	54.8	0	95 1	19.0 1	161.3	55.4	0	95	16.7	118.0	54.2	0	95				
Dairyland Seed DS-2505Q	85	ø	18.9	153.9	53.3	0	98		176.7	53.1	0	95	16.7	131.0	53.5	0	100				
Dairyland Seed DS-2531AM	85 /	AM	19.2	154.8	51.8	0	88	21.8 1	193.4	51.7	0	87	16.6	116.3	52.0	0	06				
Dairyland Seed DS-2919AM	89 /	AM	20.5	164.9	53.1	0	98		208.5 **	52.8	0	98	17.4	121.3	53.5	0	66				
Golden Harvest G87A53-3220	87	ZV	19.3	147.6		0	82	21.5 1	143.9	53.2	0	83		151.3 *	53.4	0	81				
Legacy Seeds LC334-21 VT2P	83 V ⁻	VT2P	18.2	156.3	54.2	0			184.9	53.1	0	95	16.2	127.8	55.4	0	93				
Legacy Seeds LC354-20 3110	85 \	VR	19.7	147.5	53.7	0		21.7 1	155.7	52.6	0	97	17.8	139.4	54.8	0	96				
Renk RK297VT2P	88 V ⁻	VT2P	20.3	178.3 **	53.1	0	98	23.7 2	204.2 *	51.1	0	97	17.0	152.5 **	55.2	0	98				
AVERAGE			19.3	155.4	53.4	0			178.6	52.8	0	93	16.9	132.2	54.0	0	94				
HIGHEST			20.5	178.3	54.8	0	88	23.7 2	208.5	55.4	0	98	17.8	152.5	55.4	0	100				
LOWEST			17.9	139.6	51.8	0	82	19.0 1	143.9	51.1	0	83	16.2	116.3	52.0	0	81				
CV (%)			4.1	6.4	1.6	0	4	4.2	5.7	1.0	0	4	3.9	7.3	2.0	0	ę				
LSD (5%)			0.7	8.3	0.7	0	e	1.1	12.4	0.6	0	5	0.8	11.7	1.3	0	4				
		:															•				

** Highest Yielding Hybrid
 * Not Significantly Different from Highest Yielding Hybrid

IADLE 4L.	2		2																		1	
2022				TRIAL /	AL AVERAGE	щ			losco	losco - Late				Oscec	Osceola - Late	<i>.</i>		_	Presque Isle - Late	Isle - I	.ate	
BRAND / HYBRID	RM	TRAIT	%H2O	BU/A	Twt	% SK %	% PS %	%H2O	BUIA	Twt	%SL	%Sd	%H2O	BU/A	Twt %	%SL 0	%Sd %	%H20	BU/A	Twt	%SL	%Sd
Dairyland Seed DS-3022AM	06	AM	19.4	159.0	53.6	13 5	93 2	23.0 2	202.6	52.4	0	94	15.9	116.5	55.7	0	92	19.2	157.8 *	52.6	39	93
Dairyland Seed DS-3162Q	91	Ø	19.0	167.0 *	51.3	5	95 2	22.4 19	192.6	49.6	0	86	16.1 1	144.4 *	53.7	0	92	18.6	164.1 **	50.5 1	5	95
Dairyland Seed DS-3203AM	92	AM	21.3	163.2	52.1	2	95 2	24.7 21	213.2 *	50.5	0	66	17.5 1	119.5	54.6	0	94	21.8	157.0 *	51.2	5	93
Dyna-Gro Seed D31VC23	91	91 VT2PRIB	20.1	153.4	53.2	4	92 2	24.3 18	189.8	52.3	0	93	15.1 1	121.9	55.3	0	91	20.8	148.6	51.9	11	92
	94	94 VT2PRIB	21.6	155.1	52.0	11 9	95 2	26.9 19	196.6	51.3	0	94	15.8 1	119.2	53.8	0	95	22.0	149.4	51.0	32	95
Dyna-Gro Seed D36VC66	96	9 6 VT2PRIB	21.8	166.5 *	52.1	8	98 2	27.3 22	220.3 ** !	50.2	0	86	16.2 1	118.1	54.9	0	66	21.9 1	161.0 *	51.1	24	98
Golden Harvest G91V51-522A	91	D2	21.3	165.9 *	51.8	-	96 2	24.5 20	207.9 *	50.3	0	95	17.4 1	130.4	53.8	0	97	22.2	159.4 *	51.3	e	95
Legacy Seeds LC414-21 VT2P	91	VT2P	20.6	158.3	52.7	2	95 2	24.3 19	193.0	52.0	0	94	16.4 1	125.9	54.4	0	95	21.2	156.0	51.7	7	95
M&W Seeds MW97A VT2P	67	VT2PRIB	21.2	158.6	51.3	8	97 2	26.5 19	191.9	50.3	0	66	15.7 1	128.8	53.4	0	97	21.5 1	155.0	50.3	24	95
Renk RK400VT2P	93	VT2P	19.8	172.5 **	53.7	9	95 2	23.7 21	214.3 *	52.1	0	95	15.8 1	140.6 *	56.2	0	95	19.9	162.7 *	52.7	17	95
Kenk KK444 V I 2P	94	VT2P	22.4	165.1 *	51.9	8	91 2	27.0 19	191.9	50.8	0	94	17.1 1	147.0 **	54.2	0	86	23.2 1	156.4 *	50.9	24	92
AVERAGE			20.8 162.2	162.2	52.3	6 9	95 2	25.0 20	201.3	51.1	0	96	16.3 1	128.4	54.5	0	94	21.1 1	157.0	51.4	18	94
HIGHEST			22.4	172.5	53.7	13 9	98 2	27.3 22	220.3	52.4	0	66	17.5 1	147.0	56.2	0	66	23.2 1	164.1	52.7	39	98
LOWEST			19.0	153.4	51.3	-	91 2	22.4 18	189.8	49.6	0	93	15.1 1	116.5	53.4	0	86	18.6 1	148.6	50.3	с	92
CV (%)			7.0	7.5	2.1	86	5	4.1	5.7	1.8	0	4	4.7	10	10.0 1.2	0	9	7.0	7.5	2.1	86	5
LSD (5%)			1.0	7.9	0.7	1	°	1:2	13.7	<u>.</u>	0	5	0.9	15.4	0.8	0	7	1.0	7.9	0.7	1	с

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

2-Year Averages Available in online version at https://www.canr.msu.edu/varietytrials

ZONE 4

- 19 -

ay and Earlier)
2
5
- EARL)
TRIALS
ENTIONAL GRAIN TRIALS - EARLY (
TIONAL
ONVEN.
NTY C
W COUNTY CONVE
SAGINA
ALM & S
MONTC/
INGHAM, MONTCA
TABLE 5E.

ZONE 2 - 3

_		<u> </u>					-								-	_
	%Sd	66	95	66	94	97	66	92	97	94	97	96	66	92	9	7
١	%SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
v - Ear	Twt	58.2	57.3	56.5	58.6	56.9	58.0	57.1	57.7	58.6	56.3	57.5	58.6	56.3	0.6	0.4
Saginaw - Early	BU/A	228.7 *	239.6 **	215.4	220.6	225.2	227.7 *	231.3 *	223.8	220.4	230.7 *	226.3	239.6	215.4	4.6	12.5
	%H2O	16.7	16.7	15.5	16.3	16.4	15.9	16.4	15.7	16.5	17.1	16.3	17.1	15.5	2.2	0.4
	%Sd	98	100	98	97	98	95	93	92	95	97	96	100	92	4	5
rly	%SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m - Ea	Twt	52.6	51.0	50.6	52.0	51.5	51.5	51.4	52.5	52.6	50.3	51.6	52.6	50.3	1.4	0.8
Montcalm - Early	BU/A	191.2 **	189.8 *	166.9	180.6 *	187.5 *	184.6 *	181.6 *	173.6	190.4 *	180.0 *	182.6	191.2	166.9	6.8	15.0
	%H2O	22.7	22.4	23.0	22.6	22.9	22.9	22.9	21.9	23.0	23.5	22.8	23.5	21.9	3.6	1.0
	%Sd	66	98	97	93	92	98	94	92	97	94	95	66	92	4	5
	6 TS %	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Early	Twt %	50.2	49.2	54.5	51.5	50.0	51.7	51.9	54.2	50.8	51.3	51.5	54.5	49.2	2.4	1.5
Ingham - Early	BU/A	143.9	151.5	173.8 *	159.6 *	142.7	151.0	170.8 *	170.9 *	139.0	180.9 **	158.4	180.9	139.0	11.2	21.5
	%H2O	11.7	11.8	15.5	12.9	12.7	12.9	13.7	14.8	11.8	14.2	13.2	15.5	11.7	9.5	1.5
	%Sd	66	98	98	95	96	97	93	94	95	96	96	66	93	5	ი
AVERAGE	%SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- AVE	Twt	53.7	52.5	53.8	54.0	52.8	53.7	53.5	54.8	54.0	52.6	53.5	54.8	52.5	6.0	2.2
Early - TRIAI	BU/A	187.9 *		185.4 *	187.0 *	185.2 *	187.8 *		189.4 *	183.3 *	197.2 **	189.1	197.2	183.3	17.9	23.0
Ear	%H2O BU/A	17.0	16.9	18.0	17.2	17.3	17.2	17.7		17.1	18.2	17.4	18.2	16.9	25.1	3.0
	RM TRAIT	95 CONV	100 CONV	94 CONV	96 CONV	100 CONV	99 CONV	100 CONV	97 CONV	96 CONV	100 CONV					
2022	BRAND / HYBRID	Legacy Seeds LC-3517	Legacy Seeds LC-4248	Legacy Seeds LC444-21	Legacy Seeds LC482-21	M&W Seeds 45T55	M&W Seeds 46T28	Renk RK600	Viking O.45-97UP	Viking O.52-96P	Viking O.85-00P	AVERAGE	HIGHEST	LOWEST	CV (%)	LSD (5%)

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

<u>.</u>	
S	
ш	
ŋ	
.◄	

ZONE 2 - 3 INGHAM, MONTCALM & SAGINAW COUNTY CONVENTIONAL GRAIN TRIALS - LATE (102 Day and Later)

			Late - TRIAI	AL AVERAGE	RAGE			Inghar	Ingham - Late				Montcalm - Late	n - Lat	0			Saginaw - Late	/ - Late		
SRAND / HYBRID	RM TRAIT	%H2O	BU/A	Twt	%SL	%Sd	%H2O	BU/A	Twt	%SL %	%Sd %	%H2O	BU/A	Twt .	%SL %	%Sd %	%H20 I	BU/A	Twt %	% SL %	%Sd
egacy Seeds LC-5217	102 CONV	17.2	213.3 *	55.1	0	96	17.2	205.2 *	54.6	0	. 96	17.2 2	05.2 *	54.6	0	96 1	7.4 22	229.6 *	56.1	0	97
-egacy Seeds LC525-21	102 CONV	17.7	197.7	55.1	0	66	17.7	186.7	55.2	0	. 66	17.7	186.7	55.2	0	99 1	7.8 21	219.8	54.9	0	98
Legacy Seeds LC544-22	104 CONV	17.9	202.8	56.6	0	97	18.2	197.9	56.0	0	. 26	18.2 1	197.9	56.0	0	97 1	17.5 21	212.5	57.7	0	98
Legacy Seeds LC564-20	106 CONV	17.4	209.8 *	53.3	0	97	16.9	205.7 *	53.1	0	96	16.9 2	205.7 *	53.1	0	96 1	18.6 21	217.8	53.8	0	98
A&W Seeds 44R33	106 CONV	18.7	224.4 **	55.5	0	86	18.7	223.5 **	55.2	0	` 86	18.7 2	223.5 **	55.2	0	98 1	18.7 22		56.0	0	97
M&W Seeds 44V40	107 CONV	19.6	218.4 *	55.4	0	95	19.8	216.0 *	54.6	0	. 36	19.8 2	216.0 *	54.6	0		19.1 22	223.3	57.1	0	96
M&W Seeds MW105A CNV	105 CONV	19.2	205.8	56.6	0	66	19.1	202.8 *	56.5	0	100	19.1 2	202.8 *	56.5	0	100	19.4 21	211.8	57.0	0	97
Renk RK642	103 CONV	17.3	219.7 *	55.2	0	86	17.0	209.8 *	54.6	0	. 66	17.0 2	209.8 *	54.6	0	99 1	18.0 23	239.6 **	56.4	0	95
/iking 0.46-02P	102 CONV	16.6	213.4 *	54.2	0	86	15.9	208.9 *	53.1	0	101	15.9 2	208.9 *	53.1	0	101	17.9 22	222.5	56.6	0	90
'iking O.84-04	104 CONV	17.3	200.2	56.7	0	99	17.2	181.1	56.1	0	. 66	17.2 1	181.1	56.1	0	99 1	17.5 23	238.4 *	57.8	0	99
VERAGE		17.9	210.5	55.4	0	98	17.8	203.8	54.9	0	. 86	17.8 2	203.8	54.9	0	98 1	18.2 22	224.2	56.3	0	97
HIGHEST		19.6	224.4	56.7	0	66	19.8	223.5	56.5	0	101	19.8 2	223.5	56.5	0	101	19.4 23	239.6	57.8	0	66
OWEST		16.6	197.7	53.3	0	95	15.9	181.1	53.1	0	95	15.9 1	181.1	53.1	0	95 1	17.4 2'	211.8	53.8	0	6
CV (%)		17.4	11.3	5.19	0	4	5.2	8.8	2.0	0	с г	5.2	8.8	2.0	0	с С	2.2	4.4	0.8	0	5
-SD (5%)		2.4	15.63	1.9	0	e	1.1	21.5	1.3	0	4	1.1	21.5	1.3	0	4	0.5	11.8	0.5	0	9

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

2022 SILAGE PERFORMANCE TRIALS

Introduction

The silage index (pg. 25) contains a list of all hybrids planted in the 2022 silage trials.

County results are reported in the following tables:

Tables 6E/6L Zone 1 - Branch, Lenawee, and Wood* Tables 7E/7L Zone 2/3 - Ottawa, Huron*, and Ingham Tables 8E/8L Zone 4 - Iosco, Osceola, and Presque Isle

*Locations dropped due to uncontrolable events

The map of Michigan (pg. 23) shows each zone and the locations where the trials were located.

Methods

Testing procedures (randomization, replication, planting rates, etc.) for silage evaluation are the same as those utilized for grain trials. For silage, agronomic information refer to Table C (pg. 24).

All silage maturity zones were divided into two maturity groups designated early and late based on the relative maturity (RM) submitted by the companies with results listed in separate tables. The Wood Country, OH location is managed in cooperation with The Ohio State University. Planting and inseason management is conducted by The Ohio State University while Michigan State University harvests plots and performs quality and data analysis.

A New Holland T6.175 tractor powered a two-row Champion C1200 Kemper forage harvester, and a rear mounted Haldrup M-63 weigh system is used to harvest the two center rows of plots. Electronic scales mounted on the Haldrup M-63 weigh system measured plot and subsample weights. All field data was recorded on a Panasonic FZ-G1 Toughpad using Harvest MasterTM software. Total plot weight was used to calculate green tons per acre (GT/A). Subsamples of fodder, including grain, were collected, weighed, and oven dried in a WRH586-500 Greives forced air dryer until weight loss was zero, then re-weighed to determine the percent dry Dry tons per acre (DT/A) is calculated matter (%DM). mathematically by multiplying GT/A by %DM. The samples were ground using a Christy mill fitted with a 1mm screen before conducting quality analysis using near-infrared spectroscopy (NIRS) to predict quality components.

Silage Analysis

Tables 6E, 6L, 7E, 7L, 8E, and 8L provide silage quality data as determined by near-infrared spectroscopy (NIRS) analysis on freshly dried & ground samples. Data is provided for individual locations as well as averaged over multiple locations within each zone. Near-infrared spectral analysis involves irradiating the sample with light in the near infrared spectrum (1,100 to 2,500 nm). The illuminated sample absorbs light proportional to specific chemical and physical properties. The reflected energy is measured and correlated statistically with the NIRS Consortiums calibration equation established for silage quality levels. Results of the six quality traits analyzed are presented in the quality tables.

The six silage quality traits:

1. IVD= (in vitro) digestible dry matter-48hr. IVD is a measure of forage digestibility. Higher IVD is desirable.

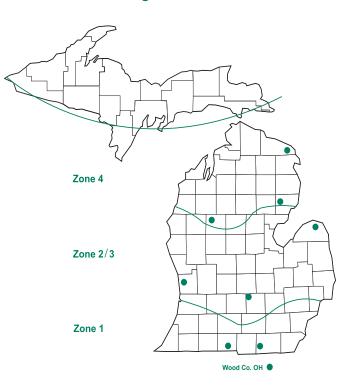
2. ADF=acid detergent fiber. ADF represents the less digestible portion of the corn forage, containing cellulose, lignin, and heat damaged protein. ADF is closely related to the digestibility of forages. Lower ADF implies the forage is more digestible. More mature plant material will contain higher ADF concentrations. A low concentration of ADF is desirable.

3. NDF=neutral detergent fiber. NDF is a measure of the fiber content of the corn forage. It is less digestible than non-fiber constituents of the forage. Forages with high NDF levels have lower energy. NDF is also a measure of potential forage intake. High NDF levels decrease the potential forage intake. Low NDF content is desirable.

4. NDFD=neutral detergent fiber digestibility. NDFD is the portion of neutral detergent fiber digested by animals at a specified level of feed intake. High NDFD is desirable.

5. CP=crude protein. Forages are generally supplemented with high protein concentrates such as soybean meal to increase the protein content of ruminant diets. Corn hybrids with high protein levels require less supplementation and therefore result in lower feed costs. High protein content is desirable.

6. STRCH=starch. Starch from the grain, along with the digestible component of the fiber, accounts for most of the energy in corn silage. High starch content is desirable.


Silage quality traits are reported on a dry matter basis (100 percent DM). Quality traits in these tables are intended for use in hybrid selection only. Analysis for the balancing of feed rations should be analyzed from hybrids grown on each individual farm..

MILK2006

The MILK2006 equation (University Wisconsin-Madison Dairy Science Department) was used to estimate MK/T (milk per ton) and MK/A (milk per acre). MILK2006 estimates the dry matter intake using the NDF and CWD (cell wall digestibility) parameters of the sample. The updated equation utilizes crude protein, fat, and sugar, as well as the organic acid fractions, along with their total-tract digestibility coefficients to estimate energy. Whole plant dry matter was calculated to 34% for all hybrids and digestibility coefficients used. Fat and sugars, as well as the organic acid fractions, were held constant. MILK2006 also assumes the weight of the cow is 1,350 lbs. and that it consumes a 30 percent neutral detergent fiber diet. Using National Research Council (NRC, 2001) energy requirements, the estimated intake of energy from corn silage is converted to milk per ton. Milk per acre is then calculated using the estimated values for milk per ton and dry matter yield per acre. For more information on the utility of MILK2006 please see:

www.uwex.edu/ces/crops/uwforage/Milk2006silage.html

2022 Silage Trial Locations

Notes

TABLE C.

AGRONOMIC TABLE FOR SILAGE TRIAL LOCATIONS

			Cilozo		Fertilizer				
	County	Planting Date	Harvest	Crop	N-P-K	Soil Type	Soil Test ¹	Cooperator	Location
	(но) аоом			LOCA	LOCATION DROPPED	Δ		OARDC Rich Minyo, Matt Davis	Hoytville, OH
1 9noZ	BRANCH (Irrigated)	5/24	9/13	Soybean	199-8-2	Loamy Sand	PH 7.3, P 98, K 104	Huff Farms Kyle Huff	Coldwater
	LENAWEE	6/1	9/20	Corn	167-7-2	Loamy Sand	PH 6.6, P 160, K 166	Raymond & Stutzman Farm Tim Stutzman	Seneca
	INGHAM	5/12	9/16	Soybean	169-8-2	Sandy Clay Loam	PH 7.1, P 29, K 118	Plant, Soil and Microbial Sciences Facility MSU	East Lansing
2 əuoz	ОТТАWA (Irrigated)	5/17	9/19	Corn	202-10-3	Sand	PH 6.6, P 74, K 132	Ottawa Station Farms Adam Geertman	West Olive
	HURON			LOCA	LOCATION DROPPED	Q		Wil-Le Farms Ron, Ed and Chris McCrea	Bad Axe
	IOSCO	6/3	9/22	Corn	171-9-3	Sandy Loam	PH 7.3, P 57, K 191	Double B Dairy Jeremy, Tim and Roger Beebe	Hale
£ ənoZ	OSCEOLA	5/13	9/14	Soybean	175-11-3	Sand	PH 6.7, P 47, K 90	Gingrich Meadows Brandon Gingrich	Leroy
	PRESQUE ISLE	6/3	9/22	Corn	170-8-2 + manure	Sandy Loam	PH 7.5, P 63, K 111	Ponik Farms Paul Ponik, Jeremy Karsten	Posen
								¹ - D and K renorted in m2-nam	maa Cm ai bot

¹ - P and K reported in m3-ppm

SILAGE HYBRID INDEX

COMPANY/HYBRID	RM	TECHNOLOGY	TABLE	COMPANY/HYBRID	RM	TECHNOLOGY	TABLE
CHANNEL 206-99STXRIB 210-98STXRIB 210-99STXRIB 212-52SSPRIB 214-22STXRIB	106 110 110 112 114	STX STX STX STX STX	6E 6E 6L 6L	LEGACY (cont.) LC623-21 5122 LC634-20 SSX LG SEEDS LG42C37-3220 LG45C21-5122	112 113 92 95	D2 STXRIB VZ D1	6L 6L 8E 7E,8E
DAIRYLAND SEED				LG49C28-VT2	99	VT2P	7E,8L
HiDF-3044Q DS-3162Q DS-3601Q HiDF-3855Q HiDF-4073Q HiDF-3802Q	90 91 96 98 100 102	Q Q Q Q Q Q	8E 8E 7E,8E 7E,8L 6E,7E,8L 7E	LG50C93-5222 LG51C62-VT2 LG52C42-VT2 LG54C11-5222 LG58C77-5222 LG59C72-VT2	100 101 102 104 108 109	D2 VT2P VT2P D2 D2 VT2P	7E,8L 7E 7E 6E,7L 6E,7L
HiDF-4545Q DS-4510Q	105 105	Q Q	6E,7L 7L	NK SEEDS			
HiDF-4999Q HiDF-5000Q DS-5144Q	103 109 110 111	0 0 0	6E 6E,7L 6L	NK9991-5122 NK9922-5222 NK0748-5122 NK1239-5122	99 99 107 112	D1 D2 D1 D1	7E 7E 7L 6L
DYNA-GRO SEED				Nk1354-5222 NK1755-5222	113 117	D2 D2	6L 6L
D36VC66 D40VC41 D41SS60 D45TC55 D48SS50 D50VC09 D52DC82	96 100 102 105 108 110 112	VT2PRIB VT2PRIB STXRIB TRERIB STXRIB VT2PRIB VT2PRIB ¹	8E 7E,8L 7L 6E,7L 6E,7L 6L,7L	RK710DGVT2P RK710DGVT2P RK700SSTX RK842VT2P RK895DGVT2P RK945DGVT2P	107 108 112 113 115	VT2P 1 STX VT2P VT2P 1 VT2P 1 VT2P 1	7L 7L 7L 7L 7L 7L
GOLDEN HARVEST				RK940SSTX	115	STX	7L
G91V51-5222A G95D32-3220 G02K39-5122 G04S19-3122 G07G73-5122 G10L16-5222A	91 95 102 104 107 110	D2 ^{1,2} VZ ² D1 3122 E-Z D1 D2 ^{1,2}	8E 8E 7E,8L 7E,8L 6E 6E,7L	SEEDWAY SW 9726TR SW 0030SS SW 0321SS	97 100 103	TRE ⁹ STX ⁶ STX ⁶	6E 6E 6E
G12S75-5122	112 112	D1 D2 ²	6L,7L	SPECIALTY HYBRI	DS		
G13Z50-5222 G14N11-5222	113 114	D2 ² D2 ²	6L 6L	37A901 38G252 40A662	107 108 110	STX VT2P ¹ STX	6E,7L 6E,7L 6E,7L
LC451-21 VT2P LC464-21 3120 LC474-20 TRE LC493-21 5122	95 96 97 99	VT2PRIB BZ TRERIB D1	8E 8L 8E 7E	41DT911 42A843 43A311 VIKING	111 112 113	TRE VT2P STX	6L 6L 6L
LC-4248 VT2P LC-5217 VT2P LC525-21 PW LC555-21 5122 LC594-21 VT2P	100 102 102 105 109	VT2PRIB VT2PRIB PW D1 VT2P	7E 7E 7E 7L 6E	0.69-01P 0.51-04P 0.48-08P 0.82-14P 0.23-11GS	101 104 108 114 111	CONV CONV CONV CONV CONV	8L 7E 7L 6L 6L
OTHER HYBRID TRAITS:		4		7		011/2	

¹ DT

⁴ RW ² VIPTERA (BL: BROAD LEP.)

³ WBC

⁵ ARTESIAN

⁶ BCW, CEW, ECB, FAW, SB, SCB, SWB, CR

⁷ CEB, FAW, SB, SCB, SWB

⁸ BCW, CEW, FAW, SB, SCB, SWB

⁹ BCW, CEW, ECB, FAW, SB, SCB, SWB, TAW, WBC

TABLE 6E.

BRANCH, LENAWEE & WOOD (OHIO) COUNTY SILAGE TRIALS - EARLY (110 Day and Earlier)

ZONE 1

1	06	MK/A	140	236	903	205	960	756	366	487	806	303	922	770	850	029	059	014	839	509	189	238	23936	029	850	5	1343
	MILK 2006		_				2876 26	~															2			1	
	Σ	TR MK/T	36.0 2561	38.0 2897	36.4 2654	37.2 2729	36.9 28	4 2607	36.4 2657		36.5 2717	36.6 2372			31.3 2242	41.2 28	41.6 2950		35.4 2385	.4 3176	37.9 2841	.4 2497	.6 267	41.6 3176	31.3 2242	6	3 337
		CP STR	5.9 36	5.5 38	5.0 36	5.1 37	6.2 36	6.3 32.4	5.2 36	6.4 37	5.6 36	5.7 36	6.3 32.3	6.3 40.7	5.1 31	6.0 41	6.4 41	5.9 32.0		6.2 41.4	5.9 37	6.2 35.4	5.1 36.6	5.5 41	5.6 31	6	0.6 4.
	TΥ	NDFD (35.9	11.8 (39.2 (40.7 (46.5 (39.5 (41.4		36.8 (35.8 (34.7 (28.9		42.9	33.5 (38.6 (47.2 (28.9	14.0	6.4 (
arly	QUALITY	NDF N	25.7	6.9	25.8 3	25.2 4	29.5 4	30.0 4		24.8 3	27.4 4	24.3 3		24.2			23.4	27.2 4		25.1 4	26.4 2	25.9 3	26.1 3	30.0	23.4	1.8	3.6
Branch - Early	%	ADF N	21.8 2	23.3 2	21.7 2	20.8 2	26.3 2	24.5 3	21.1 2	21.5 2	23.1 2	21.1 2		20.2 2			21.3 2			18.8 2	21.3 2	21.7 2	22.1 2	26.3 3	18.8 2	0.1 1	2.6
Braı		ND /	83.7	84.6	84.3	85.1	84.2			83.9						84.8		84.2 2		. 6.98		82.8	84.1 2	86.9	81.6	2.3	2.3
		STD	100	103			96					98											67			2	9
	-	% ¥/.	* 0	*	* ~	** 8	*	*	4	*	0	5 *	1	*	0	* 0	2 *	* 6	*	* 0	* 2	3 *	9.1	<u>س</u>	0	2	ŝ
	YIELD	A DT																								16.7	~
		M GT/A		3 25.5			3 25.3				2 22.8					4 25.4			9 23.0		9 24.9	1 25.8		4 26.4		7	2.3
		MD% A	<u></u>	1 35.6	2 36.3	7 48.4	5 35.8	_					6 35.2				_	8 36.6		4 38.7	6 38.9	7 36.1	5 37.2	2 48.4	6 34.4	12.2	5.4
	MILK 2006	MK/A	28162	3056	26572	26727	29235	26743	23826	26642	27369	23157	29396	31302	2262(27163	28932	26108	27205	29854	28806	25917	27315	31302	22626	15	3407
	MILI	T/MM	2934	3140	2860	3107	3100	2875	2703	2912	3036	2679	3017	3111	2566	2914	3053	2810	2904	3185	2940	2709	2928	3185	2566	10	239
		STR	39.8	40.0	38.2	39.8	38.7	35.5		38.8	38.0	40.0	35.6			39.8	41.0			39.8	38.4	36.0	38.4	41.0	34.7	11.6	3.7
	,	DCP	5 6.7	6.9	0.7	1 6.8	7.0	9 7.0	3 6.9		0.5	3 6.6				1 6.9	7 7.0	2 6.8			1 6.8	3 6.9	3 6.8	5 7.1	1 6.5	9.9	0.4
RAGE	% QUALITY	NDFD		47.0	41.0	48.1	49.0	47.9	39.8			43.3			37.6		39.7		37.5			39.3	-	49.5	37.4	15.0	5.3
Early - TRIAL AVERAGE	% QI	: NDF	23.9	25.9	25.0	24.8	27.2	27.7		24.6		24.4				24.0	23.9	25.4		25.6	25.5	26.0	25.4	27.7	23.9	11.6	2.4
- TRIA		ADF	5 19.6	3 20.6	2 20.5	2 19.1	2 22.1		9 21.1		0 21.3	2 19.4				0 20.3	7 20.0			2 19.0	§ 20.4	3 20.9	6 20.5	2 22.2	9 19.0	13.0	2.2
Early		D IVD	85.5	86.3	85.2	87.2	86.2		84.9			86.2				85.0	85.7	85.6	84.6	87.2	85.6	84.3	85.6	87.2	83.9	2.1	1.5
		%STD	66	66	66	97	96	86	88	92	92	97	67	66	94	97	66	98	96	96	98	97	96	66	88	9	4
	YIELD	DT/A				8.9 *	9.4 *	9.2 *	8.8	9.1 *	8.9	9.7 *	8.5	10.1 **	8.7	9.2 *	9.5 *		9.3 *	9.4 *	9.8 *	9.5 *	9.3	10.1	8.5	13.0	1.0
	Ч	GT/A	25.3	25.7	25.1	23.0	26.2	26.5	26.4	25.2	24.8	27.0	24.4	26.2	25.4	25.5	25.2	24.9	22.7	25.2	26.5	27.1	25.4	27.1	22.7	7.5	1.6
		WD%	37.5	37.7	36.9	43.1	35.9	34.8	33.4	36.4	35.8	35.9	35.0	38.4	34.3	36.2	37.5	37.3	41.3	37.4	37.3	35.3	36.9	43.1	33.4	10.3	3.1
		TRAIT	STX	STX	STX	ø	ø	ø	ø	STXRIB	VT2PRIB	D2	D1	VT2P	D2	VT2P	STX	STX	TRE	STX	VT2P	STX					_
		RM	106	110	110	100	105	109	110	108	110 \	110	107	109	108	109	100	103	97	107	108	110					
	2022	BRAND / HYBRID	Channel 206-99STXRIB	Channel 210-98STXRIB	Channel 210-99STXRIB	Dairyland Seed HiDF-4073Q	Dairyland Seed HiDF-4545Q	Dairyland Seed HiDF-4999Q	Dairyland Seed HiDF-5000Q	Dyna-Gro Seed D48SS50	Dyna-Gro Seed D50VC09	Golden Harvest G10L16-522A	Golden Harvest G07G73-5122	Legacy Seeds LC594-21 VT2P	LG Seeds LG58C77-5222	LG Seeds LG59C72-VT2	Seedway SW 0030SS	Seedway SW 0321SS	Seedway SW 9726TR	Specialty Hybrids 37A901	Specialty Hybrids 38G252	Specialty Hybrids 40A662	AVERAGE	HIGHEST	LOWEST	CV (%)	LSD (5%)
	1			-	-	_	_	. –	_	_	_	- 1		-	-	_								_	-	-	-

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

	MILK 2006	MK/T MK/A																									_
	2	STR M											_														—
		CP S																									
	Ł	NDFD (
Ż	% QUALITY	NDF N																									
Wood - Early	%	ADF N																									
Woo		IVD A																									
		%STD																									—
	YIELD	DT/A																									
	-	GT/A																									
_		%DM																									_
	MILK 2006	MK/A	34183	34886	28240	33250	32374	31730	25285	29797	32931	27010	34871	33834	27401	25297	29806	30202	32572	31198	30424	28595	30694	34886	25285	15	5354
	MILK	MK/T	3307	3384	3065	3485	3325	3143	2749	3168	3355	2986	3519	3294	2890	2929	3157	3238	3423	3195	3038	2920	3179	3519	2749	6	343
		STR	43.6	41.9	39.9	42.5	40.5	38.6	35.8	40.2	39.6	43.4	39.0	40.3	38.2	38.4	40.4	41.6	44.2	38.3	38.9	36.5	40.1	44.2	35.8	10.8	5.11
		сь	7.6	7.4	7.4	7.5	7.8	7.7	7.7	7.8	7.5	7.4	7.4	7.3	7.6	7.7	7.5	7.7	7.5	7.9	7.7	7.6	7.6	7.9	7.3	4.6	0.41
	% QUALITY	NDFD	43.1	52.3	42.8	55.5	51.6	50.4	40.1	45.3	54.7	52.6	42.7	51.4	39.3	39.8	44.7	44.7	46.1	51.9	44.0	45.1	46.9	55.5	39.3	15.5	8.59
- Early	% QU	NDF	22.2	24.9	24.2	24.3	25.0	25.3	25.0	24.5	27.0	24.5	24.1	25.7	24.2	24.6	24.4	23.6	23.1	26.1	24.7	26.1	24.7	27.0	22.2	11.3	3.29
Lenawee - Early		ADF	17.5	18.0	19.3	17.3	18.0	19.2	21.0	19.0	19.4	17.7	19.2	18.3	20.4	20.6	18.8	18.3	17.6	19.1	19.4	20.2	18.9	21.0	17.3	11.5	2.57
Le		۵	87.4	88.1	86.2	89.2	88.3	87.5	85.1	86.7	88.0	88.5	86.2	87.9	85.4	85.2	86.7	87.1	87.6	87.5	86.2	85.8	87.0	89.2	85.1	1.8	1.81
		%STD			97	95	96	26	87	97	94	97	95	98	06	94	98	95	97	94	98	95	95	98	87	9	7
	YIELD	DT/A %	10.3 **	10.2 *	9.2	9.5 *	9.7 *	10.0 *	9.1	9.4 *	9.8 *	* 6.6	0.0	10.3 **	9.5 *	8.5	9.4 *	9.3	9.5 *	9.8 *	10.0 *	9.8 *	9.6	10.3	8.5	8.3	0.94
	×	GT/A	25.6	25.8	24.8	25.3	27.1	28.5	29.1	26.2	26.8	28.4	25.6	26.0	27.8	25.6	25.3	24.5	22.3	27.1	28.1	28.3	26.4	29.1	22.3	7.2	2.25
		WDW	40.6	39.9	37.4	37.8	36.0	35.3	31.3	36.4	36.5			39.4	34.0	32.9	37.4		42.6	36.1	35.6	34.5	36.6	42.6	31.3	7.9	3.4
	<u> </u>	TRAIT	STX	STX	STX	ø	ø	a	ø	STXRIB	VT2PRIB	D2	D1	VT2P	D2	VT2P	STX	STX	TRE	STX	VT2P	STX					_
		RM 1	106	10	110	100	105	109	110	108 S	110 V1	110	107	109	108	109	100	103	97	107	108	110					
			Ţ	~	~	<u> </u>	~	-	~	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	~	<u> </u>	0,	<u> </u>	<u> </u>	<u> </u>					
	2022	BRAND / HYBRID	Channel 206-99STXRIB	Channel 210-98STXRIB	Channel 210-99STXRIB	Dairyland Seed HiDF-4073Q	Dairyland Seed HiDF-4545Q	Dairyland Seed HiDF-4999Q	Dairyland Seed HiDF-5000Q	Dyna-Gro Seed D48SS50	Dyna-Gro Seed D50VC09	Golden Harvest G10L16-5222A	Golden Harvest G07G73-5122	Legacy Seeds LC594-21 VT2P	LG Seeds LG58C77-5222	LG Seeds LG59C72-VT2	eedway SW 0030SS	Seedway SW 0321SS	Seedway SW 9726TR	Specialty Hybrids 37A901	Specialty Hybrids 38G252	Specialty Hybrids 40A662	AVERAGE	HIGHEST	LOWEST	CV (%)	LSD (5%)

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

- 27 -

TABLE 6L.

BRANCH, LENAWEE & WOOD (OHIO) COUNTY SILAGE TRIALS - LATE (111 Day and Later)

ZONE 1

	MILK 2006	MK/A	23408	28084		24993			22916	22864						24925				23308	28084	19564	19	5155
	MIL	MK/T	2650	2900	2755	2798	2668	2519	2511	2177	2614	2466	2446	2519	2478	2637	2626	2518	2383	2569	2900	2177	13	407
		STR	37.8	39.0	37.7	38.1	36.3	33.3	36.0	31.1	34.3	33.2	29.5	32.0	34.4	37.0	35.3	37.1	29.6	34.8	39.0	29.5	12.3	5.1
		С	6.0	6.1	5.8	6.2	5.8	5.5	5.7	5.9	6.4	6.1	9.5	6.1	5.7	6.4	5.8	5.4	6.0	6.1	9.5	5.4	11.1	0.8
	% QUALITY	NDFD	34.3	42.8	40.9	40.5	40.2	42.5	33.6	32.8	41.4	38.9	25.9	45.6	37.2	35.5	41.2	33.8	44.7	38.3	45.6	25.9	14.3	6.5
- Late	% QU	NDF	24.7	25.3	25.6	25.0	26.8	28.7	26.3	27.9	27.8	27.9	38.0	28.8	27.3	24.8	27.1	23.9	31.2	27.5	38.0	23.9	8.3	2.7
Branch - Late		ADF	21.5	20.5	21.4	20.8	21.8	23.7	23.2	25.0	22.7	23.8	37.6	23.0	23.8	21.0	22.6	21.1	25.8	23.5	37.6	20.5	10.4	2.9
ш		۵VI	83.8	85.5	84.9	85.2	84.0	83.5	82.5	81.3	83.8	83.0	72.0	84.4	82.9	84.0	84.1	84.2	82.9	83.0	85.5	72.0	2.4	2.3
		%STD	67	66	97	89	66	98	66	92	94	101	100	94	96	97	98	66	82	96	101	82	7	œ
	YIELD	DT/A	8.8	9.7 *	9.9 *	8.9	9.2	8.9	9.0	10.6 **	8.7	8.8	8.0	8.7	8.5	9.4	9.2	9.1	8.5	9.1	10.6	8.0	10.5	1.1
	١L	GT/A	24.5	25.6	25.6	25.7	24.1	24.2	24.3	25.1	23.5	22.4	22.4	26.3	23.3	27.5	24.9	26.8	25.9	24.8	27.5	22.4	8.7	2.6
		WD%	36.0	38.0	38.6	34.8	38.5	36.8	37.1	42.7	37.0	39.2	35.8	33.3	36.4	34.2	37.4	34.3	32.7	36.6	42.7	32.7	10.6	4.6
	2006	MK/A	26039	29607	26171	28755	26583	27313	26542	22088	26573	25875	24644	23789	27788	25836	27741	26139	26210	26335	29607	22088	17	3726
	MILK 2006	MK/T	2859	3052	2754	3015	2815	2927	2863	2289	2838	2688	2906	2595	2875	2725	2944	2736	2802	2805	3052	2289	12	278
		STR	38.1	39.2	36.0	39.4	34.7	37.4	37.5	30.6	35.7	34.0	36.0	32.2	37.9	36.0	37.3	37.9	35.4	36.2	39.4	30.6	13.7	4.1
		Ъ	6.9	6.8	6.7	6.8	7.0	6.5	9.9	6.7	7.1	6.9	8.9	6.8	6.8	7.0	7.0	6.4	6.7	6.9	8.9	6.4	15.9	0.9
J GE	ΑLITY	NDFD	40.3	45.6	42.1	44.2	46.2	47.3	41.9	35.8	45.5	43.5	35.9	46.1	41.8	39.7	46.8	37.8	45.1	42.7	47.3	35.8	15.8	5.6
Late - TRIAL AVERAGE	% QUALIT	NDF	25.0	25.6	26.3	24.9	28.1	26.9	26.3	28.3	27.0	27.8	30.8	28.3	25.5	25.9	26.1	24.0	27.8	26.7	30.8	24.0	12.6	2.8
TRIAL		ADF	20.5	20.1	22.0	19.8	21.9	21.8	21.5	24.7	21.3	22.6	27.9	22.3	21.2	21.3	20.4	20.5	22.7	21.9	27.9	19.8	16.9	3.1
Late - ⁻		٩N	85.1	86.2	84.7	86.2	85.1	85.7	84.7	82.0	85.3	84.4	79.7	85.0	85.2	84.4	86.1	85.1	84.7	84.7	86.2	79.7	3.7	2.6
		%STD	98	66	96	93	97	96	95	96	94	97	98	97	97	98		66	87	96	66	87	7	9
	YIELD	DT/A	* 0.6	9.7 **	9.5 *	9.5 *	9.5 *	9.2 *	9.2 *	9.7 **	9.3 *	9.5 *	8.5	9.1 *	9.5 *	9.5 *	9.4 *	9.5 *	9.2 *	9.3	9.7	8.5	11.0	0.9
	×	GT/A	25.5	26.0	26.0	26.9	26.7	25.4	25.8	26.4	25.5	26.6	19.2	28.2	25.4	28.7	26.3	27.5	27.1	26.1	28.7	19.2	11.6	2.5
		WD%	35.7	37.5	36.6	35.3	35.8	36.2	35.8	37.4	36.3	36.4		32.7	37.4	33.1	36.0	34.8	33.9	36.3	46.0	32.7	12.4	3.7
		TRAIT	STX	STX	Ø	VT2PRIB	D1	D2	D2	D2	STXRIB	5	D2	D2	TRE	VT2P	STX	CONV	CONV					
		RM T	12	14	11	112 V	112	13	14	112	113 S	112	13	17	11	112	113	111 C	114 C					
			Ţ	-	-	-	-	-	-	-	-	-	Ţ	-	-	-	-	Ţ	1					
	2022	BRAND / HYBRID	Channel 212-52SSPRIB	Channel 214-22STXRIB	Dairyland Seed DS-5144Q	Dyna-Gro Seed D52DC82	Golden Harvest G12S75-5122	Golden Harvest G13Z50-5222	Golden Harvest G14N11-5222	Legacy Seeds LC623-21 5122	Legacy Seeds LC634-20 SSX	VK Seeds NK1239-5122	VK Seeds Nk1354-5222	NK Seeds NK1755-5222	Specialty Hybrids 41DT911	Specialty Hybrids 42A843	Specialty Hybrids 43A311	/iking 0.23-11GS	Viking O.82-14P	AVERAGE	HIGHEST	LOWEST	(%)	LSD (5%)
		BRA	Chai	Chai	Dairy	Dyné	Gold	Gold	Gold	Lega	Lega	NK	NKS	NK	Spec	Spec	Spec	Vikin	Vikin	AVE	НG	LOM	CV (%)	LSD

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

																		_		_			_	_
	MILK 2006	MK/T MK/A																						
		CP STR																						
	% QUALITY	F NDFD																						
Wood - Late	%	F NDF																						
000M		IVD ADF																						
		%STD IV																		-				
	~	DT/A %																						
	YIELD																							
		%DM GT/A																						
	90		370	31129	25066	32516	723	31878	68	21313	345	30010	724	360	34452	26746	165	t02	187	362	152	21313	16	82
	MILK 2006	C/T MK/A	38 28670	.,			52 28723						65 29724				62 31165	53 29402	22 32187	41 29362	65 34452		1	1 5482
	Σ	STR MK/T	38.3 3068	39.5 3205	34.4 2752	40.6 3231	33.1 2962	41.5 3334	39.1 3214	30.1 2400	37.1 3061	34.8 2910	42.5 3365	32.4 2670	41.4 3271	34.9 2813	39.4 3262	38.7 2953	41.3 3222	37.6 3041	42.5 3365	30.1 2400	1.3 1.	5.0 387
		CP S.	7.8 38	7.6 39	7.6 34	7.5 4(8.3	7.4 4'	7.5 39	7.6 3(7.7 37	7.8 34	8.2 42	7.4 32	7.9 4	7.7 34	8.1 39	7.5 38	7.4 4'	7.7 37	8.3 42	7.4 3(6.4 1	0.6 5
	LT	NDFD	46.3	48.5	43.4	47.9	52.2	52.1	50.3	38.8	49.7	48.2	46.0	46.6	46.5	44.0	52.3	41.7	45.5	47.1	52.3	38.8	16.6	9.3
Late	% QUALITY	NDF	25.3	25.9	27.0	24.7	29.4	25.1	26.3	28.7	26.3	27.6	23.6	27.7	23.8	27.0	25.0	24.1	24.4	26.0	29.4	23.6	11.5	3.6
Lenawee - Late	-	ADF	19.6	19.8	22.6	18.7	22.1	20.0	19.7	24.5	19.9	21.5	18.3	21.6	18.5	21.7	18.3	19.9	19.7	20.4	24.5	18.3	12.0	2.9
Lei		٩N	86.5	86.8	84.6	87.2	86.2	87.9	86.9	82.7	86.9	85.9	87.5	85.5	87.5	84.9	88.1	86.0	86.6	86.3	88.1	82.7	2.2	2.2
		%STD	66	100	95	97	96	95	91	66	94	94	95	100	98	66	66	98	92	96	100	91	9	9
	ELD	DT/A	9.3	9.7 *	9.1	10.1 *	9.7 *	9.5 *	9.4	8.9	9.8 *	10.3 *	8.9	9.6 *	10.6 **	9.5 *	9.5 *	9.9 *	9.9 *	9.6	10.6	8.9	9.3	1.1
	YIEI	GT/A	26.4	26.4	26.4	28.2	29.3	26.5	27.3	27.6	27.5	30.8	15.9	30.0	27.6	29.9	27.6	28.2	28.3	27.3	30.8	15.9	9.1	2.9
		WD%	35.4	37.1	34.6	35.8	33.2	35.7	34.4	32.2	35.7	33.6	56.3	32.0	38.5	31.9	34.5	35.3	35.1	36.0	56.3	31.9	6.2	2.7
		TRAIT	STX	STX	Ø	VT2PRIB	5	D2	D2	D2	STXRIB	5	D2	D2	TRE	VT2P	STX	CONV	CONV					
		RM	112	114	111	112	112	113	114	112	113	112	113	117	111	112	113	111	114					
	2022	RAND / HYBRID	Channel 212-52SSPRIB	Channel 214-22STXRIB	Dairyland Seed DS-5144Q	Dyna-Gro Seed D52DC82	Golden Harvest G12S75-5122	Golden Harvest G13Z50-5222	Golden Harvest G14N11-5222	Legacy Seeds LC623-21 5122	Legacy Seeds LC634-20 SSX	NK Seeds NK1239-5122	NK Seeds Nk1354-5222	NK Seeds NK1755-5222	Specialty Hybrids 41DT911	Specialty Hybrids 42A843	Specialty Hybrids 43A311	/iking 0.23-11GS	Viking O.82-14P	AGE	ST	ST		(%)
		BRANC	Channe	Channe	Dairylar	Dyna-G	Golden	Golden	Golden	Legacy	Legacy	NK See	NK See	NK See	Special	Special	Special	Viking C	Viking (AVERAGE	HIGHEST	LOWEST	CV (%)	LSD (5%)

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

TABLE 7E.

HURON, INGHAM & OTTAWA COUNTY SILAGE TRIALS - EARLY (104 Day and Earlier)

ZONE 2 - 3

	MILK 2006	IT MK/A																										
	Σ	R MK/T																										
		CP STR																										
	۲																											
_	% QUALITY	F NDFD																										
Huron - Early	0%	: NDF																										
Huron) ADF																										
		D IVD																										
		NSTD																										
	YIELD	DT/A																										
	×	GT/A																										
		WD%																										
	2006	MK/A	30073	26905	29874	27949	26568	25177	27891	26234	30503	28307	30000	29472	24406	30240	26905	28304	29384	27546	27384	26918	27880	27996	30503	24406	16	3663
	MILK 2006	MK/T	3668	3301	3447	3418	3475	3113	3424	3324	3408		3398	3138	3239	3395	3418	3359	3434	3182	3338	3431	3424	3373	3668	3113	10	278
		STR 1	42.3	34.5	38.3	38.9	40.5	35.4 3	39.2	36.2	37.6	39.1	39.2	37.7	37.4		37.1	38.2	41.4	35.8	35.9	38.1	38.6	38.1	42.3	34.5	11.6	3.7
		СЪ	7.5	7.9			6.8	7.6	7.7	7.4		8.0	7.1	7.1	7.8		7.7	7.3	7.4	7.7		7.8		7.5	8.0	6.8	5.7	0.4
GE	VLITY	NDFD	63.7	63.8	62.6	60.1	60.4	54.8	58.1	58.2	61.6	61.0	57.6	48.9	53.4	54.8	59.2	58.5	54.6	55.4	60.8	59.0	59.3	58.4	63.8	48.9	18.6	0.0
Early - TRIAL AVERAGE	% QUALITY	NDF	27.3	29.5	29.0	26.4	27.0	27.7	27.0	29.6	28.8	27.5	27.4	27.2	27.0	27.4	29.5	28.0	25.0	28.7	30.4	28.3	27.2	27.9	30.4	25.0	13.8	3.2
TRIAL		ADF	17.0	19.8	19.5	18.7	18.0	19.6	17.7	20.5	19.1	18.5	18.9	20.6	19.4	20.0	19.7	19.6	17.4	20.3	20.3	19.2	18.2	19.1	20.6	17.0	13.1	2.1
Early -		Ŋ	90.1	89.5	89.4	89.8	89.7	87.8	88.8	88.0	89.4	89.3	88.8	86.5	87.6	87.7	88.1	88.5	88.9	87.3	88.2	88.7	89.3	88.6	90.1	86.5	2.4	1.8
_		%STD	94	98	66	101	66	100	98	66	66	96	100	101	94	98	100	67	98	66	101	101	93	98	101	93	4	ი
	Р	DT/A	8.2	8.2	8.7 *	8.2	7.6	8.0	8.1	7.8	8.9 *	8.1	8.7 *	9.3 **	7.5	8.9 *	7.9	8.4	8.6 *	8.6 *	8.2	7.9	8.1	8.3	9.3	7.5	9.5	0.7
	YIELD	GT/A	21.1	22.0	21.0	20.1	19.2	19.9	20.0	19.9	21.7	20.1	21.1	23.3	18.0	21.9	18.5	21.4	21.4	20.4	19.7	18.9	19.8	20.4	23.3	18.0	9.4	1.6
		%DM (39.0	37.2	41.6	41.0	40.2	40.5	40.9	39.4	41.2	40.5	41.5	39.8	42.3	40.6	42.9	39.7	40.4	42.5	41.7	41.8	40.9	40.7	42.9	37.2	8.5	2.9
_	<u>ı </u>	TRAIT	ø	ø	ø	ø	VT2PRIB	STXRIB	D1	3122 E-Z	VT2PRIB		VT2PRIB	M	D1		D2		VT2P	D2	22	D1	CONV					_
				~	-	- -										-		-	-									
		RM	96	102	98	100	100	102	102	104	100	66	102	102	95	66	100	101	102	104	66	66	104					
	2022	BRAND / HYBRID	Dairyland Seed DS-3601Q	Dairyland Seed HiDF-3802Q	Dairyland Seed HiDF-3855Q	Dairyland Seed HiDF-4073Q	Dyna-Gro Seed D40VC41	Dyna-Gro Seed D41SS60	Golden Harvest G02K39-5122	Golden Harvest G04S19-3122	Legacy Seeds LC-4248 VT2P	Legacy Seeds LC493-21 5122	Legacy Seeds LC-5217 VT2P	Legacy Seeds LC525-21 PW	LG Seeds LG45C21-5122	LG Seeds LG49C28-VT2	LG Seeds LG50C93-5222	LG Seeds LG51C62-VT2	LG Seeds LG52C42-VT2	LG Seeds LG54C11-5222	NK Seeds NK9922-5222	NK Seeds NK9991-5122	Viking O.51-04P	AVERAGE	HIGHEST	LOWEST	CV (%)	LSD (5%)
		ВŖ	Dai	Dai	Dai	Dai	ā	ā	ß	යි	Lec	Lec	Ľe	Lec	G	G	G	G	G	G	¥	¥	Vik	A	Ξ	Ő	2	LSI

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid 2-Year Averages Available in online version at <u>https://www.canr.msu.edu/varietytrials</u>

- 30 -

				4	╞	Ingha	Ingham - Early	ly IV			900C /1	4	>			ð	Ottawa - Early	Early	È			2000 A
			Ц.		-		-	≤		_	2	-	×	YIELD				≤	۲.		Σ	Y.
TRAIT %DM GT/A		5		DT/A %S			_	~	СР	STR MK/T		0.	GT/A	DT/A	%STD	۵N	ADF		NDFD	CPS	TR MK/T	
Q 41.6 19.		19.	2	8.2		90.2 15.4	.4 26.5			4.0 3769		36.4	22.5	8.2	94	90.1	18.6	28.1	64.0	7.0 4(0.6 3568	
38.7		21.7			96 89			2 64.7	8.0			35.8	22.3	7.9	66	89.6	19.6	28.9	62.9	7.7 3	. ,	53 27432
		19.8		8.9 * 0					7.5			10	22.1	8.4 *	66	88.9	19.2	27.3	58.7		40.0 343	_
Q 42.3 18.5		18.5		7.8 1					7.8	35.8 3524	14 27233	39.8	21.8	8.6 *	101	89.4	17.8	22.6	53.3	7.2 4	t1.9 331	~
VT2PRIB 37.2 20.3		20.3		7.6 5		90.2 18.6	.6 29.3	3 66.3	6.9	38.2 3464			18.1	7.7	99	89.2	17.4	24.7	54.5	6.7 4:	42.9 3487	
STXRIB 43.2 19.4	`	19.4		8.4 1	100 88	88.8 19.4		~	8.0				20.3	7.7	101	86.7	19.9	26.2	48.1	7.2 3!		
D1 42.2 19.0		19.0		8.0					7.9	36.4 3398		39.5	21.1	8.3	98	88.1	17.1	25.8	53.2		42.1 3450	_
3122 E-Z 40.3 20.3		20.3		8.2 5		89.0 21.7		3 66.8	7.9	32.6 3436			19.6	7.5	66	87.1	19.4		49.5	7.0 39		
VT2PRIB 40.3 21.2		21.2		8.5 5		89.2 21.8			7.4	30.6 3284	4 28246		22.1	9.3 **	100	89.5	16.4		55.3	6.5 44	44.6 3531	
D1 42.6 19.0		19.0		8.1		9.4 18.5	.5 28.3		8.2	37.4 3497	17 28094	1 38.4	21.1	8.1	96	89.2	18.5	26.7	59.5	7.7 4(40.7 3514	
RB 42.7 20.9	20.9				-				7.6	_			21.3	8.5 *	101	86.7	19.5	24.5	45.4	6.7 39	_	
_	24.0			*		88.2 19.8			7.7			_	22.7	8.8 *	101	84.7	21.4		39.5	6.6 3		
42.4 18.1	18.1						.2 29.3		8.4			_	17.9	7.5	94	86.3	19.7	24.8	44.5	7.2 39		
9 44.8 20.7	20.7		0,	9.3 * 5		89.8 18.9			7.7				23.2	8.4 *	66	85.7	21.0		45.0	7.1 4:		
D2 43.2 18.7 8		18.7 8	∞	1 1	_				8.1	34.6 3433			18.2	7.7	100	88.0	18.9	27.4	55.9	7.3 39		
		20.9 8	ω	3.2 5		89.3 18.9		9 62.9	7.6	37.4 3488		39.6	21.9	8.6 *	97	87.6	20.3	27.2	54.0	6.9 39		
39.9		21.3		8.4 0					7.9	• •		-	21.6	8.7 *	98	87.0	18.1	23.3	44.0	7.0 4		
D2 43.8 19.6 8		19.6		3.5 5.					7.9	• •			21.2	8.7 *	66	86.9	20.5	28.4	53.2	7.5 3(_	
D2 45.3 19.0		19.0		8.6					8.1	36.8 3607	17 30916		20.4	7.8	101	86.2	22.0	30.0	53.3	6.7 3!	35.1 3069	
43.3		18.3		7.9 1	_	88.3 20.5			8.2	• •			19.5	7.8	102	89.0	18.0	26.1	56.5	7.3 4	_	
CONV 41.2 19.1	Ì	19.1		7.9 5		9.5 18.1	.1 27.9	9 62.2	8.2	37.3 3462	32 27422	2 40.7	20.6	8.4 *	88	89.0	18.3	26.5	56.4	7.0 39	39.9 3386	
41.9 20.0		20.0		8.3 5	68 86	89.4 19.2			7.9	36.4 3459	5 <u>9</u> 28860	39.6	20.9	8.2	98	87.8	19.1	26.2	52.7	7.1 39	39.9 3288	38 27132
45.3 24.0		24.0		9.8 11		1.0 21.8	.8 33.8		8.4	44.0 3769	9 33474	43.3	23.2	9.3	102	90.1	22.0	30.0	64.0	7.7 44	44.6 3568	
37.2 18.1		18.1		7.6 5		87.7 15.4	.4 26.5	5 57.6	6.9 3(0.6 3149	9 25689	35.8	17.9	7.5	88	84.7	16.4	22.6	39.5	6.5 3!	35.1 289	91 22466
8.2 8.9		8.9		9.8	4 2.	.1 10.	.8 10.0	0 9.9	5.2 1(7 9.0	13	8.8	9.9	9.1	4	2.7	15.0	14.0	20.3	6.4 1	2.3 11	17
4.1 2.1		2.1		1.0	4 2.	2.2	5 3.5	5 7.5	0.5 4	.6 287	7 4467	4.1	2.4	0.9	5	2.8	3.4	4.3	12.6	0.5 5	5.8 43	1 5525

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

ZONE 2 - 3

HURON, INGHAM & OTTAWA COUNTY SILAGE TRIALS - LATE (105 Day and Later)

TABLE 7L.

Huron - Late	YIELD % QUALITY MILK 2006	GT/A DT/A %STD IVD ADF																												
	J6	MK/A %DM	8112	0459	3982	2079	3900	9132	1065	4333	1966	4952	7968	5389	3348	5333	27207	1167	7144	7379	7470	9402	7077	3134	7352	7869	1167	4333	14	236
	MILK 2006																3320 27									3373 27			11	
		STR M		~		~	37.4 35					35.0 31						_	38.8 33				39.3 34			37.9 33		33.5 31	1.7 1	3.7 30
		СP		7.9 3		8.5 4	8.2 3		7.7 3						7.8 3		7.9 3		7.7 3	8.1 3		8.3	7.9 3		8.1 3	8.0 3	8.5 4	7.7 3	5.8 1	0.4
RAGE	% QUALITY	NDFD	62.4	65.8	62.9	56.4	65.0	54.5	58.9	52.6	57.2	53.6	61.5	52.9	54.3	57.0	58.3	61.9	53.4	57.5	51.6	58.5	58.3	59.1	61.7	58.0	65.8	51.6	13.6	6.5
Late - TRIAL AVERAGE	% QU	NDF					30.2		27.8			28.7							26.6						27.4		32.4		7.4	1.7
te - TRI		D ADF				8 16.6											9 20.2						9 18.1		5 18.3			3 16.6		
La		rd IVD	89.6				89.7		89.3										88.1				88.9				0 90.1		2.3	
		A %STD	16	96	*	67	67	<u> 3</u> 6	**	10	10	6	64	6	96	96	100	* 96	96	66	96	87	6	36	91	67	10	87	8	9
	YIELD	Б	7.8	8.7	9.3	7.7	8.1	8.3	9.8	7.5	8.0	7.6	8.2	7.7	8.5	7.6	8.3	9.1	8.2		8.6	8.1	8.1	8.4	7.7	8.3		7.5	10.3	0.7
		M GT/A	3 19.7	1 21.7	0 24.0	17.5	5 19.7	0 20.8	3 25.8	9 19.0	5 21.0	5 20.0	3 21.0	5 20.2	7 20.0	3 19.1	1 20.4	t 21.8	1 20.5) 22.6	3 22.4	0 20.0	0 20.8	3 22.6	18.3	0 20.8	1 25.8	3 17.5	8.7	1.5
		WD%	39.8	40.1	39.0	3 44.4	3 41.5	B 40.0	B 38.3	39.9	38.5	38.5	39.3	38.5	43.7	39.6	40.4	42.4	40.1	38.0	38.6	41.0	39.0	37.8	42.4	40.0	44.4	37.8	8.7	2.9
		TRAIT	ø	Ø	Ø	TRERIB	STXRIB	VT2PRIB	VT2PRIB	D2	5	5	D2	VT2P	5	STX	VT2P	VT2P	VT2P	STX	VT2P	STX	VT2P	STX	CONV					
		RM	105	105	110	105	108	110	112	110	112	105	108	109	107	108	107	112	113	115	115	107	108	110	108					
	2022	BRAND / HYBRID	Dairyland Seed DS-4510Q	Dairyland Seed HiDF-4545Q	Dairyland Seed HiDF-5000Q	Dyna-Gro Seed D45TC55	Dyna-Gro Seed D48SS50	Dyna-Gro Seed D50VC09	Dyna-Gro Seed D52DC82	Golden Harvest G10L16-522A	Golden Harvest G12S75-5122	Legacy Seeds LC555-21 5122	LG Seeds LG58C77-5222	LG Seeds LG59C72-VT2	NK Seeds NK0748-5122	Renk RK700SSTX	Renk RK710DGVT2P	Renk RK842VT2P	Renk RK895DGVT2P	Renk RK940SSTX	Renk RK945DGVT2P	Specialty Hybrids 37A901	Specialty Hybrids 38G252	Specialty Hybrids 40A662	Viking O.48-08P	AVERAGE	HIGHEST	LOWEST	CV (%)	LSD (5%)

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

2-Year Averages Available in online version at https://www.canr.msu.edu/varietytrials

	96	MK/A	3756	7511	6603	7320	3076	3816	3963	1806	3293	5888	7285	5919	609t	3385	3187	1611	1997	3366	3565	3141	3342	3949	3789	28029	3141	3293	16	284
	MILK 2006																													4,
	2	R MK/T																								4 3159		5 2758	6 15	355(
		CP STR	7.5 43.0	7.8 38.6	3.3 39.6	3.1 44.3	8.4 37.1	7.7 40.	7.7 42.4	7.7 39.6	7.4 32.	7.5 36.	8.0 39.7	7.5 41.	7.4 37.	8.3 41.4	7.3 37.2			8.2 37.0		8.3 39.9	7.3 40.7	8.0 36.7	7.0 41.6	7.7 39.4	8.4 44.3	7.0 32.	5.2 12.).5 5.8
	ΠY	NDFD	53.8	57.4	55.5 8	38.5		40.3	47.1	42.0			53.8					58.2			36.0	50.1 8	46.4		54.3	48.2		36.0	19.6	11.1
- Late	% QUALITY	NDF N		26.7			29.1		23.8				24.2								22.4				25.4	24.9 4	32.2	20.6	9.8	2.9
Ottawa - Late	0.	ADF	17.4	19.4		16.5	19.7	18.5	17.9		23.6	21.1			20.5		20.6		19.1							19.0	23.6	16.5	15.3	3.4
		۵۷	88.2	88.1	88.3	87.4	88.7	86.8	87.9	85.6	83.8	85.3	88.2	87.1	85.7	87.1	86.2	88.4	86.2	87.4	85.7	87.5	86.7	86.8	88.1	87.0	88.7	83.8	2.7	2.8
		%STD	98	95	92	97	98	66	66	66	66	101	94	98	100	66	101	96	94	87	100	77	101	97	91	96	101	77	10	11
	YIELD	DT/A	8.1	8.5	11.0 **	8.4	8.3	8.6	10.6 *	8.1	8.4	8.1	8.6	8.0	8.7	8.6	9.1	9.4	8.2	9.5	0.0	8.9	8.8	0.6	8.4	8.8	11.0	8.0	9.8	1.0
	YIE	GT/A	21.0	22.1	27.9	19.4	21.3	22.5	29.1	20.9	22.5	22.5	23.4	22.4	23.3	21.6	22.6	24.7	21.6	26.5	24.5	22.6	23.0	25.7	21.0	23.1	29.1	19.4	7.7	2.1
		WDW	38.7		39.6			38.7		38.7			36.6				40.1									38.2		35.2	9.8	4.4
	90	MK/A	7467	33407	7866	6837	9725	9448	3166	3860	6640	4016	8652	4859	1087	2280	6227	0723	9291	5391	8375	5663	7073	9319	5914	27708	33407	2280	13	1198
	MILK 2006																													8
	_	R MK/T																								4 3587		4 3329	7 6	5 24
		CP ST	8.3 36.	8.0 39.0	8.4 34.6	8.9 41.3	8.0 37.6	8.1 38.	7.7 36.3	8.7 33.8	8.6 34.6	8.1 33.	8.4 38.2		8.1 39.		8.5 34.2	7.9 34.3	8.1 37.	8.0 34.4	8.2 37.3	8.2 33.	8.6 37.9	7.7 38.		8.3 36.4	9.2 41.3	7.7 33.	6.3 10.	0.6 4.6
	,TT	NDFD	71.0	74.1	70.3	74.4	70.4		. 2.07	63.3		63.3					66.5				67.2	6.99				68.0	74.4	. 2.09	8.7 (7.0
- Late	% QUALITY	NDF N	31.1	30.9	32.7	30.4	31.3	30.3	31.7	30.8	32.6		28.9		29.4		31.6	32.8		31.3		31.8	30.3	31.8	29.4	30.9	32.8	28.9	7.6	2.8
Ingham - Late		ADF	19.3	18.0	20.4	16.8	18.8	18.3	19.6						17.6		19.8					20.2		18.7		19.3	21.1	16.8	10.7	2.4
		۵V		92.1	90.3	92.3	90.8	90.7	90.8	88.7	88.8	88.6	91.1	88.4	90.8	89.6	89.5	88.7	90.0	88.7	90.3	89.5	91.0	90.6	91.0	90.1	92.3	88.4	2.0	2.1
		%STD	67	98	88	97	97	98	98	101	100	97	95	66	97	98	98	67	96	98	66	97	98	66	92	67	101	88	e	4
	YIELD	DT/A	7.5	8.9 **	7.6	7.1	7.8	7.9 *	8.9 **	7.0	7.7	7.1	7.8	7.4	8.3 *	9.9	7.4	8.7 *	8.2 *	7.6	8.2 *	7.4	7.3	7.9 *	6.9	7.7	8.9	6.6	11.0	1.0
	١٢	GT/A	18.3	21.3	20.0	15.5	18.0	19.0	22.4	17.1	19.5	17.5	18.6	18.0	16.7	16.7	18.3	19.0	19.4	18.8	20.4	17.5	18.5	19.5	15.6	18.5	22.4	15.5	10.0	2.2
		WD%	40.9	41.7	38.4	45.4	43.5	41.3	39.9	41.2	39.3	41.2	42.1	41.2	49.7	39.2	40.7	46.5	42.2	40.2	40.5	42.5	39.7	40.4	44.6	41.8	49.7	38.4	7.6	3.8
_		TRAIT	ø	ø	Ø	TRERIB	STXRIB	VT2PRIB	VT2PRIB	D2	D1	D1	D2	VT2P	D1	STX	VT2P	VT2P	VT2P	STX	VT2P	STX	VT2P	STX	CONV					
		RM T	105	105	110	105 TF	108 S ⁻	110 VI	112 VI	110	112	105	108	109 \	107	108	107 \	112	113	115	115 \	107	108 \	110	108 C					
			10Q	545Q	0000	55	50	60;	382	6-522A	5-5122	1 5122	22	12	2							01	52	62						
	2022	RID	DS-45	I HiDF-4	I HiDF-5	J D45TC	JD48SS	I D50VC	I D52DC	t G10L1(t G12S7	LC555-2	8C77-52	9C72-V1	748-512	STX	GVT2P	r2P	GVT2P	STX	GVT2P	ds 37A9	ds 38G2	ds 40A6	Ь					
		BRAND / HYBRID	Dairyland Seed DS-4510Q	Dairyland Seed HiDF-45450	Dairyland Seed HiDF-5000C	Dyna-Gro Seed D45TC55	Dyna-Gro Seed D48SS50	Dyna-Gro Seed D50VC09	Dyna-Gro Seed D52DC82	Golden Harvest G10L16-522A	Golden Harvest G12S75-5122	Legacy Seeds LC555-21 5122	LG Seeds LG58C77-5222	LG Seeds LG59C72-VT2	NK Seeds NK0748-5122	Renk RK700SSTX	Renk RK710DGVT2P	Renk RK842VT2P	Renk RK895DGVT2P	Renk RK940SSTX	Renk RK945DGVT2P	Specialty Hybrids 37A90	Specialty Hybrids 38G252	Specialty Hybrids 40A662	Viking O.48-08P	AGE	ST	ST		(%)
		BRAN	Dairyla	Dairyla	Dairyla	Dyna-(Dyna-(Dyna-(Dyna-(Golder	Golder	Legac)	LG Set	LG Se	NK Se	Renk F	Renk F	Renk F	Renk F	Renk F	Renk F	Specia	Specia	Specia	Viking	AVERAGE	HIGHEST	LOWEST	CV (%)	LSD (5%)

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

TABLE 8E.

IOSCO, OSCEOLA & PRESQUE ISLE COUNTY SILAGE TRIALS - EARLY (97 Day and Earlier)

4	
۳	
ZO	

	MILK 2006	MK/A	24644	29810	29721	29193	26041	29712	27740	31203	27318	27882	28326	31203	24644	15	5276
	MILK	MK/T	3397	3391	3670	3509	3269	3114	3112	3548	3245	3395	3365	3670	3112	റ	367
		STR	35.5	33.7	38.0	37.5	32.1	33.8	35.7	34.9	37.2	36.2	35.5	38.0	32.1	11.9	5.1
		С	8.5	8.4	8.1	8.4	8.3	8.4	7.9	8.2	8.1	8.7	8.3	8.7	7.9	5.0	0.5
	% QUALITY	NDFD	65.4	70.2	6.69	66.2	66.6	59.7	57.6	70.6	57.7	63.4	64.7	70.6	57.6	9.9	7.7
Early	% QU	NDF	27.8	29.8	28.2	26.8	30.4	27.0	25.5	30.2	25.4	27.3	27.8	30.4	25.4	9.5	3.2
losco - Early		ADF	18.2	19.4	17.8	17.2	20.5	18.9	17.8	18.7	18.0	18.2	18.5	20.5	17.2	11.4	2.5
≚		Z	90.4	91.1	91.6	91.0	89.9	89.2	89.3	91.1	89.4	90.0	90.3	91.6	89.2	1.8	2.0
		%STD	93	92	96	97	97	67	93	98	94	94	96	86	92	5	5
	YIELD	DT/A	7.2	8.8 *	8.1 *	8.3 *	8.0 *	8.1 *	8.9 **	8.8 *	8.4 *	8.2 *	8.3	8.9	7.2	9.8	1.0
	۲I	GT/A	22.0	29.3	24.5	27.4	27.3	26.1	28.5	28.7	27.0	26.3	26.7	29.3	22.0	4.6	1.5
		WO%	32.8	29.9	33.0	30.2	29.2	31.2	31.3	30.7	30.9	31.1	31.0	33.0	29.2	7.8	2.9
	2006	MK/A	24532	24362	25046	25256	22956	24337	24309	25881	26306	22909	24589	26306	22909	13	2201
	MILK 2006	MK/T	3328	3230	3460	3322	3041	2957	3045	3111	3126	3152	3177	3460	2957	6	192
		STR	36.8	34.6	37.3	37.6	32.5	34.6	34.3	33.2	36.5	33.6	35.1	37.6	32.5	22.1	5.3
	% QUALITY	Ъ	7.7	7.6	7.7	7.6	7.8	7.8	7.3	7.3	7.7	8.0	7.6	8.0	7.3	13.3	0.7
		NDFD	59.5	63.2	65.1	59.5	58.0	51.8	56.4	59.8	54.4	59.4	58.7	65.1	51.8	13.5	5.4
TRIAL AVERAGE		NDF	27.9	29.1	28.6	26.9	29.4	26.4	28.2	30.0	26.2	29.5	28.2	30.0	26.2	16.5	3.2
AL AVE		ADF	19.3	20.1	19.0	18.3	21.0	19.7	20.2	20.7	19.1	20.5	19.8	21.0	18.3	19.2	2.6
TRIJ		۵N	88.9	89.3	90.06	89.2	87.9	87.5	87.8	88.1	88.1	88.1	88.5	90.0	87.5	2.7	1.6
		%STD	93	91	96	96	96	96	94	95	94	93	94	96	91	5	с
	YIELD	DT/A	7.3	7.8 *	7.2	7.6 *	7.3	7.8 *	8.0 *	8.3 **	7.9 *	7.2	7.6	8.3	7.2	13.0	0.7
	۲I	GT/A	19.9	24.9	20.3	22.2	23.0	22.9	24.0	25.8	23.1	21.7	22.8	25.8	19.9	19.4	3.0
		WD%	37.3	32.3	36.3	34.8	31.9	34.4	33.9	32.9	34.5	33.6	34.2	37.3	31.9	6.6	1.5
		TRAIT	ø	ø	ø	VT2PRIB	D2	ZV	VT2PRIB	TRERIB	Z۸	D1					
		RM	91	96	06	> 96	91	95	95 V	L 16	92	95					
	2022	BRAND / HYBRID	Jairyland Seed DS-3162Q	Dairyland Seed DS-3601Q	Dairyland Seed HiDF-3044Q	yna-Gro Seed D36VC66	solden Harvest G91V51-5222A	Golden Harvest G95D32-3220	Legacy Seeds LC451-21 VT2P	-egacy Seeds LC474-20 TRE	LG Seeds LG42C37-3220	G Seeds LG45C21-5122	VERAGE	HIGHEST	OWEST	(%) A:	SD (5%)
		۵	ப				U	U	_	_	_		∢	Т	_	O	_

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

2-Year Averages Available in online version at https://www.canr.msu.edu/varietytrials

							Pres	due Isle	Presque Isle - Early	>								5	Vexford	Wexford - Early	>				
2022				Ĺ	YIELD				% QUALITY	VLITY		Σ	MILK 2006	9		YIELD				8 %	% QUALITY			MILK 2006	2006
BRAND / HYBRID	RM	TRAIT	WD%	GT/A	DT/A	%STD	٩٧	ADF	NDF	NDFD	CP S	STR MK/T	K/T MK/A	VA %DM	M GT/A	V DT/A	A %STD	D ND	D ADF	F NDF	: NDFD	СP	STR	MK/T	MK/A
Dairyland Seed DS-3162Q	91	ø	34.7	21.5	7.4	93	86.9	23.9	33.2	60.5	8.3 2	28.9 2996	96 22196	196 44.3	3 16.2	7.2	*	. 89.3	.3 15.8	8 22.7	52.7	6.4	46.1	3592	26755
Dairyland Seed DS-3601Q	96	Ø	29.3	27.6	8.1 *	91	86.2	25.0	33.7	58.9	8.2 2	25.1 26	2675 21542	542 37.7	7 17.8	6.7	*	90.6	.6 16.0	0 23.8	60.5	6.1	45.1	3622	21732
Dairyland Seed HiDF-3044Q	06	Ø	36.6		7.1	95	86.8	25.0	35.3	62.6	8.4 2	26.4 2944	44 20929	39.2	2 16.6	6.5	* 97	91.7	7 14.3	3 22.4	62.8	6.7	47.6	3766	24487
Dyna-Gro Seed D36VC66	96	VT2PRIB	34.9	22.3	7.8	93	86.9	21.9	30.4	56.1	7.9 3	31.9 2997	97 23592	592 39.4	4 16.8		* 97	89.8	8 15.7	7 23.4	56.4	6.4	43.4	3462	22982
Golden Harvest G91V51-522A	91	D2	31.0	22.9	7.1	94	85.8	25.0	33.7	57.8	8.2 2	24.9 2644	44 21117	117 35.4	4 19.0	6.7	* 97	87.	.9 17.6	6 24.0	(19.5	7.0	40.6	3210	21712
Golden Harvest G95D32-3220	95	ZΛ	33.1	24.1	8.0	95	86.6	22.5	30.0	54.3	8.3 2	28.7 2722	22 21531	31 39.0	0 18.4	7.1	*	. 86.9	9 17.8	8 22.4	41.4	6.8	41.2	3035	21767
Legacy Seeds LC451-21 VT2P	95	VT2PRIB	32.7	24.8	8.1 *	95	85.4	24.9	33.4	55.6	7.8 2	26.0 2648	48 21359	37.6	6 18.9		* 93	88.8	8 17.9	9 25.6	56.1	6.1	41.3	3373	23829
Legacy Seeds LC474-20 TRE	67	TRERIB	30.6		8.9 **	95	86.0	23.4	31.9	55.2	8.1 2	27.0 2673	73 23802	302 37.3	3 19.5		** 92	87.1	1 19.9	9 28.0	53.7	5.7	37.6	3112	22637
LG Seeds LG42C37-3220	92	ZΛ	33.5		8.0	92	86.7	21.9	29.2	54.1	8.3 3	30.7 2837	37 25675	39.2	2 18.3			88.3	3 17.5	5 24.1	51.5	6.6	41.6	3295	25925
LG Seeds LG45C21-5122	95	D1	33.6	22.0	7.4	95	85.2	25.4	34.7	56.4	8.7 2	24.4 2667	67 20310	36.1	1 16.8		89	89.0	0 18.0	0 26.4	58.3	6.7	40.1	3395	20535
AVERAGE			33.0	23.8	7.8	94	86.2	23.9	32.5	57.2		27.4 2780	80 22205	205 38.5	5 17.8		94	88.9	9 17.1	1 24.3	54.3	6.4	42.5	3386	23236
HIGHEST			36.6	29.2	8.9	95	86.9	25.4	35.3	62.6	8.7 3	31.9 2997	97 25675	575 44.3	3 19.5			91.7	7 19.9	9 28.0	62.8	7.0	47.6	3766	26755
LOWEST			29.3	19.9	7.1	91	85.2	21.9	29.2	54.1	7.8 2	24.4 2644	44 20310	310 35.4	4 16.2	6.1	89	86.9	9 14.3	3 22.4	41.4	5.7	37.6	3035	20535
CV (%)			6.0	10.3	9.0	4	2.0	9.5	9.8	12.2	6.4 1	15.3 1	1 13	3 6.1	8.9	10.0	5		4 11.	1 9.5	7.1	6.0	8.9	7	11
LSD (5%)			2.4	3.0	0.8	5	2.1	2.7	3.9	8.4	0.6	5.1 36	366 3494	94 2.9	1.9	0.8	5	1.5	5 2.3	3 2.8	4.6	0.5	4.5	282	3138

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

TABLE 8L.

IOSCO, OSCEOLA & PRESQUE ISLE COUNTY SILAGE TRIALS - LATE (98 Day and Later)

							TRIA	L AVE	TRIAL AVERAGE										losco	losco - Late					
2022				×	YIELD				% QUALITY	Σ		Σ	MILK 2006	9		YIELD				0 %	% QUALITY			MILK 2006	2006
BRAND / HYBRID	RM	TRAIT	WD%	GT/A	%DM GT/A DT/A	%STD	٩N	ADF	NDF N	NDFD	CP S	STR M	MK/T MK/A	MD% A/	M GT/A	A DT/A	A %STD	ani a.	O ADF	= NDF	: NDFD	СР	STR	MK/T	MK/A
Dairyland Seed HiDF-3855Q	86	ø	33.3	24.8	8.1 **	67	89.0	20.2	29.1	62.0	7.2 3.	34.2 31	3181 239	23945 31.	1 27.0	8.4 *	* 99	90.1	1 20.3	3 30.5	67.4	7.8	31.6	3168	25350
Dairyland Seed HiDF-4073Q	100	Ø	32.1	24.8	7.9 *	98	90.06	19.4	29.5	64.8	7.3 3.	34.4 32	3294 25691	ig1 31.5	5 27.4	1 8.7 *	* 100	90.7	7 17.8	3 27.3	64.7	8.0	35.6	3338	28793
Dyna-Gro Seed D40VC41	100	VT2PRIB	31.4	26.2	8.1 **	97	88.1	20.7	29.1	58.4	7.0 3	32.9 30	3016 2426	61 29.2	2 29.8	3 8.7 *	* 100	89.7	7 19.3	3 28.7	. 64.0	7.6	33.3	3174	27665
Golden Harvest G02K39-5122	102	5	31.0	24.1	7.3	95	88.6	21.6	32.1	64.4	7.5 3	30.3 30	3097 23350	50 29.7	7 26.9	9 8.0 *	* 97	90.7	7 19.1	1 30.4	. 69.2	8.4	32.8	3390	27013
Golden Harvest G04S19-3122	104	104 3122 E-Z	31.1	26.5	8.1 **	96	88.5	23.7	35.0	67.1	7.7 2	25.3 29	2924 24584	84 28.0	0 28.9	9 8.1 *	* 98	90.5	5 21.2	2 32.7	71.0	8.4	27.5	3122	25199
Legacy Seeds LC464-21 3120	96	ΒZ	34.8		22.9 7.9 *	67	86.7	21.4	29.5	54.4	7.1 3;	32.2 29	2907 228	22835 33.6		3 8.3 *		87.9	9 20.9	30.6	60.3	7.4	30.2	2944	24693
LG Seeds LG49C28-VT2	66	VT2P	31.6	26.0	8.1 **	06	87.4	21.5	30.2	57.9	7.4 3	31.3 29	2949 24C	24019 31.1		8.8 **	** 92	88.6	6 18.8	3 27.2	57.8	8.2	33.8	3077	27083
LG Seeds LG50C93-5222	100	D2	32.2	23.9	7.6 *	97	87.5	21.9	31.9	60.4	7.6 3	30.0 30	3002 22702	02 31.1	1 26.1	8.1*	* 99	89.4	4 19.6	30.5	64.6	8.3	30.8	3146	25530
Viking O.69-01P	101	CONV	30.2	23.3 6.9	6.9	90	88.3	22.3	32.6	64.0	8.0 2	28.3 29	2969 208	20870 28.2	2 25.0	7.1	89	91.5	5 19.3	3 31.1	72.6	9.0	31.0	3316	23526
AVERAGE			32.0	24.7	7.8	95	88.2	21.4	31.0	61.5	7.4 3	31.0 30	3037 23584	84 30.4	4 27.1	8.2	67	89.9	9 19.6	5 29.9	65.7	8.1	31.9	3186	26095
HIGHEST			34.8	26.5	8.1	98	90.0	23.7	35.0	67.1	8.0 3.	34.4 32	3294 25691	ig1 33.6	6 29.8	8.8	100	91.5	5 21.2	2 32.7	72.6	9.0	35.6	3390	28793
LOWEST			30.2	22.9	6.9	06	86.7	19.4	29.1	54.4	7.0 2	25.3 29	2907 20870	370 28.0	0 24.8	3 7.1	89	87.9	9 17.8	3 27.2	57.8	7.4	27.5	2944	23526
CV (%)			7.0	5.8	9.5	4	2.1	9.7	8.4	10.7	5.4 1	12.5 1	10 1:	3 5.9	9 4.4	7.8	4	1.6	9.3	8.2	8.4	5.1	11.6	8	13
LSD (5%)			1.5	1.0	0.5	ო	1.2	1.4	1.8	4.5	0.3	.6	204 208	81 2.2	2 1.4	0.8	4	1.8	3 2.2	3.0	6.7	0.5	4.5	294	4058
																							•		

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

2-Year Averages Available in online version at https://www.canr.msu.edu/varietytrials

- 35 -

			_				Pres	Presque Isle - Late	e - Lati	Ø								Š	Wexford - Late	- Late					
2022					YIELD				% QUALITY	VLITY		Σ	MILK 2006	9		YIELD				% QUALITY	NLITY			MILK 2006	900
BRAND / HYBRID	RM	RM TRAIT	%DN	%DM GT/A	DT/A	%STD		ADF	NDF	NDFD	CP S.	STR MK/T	VT MK/A	A %DM	A GT/A	A DT/A	A %STD	DVD (ADF	NDF	NDFD	CP	STR N	MK/T 1	MK/A
Dairyland Seed HiDF-3855Q	98	a	30.3	29.1	8.8 *	94	87.2	23.2	31.9	59.8	8.0 28	28.1 2855	55 22166	66 38.4	18.1	6.9	* 98	89.9	17.0	25.0	58.9	6.0 4	42.9 3	3519 2	24319
Dairyland Seed HiDF-4073Q	100	Ø	29.7	30.3	9.0 *	98	89.8	22.6	34.9	70.4	8.2 27	27.2 3172	72 28463	63 35.2	2 16.8	5.9	97	89.5	17.8	26.2	59.4	5.7 4	40.4 3	3372 1	19819
Dyna-Gro Seed D40VC41	100	100 VT2PRIB	3 28.7	29.7	8.5 *	97	86.0	25.5	34.3	58.7	7.5 24	24.7 2652	52 22625	25 36.3	3 19.1	6.9	* 92	88.5	17.5	24.5	52.4	5.9 4	40.8 3	3221 2	22491
Golden Harvest G02K39-5122	102	5	28.3	29.3		92	87.5	25.1	36.3	65.7	8.3 23	23.3 2834	34 23491	91 35.2	2 16.3	5.7	95	87.6	20.5	29.6	58.4	5.9 3	34.8 3	3068 1	19547
Golden Harvest G04S19-3122	104	104 3122 E-Z	30.3	31.0	9.4 **	96	86.5	27.9	40.1	66.1	8.8 15	15.9 2493	93 26983	83 35.0	19.5	6.9	* 93	88.5	21.9	32.4	64.4	6.0 3	32.7 3	3156 2	21571
Legacy Seeds LC464-21 3120	96	ΒZ		25.8	8.2	98	85.3	24.0	31.5	53.0	7.7 28	28.5 2716	16 22521	21 38.9	17.9		* 96	87.0	19.2	26.4	50.0	6.2 3	37.9 3	3059 2	21292
LG Seeds LG49C28-VT2	66	VT2P	28.0		8.1	89	86.1	24.9	34.4	58.7	8.3 24	24.1 2680	80 21601	01 35.8	3 21.0	7.5 **		87.6	20.9	28.8	57.1	5.6 3	36.1 3	3089 2	23374
LG Seeds LG50C93-5222	100	D2	29.0		7.6	96	84.9	27.5	37.3	59.5	8.7 20	20.5 2568	68 19627	27 36.4	19.2			88.2	18.6	27.8	57.3	5.9 3	38.8 3	3290 2	22949
Viking O.69-01P	101	CONV	27.7	27.4	7.6	88	85.6	26.4	36.6	60.5	8.9 2(20.4 2562	62 20747	47 34.7	17.5	6.1	93	87.7	21.2	30.1	58.8	6.2 3	33.5 3	3029 1	18338
AVERAGE			29.3	28.7	8.4	94	86.5	25.2	35.3	61.4	8.3 23	23.6 2726	26 23136	36 36.2	2 18.4	. 6.7	94	88.3	19.4	27.9	57.4	5.9 3	37.5 3	3200 2	21522
HIGHEST			31.9	31.0	9.4	86	89.8	27.9	40.1	70.4	8.9 28	28.5 3172	72 28463	63 38.9	21.0	7.5	98	89.9	21.9	32.4	64.4	6.2 4	42.9 3	3519 2	24319
LOWEST			27.7	25.8	7.6	88	84.9	22.6	31.5	53.0	7.5 15	15.9 2493	93 19627	27 34.7	7 16.3	5.7	88	87.0	17.0	24.5	50.0	5.6 3	32.7 3	3029 1	18338
CV (%)			9.8	5.1	10.6	5	2.6	10.0	8.4	11.3	5.1 18	18.6 14	4 14	t 5.2	8.8	9.6	4	1.9	9.4	8.6	12.4	6.4	9.3	8	13
LSD (5%)			3.5	1.8	1.1	9	2.7	3.1	3.6	8.4	0.5 5	5.3 447	17 4077	77 2.3	2.0	0.8	5	2.1	2.2	2.9	8.6	0.5	4.2	327 3	3274

** Highest Yielding Hybrid * Not Significantly Different from Highest Yielding Hybrid

2-Year Averages Available in online version at https://www.canr.msu.edu/varietytrials

ZONE 4

MYCOTOXINS IN MICHIGAN SILAGE CORN – AN OVERVIEW

Harkirat Kaur, Phil Durst, Phil Kaatz, Martin Mangual, and Maninder Pal Singh

Fungi such as *Aspergillus, Fusarium, Penicillium* and *Gibberella* spp. can cause accumulation of mycotoxins (toxic secondary metabolites) in corn ear and stalk. Cool and wet weather conditions around silking tends to be favorable for growth of *F. graminearum* and may cause high deoxynivalenol (DON or vomitoxin) accumulation. Feeding by birds, animals, and ear damaging insects such as western bean cutworm (WBC) and European corn borer (ECB) can provide easy entry for the fungus and intensify infections. Mycotoxins in grain corn have long been studied and measured, but the presence of mycotoxins in silage corn might get ignored. Yet, the impact of mycotoxins on livestock will be from the total mycotoxin load in the ration, not just that from one component.

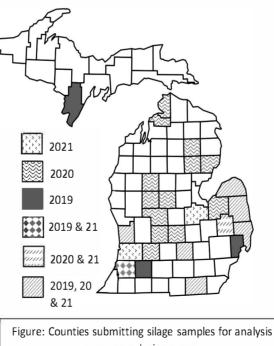
Mycotoxins result in metabolic disruptions in livestock, risking their lives and productivity, and causing losses in milk production, hormonal imbalance, reduced reproductive performance and in severe cases the death of animals. Mycotoxins can have serious economic consequences if present in sufficient concentrations. Moreover, various mycotoxins co-occur in the plant and their impacts on the health of livestock may be synergistic. This makes it difficult to determine safe levels (thresholds) for individual mycotoxins.

To understand the extent and gravity of mycotoxins. To understand the extent and gravity of mycotoxins in Michigan silage corn, MSU Cropping System Agronomy lab conducted a three-year survey of Michigan silage corn starting in 2019. A total of 122 samples from across 22 counties were collected during harvesting seasons of 2019, 2020 and 2021 and analyzed for 26 different mycotoxins.

Results showed the presence of mycotoxins in Michigan silage corn. All the samples tested positive for at least one mycotoxin. Deoxynivalenol was detected in all 122 samples. At least 60% (in 2021) and 50% (in 2019) of the samples had DON concentrations greater than 1 ppm (threshold limit for dairy cattle), whereas in 2020 only 12% of samples had DON levels greater than 1 ppm (Table 1). Other frequently occurring mycotoxins in 2021 were zearalenone (ZON), fumonisins, and moniliformin. However, none of these toxins were found at levels greater than their respective threshold limits (2 ppm, 0.1 ppm, and 0.4 ppm, respectively for dairy cattle). In 2020 and 2019, enniatins and beauvericin were the toxins that occurred in 100% of the samples, but their concentrations were low. The second most frequently occurring category of mycotoxins in 2020 were fumonisins, with eight samples at levels greater than threshold (2 ppm). Zearalenone occurred in significant amounts only in 2019, with three samples greater than 1 ppm.

Co-occurrence of mycotoxins was reported in all the samples. On average, most of the samples tested positive for at least 10 mycotoxins in 2021 with a maximum of 13 in one sample. In 2020, four samples tested positive for more than 20 mycotoxins and each sample tested positive for at least seven different mycotoxins. Mycotoxin co occurrence was most pronounced in 2019 of all three years with a maximum of 24 mycotoxins detected in a single sample. Overall, the concentration and frequency of mycotoxins were observed to be dependent on regional weather conditions around silking in corn. In 2020, since growing season was drier and rainfall was more sporadic compared to 2019 and 2021, lower frequency and concentration of mycotoxins was observed.

Highest DON and ZON concentration found across tested samples was lower in 2020 (1.4 and 0.07 ppm) compared to 2019 (5.7 and 2.5 ppm) and 2021 (18.4 ppm and 0.23 ppm, respectively). The only toxin that occurred in higher concentration in 2020 (10.6 ppm) than in 2019 and 2021 was fumonisin. Accumulation of fumonisin occurs due to *F. verticilloides* infection which is favored when the environment is warm and dry around silking whereas DON is the dominant toxin under cool and humid conditions


Although all the samples tested positive for multiple mycotoxins, levels of individual toxins were not always above threshold levels (Table 1). Besides that, some of the tested mycotoxins do not have established threshold levels or they might be lower due to synergistic negative impacts of mycotoxin co-occurrence. Therefore, mycotoxin levels must be taken into consideration while making management decisions to prevent any risks to livestock health.

There are few ways to overcome mycotoxins once they are present in corn. therefore, preventing mycotoxin accumulation in the field using integrated pest management approach is essential. These include hybrid selection, timely planting, fungicide application, scouting and spraying for ear feeding insects, and timely harvest. Recent research at MSU has shown that hybrid selection (i.e., use of ear-feeding insect protection traits) reduced insect feeding (70-85%), ear rot infections (70-75%) and eventually mycotoxin accumulations in silage corn at locations with high insect pressure. Furthermore, hybrids with resistance against stalk rots (in addition to ear rots) can also help alleviate the accumulation of mycotoxins. Fermentation processes in bunker silos will not break down mycotoxins from an already infected silage corn which makes the field management even more crucial.

		-	
Toxin	2019	2020	2021
DON ¹ (detectable)	100	100	100
DON >1 ppm (threshold)	50	12	60
ZON ² (detectable)	100	35	100
ZON >0.4 ppm (threshold)	26	0	0
Fumonisins (detectable)	95	96	100
Fumonisins >2 ppm (threshold)	5	16	0
Moniliformin (detectable)	62	56	100
Moniliformin >0.1 ppm (threshold)	0	0	3
Enniatins and beauvericin (detectable)	100	100	100
Enniatins and beauvericin (high levels)	0	0	0
Presence of >1 mycotoxins	100	100	100
Presence of >10 mycotoxins	100	92	96

¹ Deoxynivalenol, ² zearalenone

Table 1. Percentages of samples (n=122) with toxins at detectable and threshold levels (for dairy cattle).

Notes

Notes

THANK YOU TO OUR FARM COOPERATORS:

ZONE 1

George Brossman, Vandalia OSU NW Experiment Station, Matt Davis & Richard Minyo Hoytville, Ohio Kyle Huff, Coldwater Tim Stutzman, Senica

ZONE 2

Adam Geertman, West Olive Peggy Gross & Dick Birchmeier, New Lothrup MSU Agronomy Farm, Mike Particka and John Calogero, East Lansing

ZONE 3

Scott Karnatzs, Greenville Ron, Ed and Chris McCrea, Bad Axe Robert and Ryan Ohse, Custer

ZONE 4

Jeremy, Tim and Roger Beebe, Whitmore Brandon Gingrich, Leroy Paul Ponik and Jeremy Karsten, Posen

THANK YOU TO THOSE WHO HELPED:

Bill Widdicombe Tom Siler Harkirat Kaur Patrick Copeland Benjamin Agyei Tyler Resig Riley Watts Paulo Arias Prado Marina Consonni

MICHIGAN STATE UNIVERSITY **EXTENSION**

MSU is an affirmative-action, equal-opportunity employer, committed to achieving excellence through a diverse workforce and inclusive culture that encourages all people to reach their full potential. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, gender identity, religion, age, height, weight, disability, political beliefs, sexual orientation, marital status, family status or veteran status. Issued in furtherance of MSU Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture. Jeff Dwyer, Director, MSU Extension, East Lansing, MI 48824. This information is for educational purposes only. Reference to commercial products or trade names does not imply endorsement by MSU Extension or bias against those not mentioned. This bulletin becomes public property upon publication and may be reprinted verbatim as a separate or within another publication with credit to MSU. Reprinting cannot be used to advertise а commercial product or company. Cover photos by MSU Extension, Farm News Media or Courtesy.

Introduction

Company Index

Weather

Corn Grain Performance Trials

Corn Grain Agronomics

Corn Grain Hybrid Index

Zone 1 Grain Early - 107 Day and Earlier

Zone 1 Grain Late - 108 Day and Later

Zone 2 Grain Early - 101 Day and Earlier

Zone 2 Grain Late - 102 Day and Later

Zone 3 Grain Early - 97 Day and Earlier

Zone 3 Grain Late - 98 Day and Later

Zone 4 Grain Early - 89 Day and Earlier

Zone 4 Grain Late - 90 Day and Later

Conventional - 101 Day and Earlier

Conventional - 102 Day and Later

Corn Silage Performance Trials

Corn Silage Agronomics

Corn Silage Hybrid Index

Zone 1 Silage Early - 110 Day and Earlier

Zone 1 Silage Late - 111 Day and Later

Zone 2-3 Silage Early - 104 Day and Earlier

Zone 2-3 Silage Late - 105 Day and Later

Zone 4 Silage Early - 97 Day and Earlier

Zone 4 Silage Late - 98 Day and Later