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Understory vegetation is an important component in forest ecosystems not only because of its contributions
to forest structure, function and species composition, but also due to its essential role in supporting wildlife
species and ecosystem services. Therefore, understanding the spatio-temporal dynamics of understory
vegetation is essential for management and conservation. Nevertheless, detailed information on the distri-
bution of understory vegetation across large spatial extents is usually unavailable, due to the interference of
overstory canopy on the remote detection of understory vegetation. While many efforts have been made to
overcome this challenge, mapping understory vegetation across large spatial extents is still limited due to a
lack of generality of the developed methods and limited availability of required remotely sensed data. In this
study, we used understory bamboo in Wolong Nature Reserve, China as a case study to develop and test an
effective and practical remote sensing approach for mapping understory vegetation. Using phenology
metrics generated from a time series of Moderate Resolution Imaging Spectroradiometer data, we character-
ized the phenological features of forests with understory bamboo. Using maximum entropy modeling
together with these phenology metrics, we successfully mapped the spatial distribution of understory
bamboo (kappa: 0.59; AUC: 0.85). In addition, by incorporating elevation information we further mapped
the distribution of two individual bamboo species, Bashania faberi and Fargesia robusta (kappa: 0.68 and
0.70; AUC: 0.91 and 0.92, respectively). Due to its generality, flexibility and extensibility, this approach
constitutes an improvement to the remote detection of understory vegetation, making it suitable for
mapping different understory species in different geographic settings. Both biodiversity conservation and
wildlife habitat management may benefit from the detailed information on understory vegetation across
large areas through the applications of this approach.
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1. Introduction

Understory vegetation plays an important role in forest ecosystems
(Gilliam, 2007; Nilsson &Wardle, 2005). Different structure and species
compositions of understory plants, including native and exotic species,
can affect regeneration of tree species, alter forest succession, and
change species diversity through physical, chemical, and biological
mechanisms (Royo & Carson, 2006; Urgenson et al., 2009). Understory
vegetation also provides essential shelter and food resources forwildlife,
and thus its structure and composition is usually associated with the
diversity and abundance of many wildlife species (Díaz et al., 2005;
Hagar, 2007). Besides its ecological functions in forest ecosystems, non-
timber forest products provided bymany understory plants (e.g., fibers
from bamboo and rattans and medicines from medicinal herbs) are
economically important for many countries (Iqbal, 1993). Therefore,
understanding the spatio-temporal dynamics of understory vegetation
is essential not only for wildlife and biodiversity conservation (Deal,
2007; Estades & Temple, 1999), but also for sustainable forest manage-
ment (FAO, 1995).

While the importanceofunderstoryvegetation iswell known,detailed
information on its spatial distribution across large areas and its dynamics
at fine temporal resolutions is usually unavailable because conventional
methods for gathering vegetation information emphasize on ground-
based surveys, which are time-consuming, labor-intensive, and some-
times logistically unfeasible. Although remote sensing is a useful
alternative tool for gathering vegetation information across large areas
and over time (Jensen, 2007; Roughgarden et al., 1991), remote detection
of understory plants is limited due to the interference of overstory
canopies. While the presence of understory vegetation influences the
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signals received by remote sensors, its relative contributions to the signals
vary with the structure and species composition of both over and
understory vegetation (Eriksson et al., 2006; Rautiainen et al., 2007).
Because of the complex and non-linear interactions between the
reflectance of over andunderstory components, distinguishing the signals
of understory vegetation from overstory canopies and characterizing
understory vegetation are challenging.

Many efforts have been made to overcome this challenge via
advanced classification algorithms. For instance, using artificial neural
networks to capture thenon-linear relationshipbetween the reflectance
of over and understory vegetation, Linderman et al. (2004) have
successfully detected understory bamboo distribution with an overall
accuracy of 80% (and a kappa statistic of 0.56, whichwe calculated from
the confusion matrix reported in Table 3 of Linderman et al., 2004).
Wang et al. (2009a) classified an Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) image into three
understory cover classes with a kappa statistic of 0.60 by integrating a
neural network and a Geographic Information System (GIS) expert
system. However, applying thesemethods in a larger spatial extentmay
be limited by the availability of cloud-free images with high spatial
resolutions, and locally specific rules in the expert system.

Other studies have used active sensor systems. For example, data
acquired using Light Detection and Range (LiDAR) sensors have been
used to characterize the three-dimensional structure of forests (Lefsky
et al., 2002; Vierling et al., 2008), and map understory plants in boreal
forests (Korpela, 2008; Peckham et al., 2009). Combined with
hyperspectral images, LiDAR data have also been used to map an
understory invasive species in tropical forests (Asner et al., 2008).
However, the most important limitation for ecological applications of
these airborne sensor data is their high acquisition costs and low
availability, especially in developing countries (Vierling et al., 2008).

Differences in phenology between over and understory vegetation
have alsobeenused to detect understory vegetation. For instance, due to
the earlier senescence of tree leaves as compared to the leaves of an
understory invasive shrub species, Resasco et al. (2007) found that
stands with high coverage of the understory shrub could be separated
from those with low/zero coverage using late-fall Landsat imagery. In
addition, Chastain and Townsend (2007) and Wang et al. (2009b) also
successfullyused leaf-off Landsat images to detect evergreenunderstory
vegetation under deciduous forests (with kappa statistics of 0.755–
0.806 and 0.59, respectively). However, the limited temporal windows
when the phenological difference between over and understory can be
detected further reduce the data availability. Furthermore, the inter-
annual variability of vegetation phenology due to variable climatic
conditions may change the optimal dates for separating over and
understory components in different years (Resasco et al., 2007).

High temporal resolution remotely sensed data, such as those
collected by the Moderate Resolution Imaging Spectroradiometer
(MODIS), may provide a solution for the problem of mapping under-
story vegetation across large areas. With high frequency of acquisitions,
those data reduce the problem of cloud contamination and provide
detailed information on the temporal dynamics of the land surface. As
vegetation phenology causes changes in surface reflectance over time,
they canbe capturedbymulti-temporal remotely senseddata (Ahl et al.,
2006; Reed et al., 1994; Schwartz & Reed, 1999). The phenological
patterns captured by remotely sensed data are termed land surface
phenology (Friedl et al., 2006), in order to distinguish them from the
traditional definition of vegetation phenology. Previous studies have
shown that these phenological characteristics are useful for classifying
different land cover types (DeFries et al., 1995; Hansen et al., 2000;
Lloyd, 1990), monitoring land cover change (de Beurs &Henebry, 2004;
Lenney et al., 1996), and differentiating forest classes and types
(Townsend & Walsh, 2001). However, the phenological characteristics
captured by multi-temporal remotely sensed data are affected by not
only the dominant overstory vegetation, but also the understory
vegetation. Viña et al. (2008) have shown that the seasonal patterns
of vegetation indices derived fromMODIS data were different between
forests with similar overstory vegetation but with different understory
coverage. This conspicuous difference in phenological patterns suggests
that land surface phenology has the potential to be used for mapping
understory vegetation across large areas.

The main goal of this study was to develop an approach for deriving
detailed information on the spatial distribution of understory vegetation
using the phenological patterns detected by multi-temporal remotely
sensed data. We selected the bamboo species living under the canopy of
temperate forests in Wolong Nature Reserve, China as a case study.
Because bamboo species dominate the understory vegetation within this
region and provide essential food for several wildlife species (Schaller et
al., 1985) including theendangeredgiantpanda (Ailuropodamelanoleuca),
identifying their spatial distribution has direct wildlife conservation
implications. To develop and test our approach, we (1) generated
phenology metrics from a time series of MODIS data and examined the
phenological characteristics of forests with understory bamboo; (2) gen-
erated a spatialmodel formapping understory bamboo distribution using
field data, phenology metrics, and species distribution modeling; and
(3) explored the potential application of this approach to mapping and
differentiating individual bamboo species.

2. Methods

2.1. Study area

Wolong Nature Reserve, China (Fig. 1), which lies between the
Sichuan basin and the Tibetan highlands, is characterized by a wide
vertical variation in topography, climate and soils, together with a
diverse flora and fauna. As one of the largest nature reserves (ca.
2000 km2) established for giant panda conservation, it includes around
10% of the entire wild panda population (State Forestry Administration,
2006). It also contains around 4000 plant species, 102 mammal species
and more than 230 breeding bird species (Wolong Nature Reserve and
Sichuan Normal College, 1992). Natural vegetation in the reserve varies
along the elevation gradient (Schaller et al., 1985). Broadleaf forests are
dominated by evergreen species below 1600 m, and by a mixture of
evergreen and deciduous species between 1600 and 2000 m. Above
2000 m, a mixed coniferous and deciduous broadleaf forest gradually
changes to a subalpine coniferous forest around 2600 m. The forest
reaches about 3600 m until it is replaced by alpine meadows. Under
forest canopies, evergreen bamboo species dominate the understory
layer. Seven native bamboo species are found in the reserve, but two of
them, arrow bamboo (Bashania faberi) and umbrella bamboo (Fargesia
robusta), are dominant and constitute the major food for giant pandas
(Schaller et al., 1985). While arrow bamboo is mainly distributed
between 2500 and 3400 m in elevation, umbrella bamboo usually
occurs between 1600 and 2650 m.

2.2. Field data

We obtained bamboo presence data from the Third National Giant
Panda Survey (State Forestry Administration, 2006). Survey teams
collected field data following transects across different vegetation
types during the summer of 2001. Along the transects, surveyors
recorded, using Global Positioning System receivers, the geographic
locations of 468 sites with signs of giant panda activity, including fecal
droppings, feeding sites, dens, footprints, and visual sightings. In each
site, surveyors identified bamboo species and assigned the coverage of
understory bamboo to one of four categories (0–24%, 25–49%, 50–74%
and 75–100%). Because low bamboo cover has a limited contribution
to the surface reflectance registered by satellite sensors and may not
provide enough food or shelter for wildlife species, we only used the
locations where bamboo cover was estimated to be 25% or higher
(Fig. 1). In these locations, besides the two dominant bamboo species,
F. nitida and Yushania brevipaniculata were also found. Although



Fig. 1. Location and topography ofWolong Nature Reserve in Sichuan Province, China. Also shown are the locations of the field plots where arrow or umbrella bamboo cover was 25%
or higher according to the Third National Giant Panda Survey conducted in 2001.
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bamboo species may occur in shrubland, in the study area shrubland
with bamboo is only found in small patches within clear-cut areas for
past timber production (Reid et al., 1991; Schaller et al., 1985). In
addition, only one of the 468 field sites has a vegetation type of
shrublandwith bamboo species in the dataset. Therefore, we excluded
that site from the following analyses and focused on the bamboo
under forests in this study.

2.3. Remotely sensed data and phenology metrics

We obtained a time series of MODIS surface reflectance imagery
(8-day L3 Global 250 m product, MOD09Q1) acquired between May
2000 and April 2004 through the Land Processes Distributed Active
Archive Center (https://lpdaac.usgs.gov/). Using the surface reflec-
tance values in the red (RRED, 620–670 nm) and near infrared (RNIR,
841–876 nm) spectral bands, we calculated the Wide Dynamic Range
Vegetation Index (WDRVI) (Gitelson, 2004):

WDRVI = α⋅RNIR–RREDð Þ= α⋅RNIR + RREDð Þ ð1Þ

where α is a weighting coefficient set as 0.25 following Henebry et al.
(2004). This coefficient reduces the saturation problem of the
Normalized Difference Vegetation Index (NDVI) under moderate-to-
high biomass conditions (Gitelson, 2004). The WDRVI has been
proved to be linearly relatedwith leaf area index (LAI) and sensitive to
changes in LAI up to 6 (Gitelson, 2004; Viña et al., 2004b). Therefore,
theWDRVI appears to bemore suitable than thewidely-used NDVI for
studying the changes in green biomass under high LAI values, such as
the forests with dense understory bamboo in our study area. In order
to further reduce the cloud contamination, which lowered WDRVI
values, we generated a time series of 16-day composites using the
maximum value between two consecutive 8-day periods.

Using TIMESAT 2.3 (Jönsson & Eklundh, 2004, 2006), we smoothed
the time series (May 2000–April 2004) of 16-day WDRVI composites
for each pixel by means of the adaptive Savitzky–Golay filter. With
these data we obtained three full phenological cycles (2001–2003)
and calculated 11 phenology metrics for each cycle: (1) the base level,
corresponding to the average between the starting and ending
minimum values of each cycle (A in Fig. 2); (2) the maximum level,
corresponding to the highest value in each cycle (B in Fig. 2); (3) the
amplitude, calculated as the difference between the maximum and
the base levels (C in Fig. 2); (4) the date of the start of the season
(SOS), determined as the date when WDRVI values increase to 20% of
the difference between themaximumWDRVI value and theminimum
value at the start of each cycle (D in Fig. 2); (5) the date of the end of
the season (EOS), defined as the date whenWDRVI values decrease to
20% of the difference between the maximum value and the minimum
value at the end of each cycle (F in Fig. 2); (6) the date of themiddle of
the season (MOS), determined as the median of the two dates when
WDRVI values increase (decrease) to 80% from the minimum value at
the start (end) of each cycle (E in Fig. 2); (7) the length of the season,
defined as the difference between SOS and EOS (G in Fig. 2); (8) the
large integral, obtained as the area under the smoothed curve
between SOS and EOS (H in Fig. 2); (9) the small integral, defined as
the large integral minus the area below the base level (I in Fig. 2);
(10) the increase and (11) decrease rates, calculated as the slopes of
two lines across the 20% and 80% level points on the left and right
sides of the MOS, respectively (J and K in Fig. 2).

In some pixels, phenology metrics could not be obtained on a
particular cycle due to either lack of detectable phenological cycles or
incomplete cycles within a year. To reduce both the effects of missing
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Fig. 2. Phenology metrics determined from a smoothed curve of a time series of WDRVI
values. A — base level; B — maximum level; C — amplitude; D — date of the start of the
season; E—dateof themiddleof the season; F—dateof theendof the season;G— lengthof
the season; H— large integral; I— small integral; J— increase rate; and K— decrease rate.
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cycles and inter-annual variability in phenology metrics, we calculat-
ed the average of the annual values from 2001 to 2003 for each pixel.
We treated the pixels which had less than two valid annual values as
missing data and excluded them from the following analyses.

2.4. Phenological characteristics of forests with understory bamboo

To test whether the phenological characteristics of the forests with
understory bamboo can be distinguished from other land cover types
using the 11 phenology metrics, we compared them among five
groups of pixels. For the first group (All), we randomly selected
1000 pixels from the study area as a representative of the entire area.
The second group (For) was a random selection of 1000 pixels with a
forest cover. Pixels with a forest cover were determined based on a
binary forest cover map derived from a Landsat-5 Thematic Mapper
image acquired on 13 June 2001 (Viña et al., 2007) and resampled to
250×250 m/pixel using the majority algorithm. A series of tests on
the selected pixels' representativeness of the entire study area and
forest area indicated that the variation of the means of pixel values
(i.e., values of each phenology metric) decreased with the increase in
the number of selected pixels, but the change became negligible when
more than 500 pixels were selected (results not shown). On the other
hand, selecting more pixels may increase the spatial autocorrelation
among selected pixels. To achieve representativeness and reduce the
effects of spatial autocorrelation on statistical tests (see below), we
used 1000 randomly selected pixels in this analysis. The third group
(Bam) contained 356 pixels where bamboo cover was 25% or higher
(including all four bamboo species, i.e., B. faberi, F. robusta, F. nitida and
Y. brevipaniculata) according to the field data. The remaining two
groups were composed of 145 pixels where arrow bamboo cover was
25% or higher (Arr), and 184 pixels where umbrella bamboo cover
was 25% or higher (Umb), respectively. We then compared the pixel
values between each pair of the five groups using the Mann–Whitney
U-test for each of the 11 phenology metrics. We used this non-para-
metric test because the pixel values were not normally distributed,
according to a Shapiro–Wilk normality test performed (results not
shown). The conclusions on significant differences drawn from this
test are more conservative since the non-parametric U-test is less
powerful to detect significant differences between groups, as com-
pared to parametric methods (e.g., t-test) (Sheskin, 2000).

For this analysis, we conducted presence vs. background compar-
isons (e.g., forest pixels with bamboo vs. random selection of all forest
pixels), rather than presence vs. absence comparisons (e.g., forest
pixels with bamboo vs. forest pixels without bamboo) mainly for two
reasons. First, although possible, it is not practical to confirm absolute
absence of understory species across a 6.25 ha field plot (i.e., the
spatial resolution of a 250×250 m MODIS pixel). Second, the
modeling algorithm used to map understory bamboo is based on
the difference in the values of predictor variables obtained in presence
locations and in background (i.e., random) locations (see Section 2.5).
Therefore, the presence vs. background comparisons examined the
information content of the data directly used by the modeling algo-
rithm to map understory vegetation.

2.5. Overall bamboo distribution

In order to distinguish the pixels with understory bamboo from the
others based on their phenological characteristics, we used the
maximum entropy modeling framework (Maxent). Maxent is an
algorithm designed to make predictions based on incomplete informa-
tion (Phillips et al., 2006) and has been proven to be one of the best
methods for mapping species distribution (Elith et al., 2006). The
algorithm contrasts the environmental conditions (characterized in a
multi-dimensional space definedbyenvironmental variables) in species
presence locations vs. the conditions in background locations (i.e., the
entire study area). It then establishes the species–environment rela-
tionship bymatching the contrasts and approaching amaximum entro-
py distribution (i.e., maximum uniform distribution) simultaneously
(Phillips et al., 2006). The relationship can be used to estimate the
probability of species occurrence across the entire study area given the
spatial patterns of the environmental variables (Phillips et al., 2006;
Phillips & Dudík, 2008).

Besides its goodperformanceonmapping species distribution (Elith et
al., 2006), Maxent also has several characteristics which make it suitable
for mapping understory vegetation based on phenological characteristics
obtained from MODIS data. First, it uses presence-only, rather than
presence/absence data. This is important since it is not logistically feasible
to confirm absence of understory bamboo in an entire 250×250 m area.
Using the presence-only procedure, we can avoid the potential biases
caused by uncertain or false absence data. In addition, like other machine
learning methods (e.g., neural networks), Maxent can capture complex
and non-linear species–environment relationships, even with noise in
input data (Elith et al., 2006; Phillips et al., 2006). Finally its continuous
output values, i.e., species presence probabilities, make Maxent a fuzzy
classifier that provides more detailed information on understory
vegetation distribution than binary outputs (i.e., presence/absence).

We used the software Maxent (version 3.3.1, http://www.cs.
princeton.edu/~schapire/maxent/, Phillips et al., 2006) to generate a
model for mapping overall bamboo distribution. For generating the
model, we used the pixels whose bamboo cover was 25% or higher
(including all four bamboo species) as presence data, 10,000 pixels
randomly selected from the study area asbackgrounddata following the
suggestions of Phillips and Dudík (2008), and the 11 phenologymetrics
derived from a time series of MODIS-WDRVI values as predictor
variables. We used 70% of the bamboo presence data (249 pixels) as a
training dataset and the remaining 30% (107 pixels) as a validation
dataset. In order to reduce the potential effects of the random data
partitioning, we ran the model 20 times (replicates) with different
randomdata partitions for each run andaveraged thepredicted bamboo
presence probabilities over the 20 runs for each pixel. This number of
replicates was used because pilot tests showed the variation of model
outputs, measured as the mean of standard deviations among different
runs, decreased with the increase in the number of runs, but changed
negligibly after 20 runs.

2.6. Individual bamboo distribution

Besides mapping overall bamboo distribution, we also explored
the ability of our approach to map individual bamboo species. With
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the same method described earlier, we generated a model and
obtained the average of presence probabilities over 20 model runs for
each of the two dominant bamboo species, i.e., arrow and umbrella
bamboo. Because the two bamboo species are distributed within
different elevation ranges, we hypothesized that adding elevation
information into the model would improve the model's ability to
separate the two species. To test this hypothesis, besides the model
generated with 11 phenology metrics, we also generated a model
using elevation as an additional predictor variable and compared the
model performance (see Section 2.7) between the two models. We
obtained the information on elevation from a digital elevation model
created by the Shuttle Radar Topography Mission and resampled the
original data to 250×250 m/pixel using the nearest neighbor
algorithm to keep consistent spatial resolution with the other data.

2.7. Model validation and comparison

We used both threshold-dependent and threshold-independent
methods to validate models and evaluate their performance. The Cohen's
kappa analysis, a chance-correctedmeasure of agreement (Cohen, 1960),
was selected for the threshold-dependentmethodbecause it is commonly
used for evaluating classification accuracy of remote sensing imagery and
also used inprevious studies onmappingunderstory vegetation (Chastain
& Townsend, 2007; Wang et al., 2009a,b). The kappa value ranges
between 0 and 1with a larger value indicating bettermodel performance
(Cohen, 1960). Model performance can be judged as excellent if
kappaN0.75, good if 0.75NkappaN0.4, or poor if kappab0.4 (Araújo et
al., 2005; Landis & Koch, 1977). Because only presence data on bamboo
distribution were available, we performed the analysis by contrasting
presence pixels to those randomly selected from the study area
(background pixels). To avoid the potential failure of kappa analysis
with unbalanced validation data (McPherson et al., 2004), we randomly
selected 100 background pixels to make the number be close to the
number of presence pixels in validation datasets (i.e., 30% of bamboo
presence data or 107 pixels). The threshold for cutting off continuous
outputs fromeachmodel runwasdeterminedby the kappamaximization
approach, which finds the threshold corresponding to the maximum
kappa value (Liu et al., 2005). Because 100 pixels (ca. 0.3% of total pixels)
were not representative of the entire area, we calculated 30 kappa values
for each model run by using the same presence pixels but different 100
randombackgroundpixels, and thenobtained anaverageof the 30values.

The receiver operating characteristic (ROC) analysis, a threshold-
independent method, is also a widely-used method for evaluating the
accuracy of classificationmodels (Fielding & Bell, 1997; Pearce & Ferrier,
2000). The ROC curve is generated by plotting sensitivity values (i.e.,
fraction of true positive) against 1-specificity values (i.e., fraction of false
positive) for every possible threshold (Hanley &Mcneil, 1982). The area
under the ROC curve (AUC) provides a single-value measurement of
model performance. Since omission errors reduce sensitivity and
commission errors reduce specificity, both types of errors equally
reduce theAUCvalue.While anAUCvalue of 1 indicates a perfectmodel,
a value of 0.5 indicates a random model. A standard for judging model
performance based on AUC values (Araújo et al., 2005; Swets, 1988) is:
excellent (AUCN0.9), good (0.9NAUCN0.8), fair (0.8NAUCN0.7), poor
(0.7NAUCN0.6), and failed (0.6NAUCN0.5). Similar to the calculation of
the kappa statistic, we also used presence/background validation data
for calculating AUC values. However, because AUC values are not
sensitive tounbalancedvalidationdata (McPherson et al., 2004; Zweig&
Campbell, 1993) and no statistical test is involved in the calculation of
AUC values, the number of background pixels does not affect the
calculated values if the background pixels are representative of the
entire study area. Therefore, we used the default background pixels in
the Maxent software (i.e., 10,000 background pixels) to calculate AUC
values.

By using presence/background data, the kappa and AUC values
calculated in this study tend to be underestimated because some of
the background pixels are actually presence pixels, which artificially
increase commission errors. In addition, the degree of underestima-
tion is determined by the proportion of actual presence pixels in the
background pixels, which is, in turn, determined by the actual pro-
portion of habitat in the entire study area. Since the actual proportion
of habitat is almost always unknown, direct comparisons of the values
calculated in this study with the values reported in other studies
should be done with caution. Comparisons between different models
using these statistics are valid only if the models are generated for the
same species in the same study area and are evaluated using the same
presence/background data, as was done in this study (see below).

In order to examine the relative importance of each phenology
metric for mapping bamboo distribution, we conducted a jackknife
analysis on model performance by using the Maxent software. For this,
the software calculated the AUC values ofmodels containing only one of
the 11metrics and of models containing all, but one of themetrics used
as predictor variables, through a jackknife resampling approach. In this
analysis, a higher AUC value for a model containing only one metric
indicates that the specific metric is more informative for mapping
bamboo distribution than other metrics. In contrast, a lower AUC value
for a model without one specific metric indicates that the metric
contains more information for mapping bamboo not provided by the
other metrics.

For comparing the performance of the individual bamboo models
with and without elevation information, besides calculating kappa and
AUC values, we also used the minimum predicted area (MPA) method
(Engler et al., 2004). TheMPA is theminimumareawhich is constituted
by all pixels whose species presence probabilities are above a defined
threshold and encompasses a specified percentage (e.g. 95%) of
presence locations (Engler et al., 2004). With presence-only validation
data, a model predicting species present everywhere has the best
performance because it correctly predicts all presence locations, but the
model is useless. Therefore, the MPA method evaluates model per-
formance based on the parsimonious concept that a goodmodel should
predict the habitat as small as possible (i.e., with low commission
errors), but it still encompasses a maximum number of presence loca-
tions (i.e., with low omission errors). In this analysis, a threshold was
selected for each model run so that the pixels with probabilities above
the threshold encompassed 95% of presence locations. Kappa and AUC
values and the proportions of MPA to thewhole study area obtained for
20 runs of themodels with andwithout elevationwere compared using
Mann–Whitney U-tests.

3. Results

3.1. Phenological characteristics of forests with understory bamboo

Because of a lack of detectable seasonal cycles or incomplete
annual cycles in at least two years, phenology metrics could not be
calculated in 289 pixels (i.e., 0.76% of the total number of pixels) of the
entire study area. Among these pixels, only 112 pixels (i.e., 0.79% of
the total number of forest pixels) were covered by forests, according
to the forest cover map, and none of them contained field plots with
25% or higher bamboo cover. Therefore, the impact of their exclusion
from the analysis is negligible due to the small proportions of these
pixels in the five pixel groups.

Significant differences in the values of 11 phenology metrics were
found among the five groups of pixels (Fig. 3), even with the more
conservative significant tests conducted using the non-parametric
method. Compared to the pixels randomly selected from the whole
study area (All), the pixels with understory bamboo (Bam) had signif-
icantly (pb0.001) higher base andmaximum levels, a higher amplitude,
earlier SOS and MOS, a longer length of season, and higher large and
small integrals (Fig. 3). Compared to pixels with forest cover (For), the
pixels of the Bam group had a significantly higher maximum level, a
higher amplitude, earlier SOS, MOS, and EOS, higher large and small



Fig. 3. Box plots of 11 phenology metrics calculated using 1000 pixels randomly selected from the entire study area (All), 1000 pixels randomly selected from forested areas (For),
356 pixels where field plots with bamboo cover as 25% or higher were located (Bam), 145 pixels where field plots with arrow bamboo cover as 25% or higher were located (Arr), and
184 pixels where field plots with umbrella bamboo cover as 25% or higher were located (Umb). The dark line inside a box indicates themedian; the bottom and the top of a box show
the 25th and 75th percentiles, respectively; the ends of the twowhiskers indicate the lowest and the highest values within 1.5 interquartile ranges from a box; dots beyond whiskers
show outliers whose values were outside the range indicated by the whiskers. The letters above boxes show the results of pair-wise comparisons on the phenology metric values
conducted using Mann–Whitney U-tests. Two boxes share the same letter if there was no significant difference (pN0.001) between them.
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integrals, and a higher increase rate (Fig. 3). While the values of the
pixelswith arrowbamboo (Arr)were significantly different in eight and
fiveof the 11metrics from theAll and Forgroups, respectively, theywere
different from the Bam group only in the maximum level and SOS
(Fig. 3). The values of pixels with umbrella bamboo (Umb) were
significantly different from the All and For groups in all and eight of the
metrics, respectively (Fig. 3). However, significant differences were
found only in the maximum level and MOS between the Umb and Bam
pixels (Fig. 3).
3.2. Overall bamboo distribution

The kappa and AUC values (mean±2 SEM) of the 20 runs of the
overall bamboo distribution model were 0.591±0.018 and 0.851±
0.005, respectively. Both values, even thoughunderestimateddue to the
use of presence/background validation data, indicated a good model
according to the judgment standards (Araújo et al., 2005; Landis &Koch,
1977; Swets, 1988). The estimated bamboo presence probabilities for
pixels ranged between 0 and 0.9 across the study area, with higher
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probability values occurring at low- and mid-elevations (Fig. 4a). The
highest standard deviation of the estimated presence probabilities was
0.3, but most pixels had standard deviations lower than 0.05 (Fig. 4b).
The low standard deviations indicated that the estimated probabilities
did not change much with different data partitioning for training and
validation datasets. Among the pixels whose phenology metrics could
not be calculated, 137 were located above 3600 m, thus beyond the
distribution range of forests and bamboo species in the study area, and
40of theother pixelswerenot covered by forests, according to the forest
cover map. Therefore, the missing data may affect the estimated
bamboo presence probabilities in only 112 pixels (i.e., 0.29% of the total
number of pixels).

The results of the jackknife analysis on the relative importance of
phenologymetrics for mapping understory bamboo are shown in Fig. 5.
The models with only the maximum level, base level, or large integral
had the highest AUC values (Fig. 5a), which indicated that thosemetrics
contained themost useful information formappingunderstory bamboo.
Themodelswithout the SOS, small integral, or base level had the lowest
AUC values (i.e., largest loss in AUC) (Fig. 5b), and thus those metrics
contained unique information for mapping bamboo distribution.

3.3. Individual bamboo distribution

Although the mean kappa and AUC values indicated that the
performance of the arrow and umbrella bamboo models without
elevation was fair to good and good to excellent, respectively (Table 1),
themodels could not effectively differentiate the distribution of the two
species. While umbrella bamboo had higher presence probabilities at
relatively lower elevations (Fig. 6b), consistent with the field data and
our knowledge about the general distribution pattern of this species, the
estimated probabilities for arrow bamboo were also high in some low-
elevation areas (Fig. 6a). The relatively low kappa and AUC values
obtained for arrowbamboo (Table 1) seem to reflect this overestimation
at lower elevations.

With the incorporation of elevation information, the mean kappa
and AUC values increased and the proportion of MPA decreased
significantly for both species (Table 1). Higher kappa and AUC values
and smaller MPA suggested that model performance on mapping
individual bamboo specieswas significantly improvedwith the addition
of elevation as a predictor variable. In addition, the spatial patterns of
estimated presence probabilities also showed that the distribution
Fig. 4. Overall bamboo distribution across Wolong Nature Reserve. The pixel-wise (a) mean
over 20 runs of the overall bamboo distribution model. The model was generated using 356 p
as predictor variables. The 289 pixels where phenology metrics could not be determined in
WDRVI values by TIMESAT are represented in white.
patterns of the two bamboo species can be differentiated (Fig. 6c and d)
with the incorporation of elevation information into the models.

4. Discussion

In this study, we developed an effective approach for mapping
understory vegetation across large spatial extents using remotely
sensed data. By taking the advantage of MODIS data's high temporal
resolution, we captured the phenological characteristics, in terms of
WDRVI values, of forests with understory bamboo using phenology
metrics. We then established the relationship between bamboo
presence and phenological characteristics and used it to map
understory bamboo by using Maxent. With this approach, we
successfully mapped the spatial distribution of bamboo species
under temperate forests in Wolong Nature Reserve, China. While
land surface phenology derived from time series of remotely sensed
data has been used for land cover classification (DeFries et al., 1995),
vegetation change detection (de Beurs & Henebry, 2004; de Beurs &
Henebry, 2005), canopy phenology monitoring (Ahl et al., 2006; Viña
et al., 2004a; Zhang et al., 2003), invasive plant mapping and
monitoring (Huang et al., 2009; Morisette et al., 2006), and wildlife
habitat characterization (Viña et al., 2008), in this study its
applications have been extended to evaluate the spatial distribution
of understory plant species growing under a forest canopy.

By analyzing the land surface phenology characterized by phenology
metrics, we found that forest pixels with understory bamboo can be
distinguished from background and forest pixels in the whole study
area. While higher base and maximum levels, an earlier SOS, a longer
season length, and higher large and small integrals reflected the
difference between forests and other land cover types (Fig. 3), a still
higher maximum level, much earlier SOS andMOS, higher yet integrals,
and a higher increase rate showed the contributions of bamboo species
to the land surface phenology of forest pixels with understory bamboo
(Fig. 3). The high biomass and annual net primary productivity of
understory bamboo (dry weights: 5–12 ton ha− 1 and 1.2–
1.9 ton ha−1 year−1 for arrow bamboo and 15–40 ton ha−1 and 1.5–
3.9 ton ha−1 year−1 for umbrella bamboo) in the study area (Taylor &
Qin, 1993)may account for thehighermaximum level and integrals. The
rapid growth in the height of bamboo shoots during the early growing
season (Qin et al., 1993; Taylor & Qin, 1993) may be the reason for the
higher increase rate and earlier SOS of the pixels with bamboo.
values and (b) standard deviations of bamboo presence probabilities were calculated
ixels with 25% or higher bamboo cover as presence locations and 11 phenology metrics
at least two years between 2001 and 2003 from a smoothed curve of a time series of



Fig. 5.MeanAUCvaluesof theoverall bamboodistributionmodels (a)withonlyoneof the11
phenologymetrics and(b)withall, but one,metrics aspredictorvariables.AhigherAUCvalue
for amodelwith only onemetric indicates that themetric containedmore useful information
formapping bamboo distribution in the full model. A lower AUC value (larger loss of the AUC
value) for a model without onemetric indicates that the metric containedmore information
which cannot be represented by the other metrics for mapping bamboo distribution.
Max—maximum level; Amp— amplitude; SOS— date of the start of the season;MOS— date
of the middle of the season; EOS — date of the end of the season; L_Int — large integral;
S_Int— small integral; I_Rate — increase rate; and D_Rate— decrease rate.
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Since the bamboo species in the study area are evergreen, it was
expected that their contribution to the green biomass was larger when
overstory tree leaves undergo senescence (e.g., during winter months).
However, no difference in the base level between forests with bamboo
and background forests was observed. This result could be partially
Table 1
Comparisons of the performance of models developed for individual bamboo species with

Arrow bamboo

Without elevation W

Kappaa 0.461±0.017 0
p-value of Mann–Whitney test b10−10

AUCa 0.798±0.009 0
p-value of Mann–Whitney test b10−7

Threshold for MPAa 0.211±0.015 0
Proportion of MPA to study areaa 0.476±0.009 0
p-value of Mann–Whitney test b10−10

a Values are shown as mean±2 SEM.
explained by snow cover during the winter months. Although bamboo
species under evergreen coniferous forests may not cause difference in
land surface phenology as much as those under deciduous or mixed
forests, pure evergreen coniferous forests are rare in the study area.
While firs (e.g., Abies faxoniana) are dominant in the subalpine
coniferous forests above 2600 m in elevation, birches (e.g., Betula utilis
and B. albosinensis) and rhododendrons (e.g., Rhododendron oreodoxa
and R. watsonii) are also abundant (Schaller et al., 1985). However,
although it is not a major concern in this study, the potential effect of
evergreen overstory on the detectability of phenological difference
caused by understory vegetation needs further study. In addition,
besides the direct contribution of understory bamboo, the difference in
canopy tree species composition and density caused by different
understory bamboo cover (Taylor et al., 2004, 2006) may also affect
the land surface phenology. Therefore, further studies on the phenology
of canopy trees and understory bamboo measured on the ground are
needed for understanding the phenological characteristics captured by
remotely sensed data.

According to the jackknife analysis, the most important predictor
variables containing either the most useful or the most unique
information for mapping understory bamboo were the base and
maximum levels, SOS, and large and small integrals (Fig. 5). Significant
differences between forest pixels with bamboo versus background
pixels of the whole study area were observed in all of these five metrics
(Fig. 3). In addition, except for the base level, theother fourmetricswere
also significantly different between forests with bamboo versus
background forests (Fig. 3). The results of these two analyses and the
consistence between them indicate that the good performance of the
approachdeveloped in this studyonmappingunderstorybamboo isdue
to (1) the ability of phenology metrics derived from a time series of
MODIS data to capture differences in land surface phenology caused by
understory bamboo, and (2) the ability ofMaxent to extract and use the
phenological difference for mapping bamboo distribution.

Besides the good agreement between the field data and the bamboo
distribution maps generated in this study, our approach has several
improvements onmapping understory vegetation as compared to other
methods. First, our approach is more suitable for mapping the spatial
patterns and monitoring temporal dynamics of understory vegetation
across large areas.While several previous approaches have been proved
useful for detectingunderstory vegetation at local scales (Korpela, 2008;
Linderman et al., 2004; Resasco et al., 2007; Wang et al., 2009a,b), their
applications to broader scales may be limited due to cloud contamina-
tion (e.g., Landsat data), high acquisition costs (e.g., LiDAR data) and/or
lack of images acquired during specific time periods (e.g., leaf-off
seasons). In contrast, our approach solves the problem of data avail-
ability by using MODIS data, which have been acquired daily and
globally since 24 Feb. 2000 and can be freely obtained. Because of the
short revisiting rate (1 day), the problem of cloud contamination can be
reduced by using multi-date composites. With high data availability in
and without elevation information, based on the results of 20 model runs.

Umbrella bamboo

ith elevation Without elevation With elevation

.681±0.015 0.658±0.022 0.703±0.019
b10−4

.906±0.004 0.900±0.005 0.920±0.005
b10−4

.229±0.009 0.192±0.013 0.199±0.013

.223±0.005 0.297±0.008 0.212±0.005
b10−5



Fig. 6. Spatial distribution of arrow and umbrella bamboo across Wolong Nature Reserve. Mean presence probabilities of pixels were calculated over 20 runs of the individual
bamboo distribution models containing only 11 phenology metrics (a and b) and the models containing the11 phenology metrics plus elevation (c and d). Pixels where phenology
metrics could not be determined in at least two years between 2001 and 2003 from a smoothed curve of a time series of WDRVI values by TIMESAT are represented in white.
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terms of both space and time, this approach not only can be easily
applied to mapping understory vegetation across large geographic
areas, but also has the potential for monitoring its temporal dynamics.

In addition, our approach may not be limited to specific understory
species or specific areas and time periods because of its generality.
Similar to some previous methods (Chastain & Townsend, 2007;
Resasco et al., 2007; Wang et al., 2009b), our approach is also based
on thephenological difference betweenover andunderstory vegetation.
However, our approach uses a time series of MODIS data to capture
phenological differences throughout a whole year, rather than using a
single image to detect differences on a specific date. Therefore, our
approach does not need prior knowledge or testing on the optimal dates
on which the phenological difference between over and understory
canopycomponents canbedetected. It alsodoes not need re-testing and
adjusting the optimal dates to account for the inter-annual variability of
vegetation phenology when the approach is applied to monitoring
temporal dynamics (Resasco et al., 2007). In addition, as required by a
GIS expert system for adjusting maps derived from remotely sensed
data (Wang et al., 2009a), knowledge on the relationships between the
distributionof understory vegetation andenvironmental variables is not
necessary in our approach. Although the relationships can effectively
improve the accuracy ofmapping (Wang et al., 2009a), they are specific
to particular vegetation types, understory species, and geographic areas.
Therefore,without the requirementof specific knowledge, our approach
is more general and thus is easily applicable to other vegetation types,
understory species, and geographic locations.

An additional advantage of our approach is its flexibility and
extensibility. Although prior knowledge on the species–environment
relationships is not necessary, if available, the new approach can
incorporate this information easily to extend its ability to separate
different understory species. In this study, we showed that the approach
with only the phenology metrics could not differentiate individual
bamboo species effectively from the overall bamboo distribution because
therewasno significant difference inmost phenologymetrics between all
bamboo pixels versus those with arrow or umbrella bamboo (Fig. 3).
However, by incorporating elevation as an additional predictor variable,
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we significantly improved the ability of our approach to separate the
spatial distributions of the two species. Therefore, while our approach has
its generality for detecting overall understory vegetation or groups of
species with similar phenological characteristics across large areas, it can
be applied to mapping individual species within specific areas by adding
species- and/or area-specific information, such as elevation in this study.
Contrasting to previous approaches which focused on either a group of
similar species (Korpela, 2008; Lindermanet al., 2004;Wanget al., 2009a)
or a single species (Resasco et al., 2007;Wang et al., 2009b), our approach
provides a tool to separate individual species froma group of similar ones.
This advantagewould be valuable for the assessment andmanagement of
understory species biodiversity.

Like any other methods, the approach developed in this study also
has some limitations. First, there is always a compromise between
spatial and temporal resolutions of remotely sensed data. By using
WDRVI derived from MODIS data, our approach mapped understory
vegetation with a spatial resolution of 250×250 m/pixel. Although
this resolution is coarser than those of the previous approaches which
use higher spatial resolution data, such as Landsat (e.g., Linderman et
al., 2004), ASTER (e.g., Wang et al., 2009a) and LiDAR (e.g., Korpela,
2008), a previous study has shown that a time series of MODIS data
performs as good as a Landsat image on mapping wildlife habitat
because the finer temporal resolution of MODIS data can compensate
their disadvantage of coarser spatial resolution (Viña et al., 2008).
Even though this study tends to underestimate the model accuracy
due to the use of presence/background, rather than presence/absence
validation data, the kappa values of the overall bamboomodel and the
individual bamboo models with elevation generated in this study are
comparable to, or even higher than, the values reported in previous
studies mapping understory bamboo using higher resolution remote-
ly sensed data (Linderman et al., 2004; Wang et al., 2009a,b). In
addition, coarse spatial resolutions may be detailed enough to reveal
biologically and ecologically meaningful information in studies and
applications where finer spatial resolutions are not necessary, such as
those used for characterizing the habitat of wildlife species with large
home ranges, as the giant pandas (Schaller et al., 1985).

Second, this approach can only be applied to mapping the
understory vegetation whose presence causes detectable differences
in phenological characteristics. In this study, we found phenological
differences between forest pixels with understory bamboo and
background pixels of forests due to the high biomass and rapid
growth of bamboo species. However, many understory plant species,
including several non-native invasive species, have the ability to form
dense understory layers and affect forest structure and function (Royo
& Carson, 2006; Urgenson et al., 2009). Therefore, we believe that our
approach can be applied to mapping many other understory species
whose presence causes differences in land surface phenology.

Finally, calculating phenology metrics from a time series of WDRVI
valuesderived fromMODISdata requiresmoredataprocessing timeand
computational resources than many previous methods. However, a
global phenology product with a spatial resolution of 1 km (MOD12Q2,
Zhang et al., 2003), and a 250 m product for North America (http://
accweb.nascom.nasa.gov/), are being generated from MODIS data and
being made freely accessible. In addition, the recent availability of
software especially developed for extracting phenological character-
istics from remotely sensed data (e.g., TIMESAT, Jönsson & Eklundh,
2004) has made the data processing easier andmore efficient. With the
growing interests and continuous improvements in related research on
land surfacephenology (Morisette et al., 2009),moredata and improved
tools will become available in the near future.

5. Conservation implications and conclusions

Understory vegetation not only has important contributions to and
significant effects on the biodiversity of plant species in forest
ecosystems (Gilliam, 2007; Royo & Carson, 2006), but also shapes the
environments and provides resources for many wildlife species (Deal,
2007; Díaz et al., 2005; Hagar, 2007). Therefore, understanding the
spatial patterns and temporal dynamics of understory vegetation is
important for biodiversity conservation and habitat management. In
this study, we developed an effective and practical approach for
mapping understory vegetation using phenological characteristics
derived from a time series of remotely sensed data. Due to the easy
access, global coverage, and temporally continuous availability of
MODIS data, our approach solves theproblemof limiteddata availability
that other methods may encounter when applied to larger spatial
extents or finer temporal resolutions. Without the need of prior and
specific information on the phenological difference between over and
understory vegetation and on the relationships between understory
vegetation and environmental variables, our approach can be easily
applied to different species in different geographic areas. Due to its
flexibility and extensibility, besides detecting general understory
vegetation, the approach can be also used to differentiate individual
species by incorporating species-specific information.

The approach developed in this study could provide valuable
information for ecosystem management and for biodiversity conserva-
tion. For example, while remote sensing has been widely used to map
and monitor the distribution of invasive plants across large spatial
extents (Asner & Vitousek, 2005; Huang & Asner, 2009), its application
for invasive understory species is limited (but see Asner et al., 2008;
Resasco et al., 2007). Because of high biomass and rapid growth ofmany
invasive species and their strong influence on species compositions,
whichmay alter the land surface phenology, the approach developed in
this study could provide a useful tool for the management of invasive
understory plants at broad spatial scales.

In addition, wildlife habitat management and conservation could
also benefit from the new approach. Understory bamboo species, for
example, are staple food for giant pandas and one of themost important
factors determining the quality of giant panda habitat (Bearer et al.,
2008; Liu et al., 1999; Reid et al., 1989; Schaller et al., 1985).Without the
essential information on bamboo distribution, a habitat evaluationmay
overestimate the carrying capacity of the giant panda bymore than 40%
(Linderman et al., 2005). Besides providing the distribution patterns of
overall understory bamboo across large areas for panda habitat
evaluations, our approach can also map individual species. Because
different bamboo species have unequal contributions to comprising
giant pandas' diet and determininghabitat quality (Schaller et al., 1985),
identifying the distribution of individual bamboo species may provide
more detailed information for characterizing panda habitat. Further-
more, with the individual species information, the potential impacts on
panda habitat of species-specific dynamics of understory bamboo (e.g.,
mass die-offs following flowering) can be incorporated into manage-
ment planning. Sincemany other wildlife species around theworld also
depend on the understory vegetation whose information on spatio-
temporal dynamics across large spatial extents is unavailable, habitat
management and conservation of those species might benefit from the
approach we developed in this study as well.
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