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Abstract

We investigated the potential of using unclassified spectral data for predicting the distribution of three bird species over a ¨400,000 ha

region of Michigan’s Upper Peninsula using Landsat ETM+ imagery and 433 locations sampled for birds through point count surveys. These

species, Black-throated Green Warbler, Nashville Warbler, and Ovenbird, were known to be associated with forest understory features during

breeding. We examined the influences of varying two spatially explicit classification parameters on prediction accuracy: 1) the window size

used to average spectral values in signature creation and 2) the threshold distance required for bird detections to be counted as present. Two

accuracy measurements, proportion correctly classified (PCC) and Kappa, of maps predicting species’ occurrences were calculated with

ground data not used during classification. Maps were validated for all three species with Kappa values >0.3 and PCC >0.6. However, PCC

provided little information other than a summary of sample plot frequencies used to classify species’ presence and absence. Comparisons

with rule-based maps created using the approach of Gap Analysis showed that spectral information predicted the occurrence of these species

that use forest subcanopy components better than could be done using known land cover associations (Kappa values 0.1 to 0.3 higher than

Gap Analysis maps). Accuracy statistics for each species were affected in different ways by the detection distance of point count surveys used

to stratify plots into presence and absence classes. Moderate-to-large detection distances (100 m and 180 m) best classified maps of Black-

throated Green Warbler and Nashville Warbler occurrences, while moderate detection distances (50 m and 100 m), which ignored remote

observations, provided the best source of information for classification of Ovenbird occurrence. Window sizes used in signature creation also

influenced accuracy statistics but to a lesser extent. Highest Kappa values of majority maps were typically obtained using moderate window

sizes of 9 to 13 pixels (0.8 to 1.2 ha), which are representative of the study species territory sizes. The accuracy of wildlife occurrence maps

classified from spectral data will therefore differ given the species of interest, the spatial precision of occurrence records used as ground

references and the number of pixels included in spectral signatures. For these reasons, a quantitative examination is warranted to determine

how subjective decisions made during image classifications affect prediction accuracies.
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Image classification
1. Introduction

One of the greatest impediments to accurate mapping of

the Earth’s resources is a paucity of spatially referenced
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information (Franklin, 2001). Remote sensing technologies

could improve this situation for objects detectable at the

spectral frequencies and grain, or smallest spatial sampling

unit, of the sensor. In the case of wildlife habitat studies, the

Landsat Thematic Mapper series of sensors are often used

due to their relatively low price, short repeat-time (16 days),

spatial resolution (approximately 30 m�30 m), and spectral
ent 97 (2005) 249 – 262
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resolution capable of detecting differences in vegetation

(Lillesand & Kiefer, 1999).

Landsat imagery is often used to map wildlife distribution

patterns indirectly. This is accomplished by first classifying

images into land cover categories and then reclassifying land

cover categories for wildlife occurrence by using known

vegetation affinities of each species (e.g., Morrison et al.,

1992; Scott et al., 1993). In order to characterize land cover,

however, a classification scheme must be used to instruct

image processing software how to aggregate pixels of

remotely sensed imagery into discrete categories.

Land cover classification schemes divide continuous

ecological gradients (Austin, 1985; Whittaker, 1956) into

compositionally distinct features to achieve an objective

(Foody, 1999; Townsend, 2000; Zube, 1987). While this

allows large regions to be divided in ways that humans can

understand, wildlife often perceive and respond to landscape

heterogeneity in substantially different ways (Johnson et al.,

1992, Tang & Gustafson, 1997). For example, rather than

choosing habitat based on a particular forest type or age class,

some bird species select for understory vegetation or forest

structure (Anders et al., 1998; Probst et al., 1992; Stouffer &

Bierregaard, 1995). Thus, most land cover classifications

have limited utility for predicting patterns of these species’

occurrences. Similarly, when classification schemes do not

include key habitat features under selection by target species,

investigations into the dependence of wildlife species’

occurrences on land cover classes are not likely to identify

causal mechanisms underlying the observed distributions

(Wiens et al., 2002). Thus, the disparity between human and

wildlife perceptions of and responses to landscape hetero-

geneity can add substantial error into statistical analyses and

management prescriptions.

In attempts to minimize predictive errors potentially

fostered by inappropriate or inaccurate land cover maps, a

logical approach to extrapolating patterns of wildlife

distributions across large areas is to directly classify imagery

for an individual species’ occurrence using raw spectral

reflectance data. Using this approach, spectral character-

istics of locations where species are known to occur are

employed when extrapolating their distributions. The under-

lying assumption is that species’ occurrences can be

predicted by spectrally detectable components of their

habitat. A benefit to this approach is that distribution maps

are classified using all occurrence locations separately yet

simultaneously, therefore no global model relating spectral

variables to occurrence sites need be assumed.

This direct approach to mapping wildlife distributions is

growing in popularity (e.g., Conner, 2002; Hepinstall &

Sader, 1997; Jenkins et al., 2003a; Laurent et al., 2002).

While such studies indicate the potential for bypassing a

land cover map, they have not yet provided a strong

methodological test of raw satellite imagery’s capability to

map species’ distributions. Some of the choices made by the

authors during classification were arbitrary and no frame-

work was established for investigating the influence of these
choices, or the range of possible choices on prediction

accuracy.

Several decisions must be made during image analyses in

order to extrapolate the results of presence/absence surveys

across a landscape using spectral information. Some options

include the type of imagery, the classification scheme, the

method of classification, the choice of pixels used to

represent classes, and the parameter values (both spatial

and spectral) used to classify maps. While these choices

could be described as the ‘‘art’’ of image processing, it is

also possible to place them within a hypothesis-testing

framework to quantify their effects on prediction accuracy.

To investigate the influence different choices in classi-

fication options have on predicting wildlife occurrence maps,

we have created a software program (PHASE1) as the first

phase in the development of a Habitat Analysis By Iterative

CLASSification procedure (HABICLASS). The purpose of

HABICLASS is to minimize anthropocentric classification

bias when predicting wildlife distribution patterns (first

phase) and to determine causes of the predicted patterns

(second phases). PHASE1was created to make the prediction

phase methodologically rigorous through the use of statistical

models. This is accomplished by creating maps of species’

occurrence patterns, iteratively modifying classification

methods used to create the maps, and evaluating divergences

in prediction accuracies of maps created in different ways.

The goal therefore is to identify better means of improving

prediction accuracy within a strong inference framework.

Here we use PHASE1 of HABICLASS to predict forest bird

occurrence with the spatial precision of Landsat imagery.

Although these analyses are conducted using spectral data,

PHASE1 may be used in combination with any raster dataset.

PHASE1 is superficially similar to other image classi-

fication software. It is used to create a spectral signature for

each field plot describing grid values at that location. These

signatures are then used to identify spectrally similar pixels

and classify them into categories to create a thematic map.

PHASE1 differs from many other image classification

software through its application of cross-validation to

stratify and repeatedly sample random subsets of signatures.

As a result, a group of maps, rather than a single map, are

created from a set of reference plots. The accuracy of the

group of maps can then be summarized to describe a

statistical distribution of accuracy for comparisons with

maps made through other methods. However, reference data

for this approach need to be spatially compatible to deny the

introduction of scale or aggregation effects (Dutilleul, 1998;

Dutilleul & Legendre, 1993) that could influence class

descriptions. Reference data used in signature creation

should therefore describe the same size area, or grain, for

proper use within the PHASE1 classification framework.

To ensure grain equivalency within datasets used in

PHASE1, we developed a Grain Representative Assessment

and INventory protocol (GRAIN). GRAIN permits a per-

pixel extrapolation of spatially referenced survey data across

large areas with the spatial and spectral precision of satellite



Fig. 1. The study region lies within a single Landsat 7 ETM+ scene and

contains parts of five counties in Michigan’s Upper Peninsula (A). Within

the study region (B), randomly selected landscape units (C; township

sections or USGS QQQs with coarse land cover classes within landscape

units shown as shades of gray) define areas for the selection of specific

plots (D; overview showing different tree species) for bird occurrence

surveys. Plots were sampled with a minimum 30-m radius from plot centers

(D; large circle), so that a single Landsat 7 ETM+ pixel (D; square) falling

within this area could be precisely characterized.
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imagery. For bird point count surveys, GRAIN requires the

surveyor’s location be georeferenced and the distance

between the surveyor and each bird recorded. The georefer-

enced position is employed to identify the pixel used for

signature development in PHASE1. Species presence and

absence at those locations define classes used in supervised

image classification. However, proximity thresholds (here-

after referred to as detection distances) can be set to exclude

species detected beyond specified distances from observers,

effectively converting a presence location into an absence.

In addition to pixels overlapping georeferenced locations,

signatures may also contain values for pixels surrounding

the georeferenced position if they meet specified spatial and

spectral criteria. Such decisions made during image classi-

fication can be iteratively modified, allowing the analyst to

repeatedly tune the classification parameters and create a

series of maps for investigating the influence of these

choices on map accuracies.

The goal of this study was to identify methods of image

classification that could predict the regional occurrence of

Neotropical migrant warblers with the spectral and spatial

precision of Landsat 7 ETM+ imagery and independent from

any other system for categorizing the landscape (e.g., land

cover maps). Furthermore, we were interested in whether this

method could obtain results comparable to Gap Analysis

(Donovan et al., 2004; Scott et al., 1993). Gap Analysis is

used to classify maps representing species’ fundamental

niches (Hepinstall et al., 2002, Gap maps), or areas of

potential but not necessarily occupied habitat, using known

species-habitat associations, land cover data and expert

knowledge within a geographic information system. Land

cover maps provide the foundation for most predictions

within the Gap framework. Thus, comparisons of spectrally

derived species’ occurrence maps with Gap maps provide a

useful and contemporary reference for how well Landsat

imagery can be used to directly predict species’ occurrences.

Our specific questions were 1) do individual pixels of

Landsat 7 ETM+ imagery contain some of the information

needed to predict the occurrence of forest bird species,

especially those that select for understory conditions during

the breeding season? If the answer to question (1) is yes,

then 2) can we identify the influence of detection distances

for categorizing species occurrence and alternative classi-

fication options on prediction accuracy, and 3) how does the

accuracy of spectrally derived maps compare to those

created from land cover maps using the methods of Gap

Analysis?

We used the GRAIN protocol to collect ground reference

data of bird occurrence over a large forested region.

PHASE1 was employed to automate signature creation

describing surveyed plots and classify maps predicting

species occurrence. We also examined the influence of

varying two spatially explicit classification parameters on

prediction accuracy: 1) the window size used to average

spectral values in signature creation, and 2) the threshold

distance required for bird detections to be counted as
present. The accuracy of maps predicting species’ occur-

rences was validated with ground data not used during

classification and compared with the accuracy of recent Gap

maps. Accuracy was assessed using two common measures,

and the information content of these measures was

compared.
2. Methods

2.1. Study region

The study region is located in Michigan’s Upper

Peninsula, USA and includes parts of five counties (Baraga,

Dickinson, Iron, Menominee, and Marquette; Fig. 1A). This
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region covers ~400,000 ha or approximately 11% of a single

Landsat 7 ETM+ scene (Path 24 Row 28). A majority of the

land is owned by state government and industry with

management primarily focused on wood production. The

study region is an ecologically diverse landscape charac-

terized by a spatial mosaic of forest stands that include

upland hardwoods (sugar maple (Acer saccharum), quaking

aspen (Populus tremuloides), yellow birch (Betula allegha-

niensis), basswood (Tilia americana)), lowland hardwoods

(black ash (Fraxinus nigra), red maple (Acer rubrum)),

lowland conifers (northern white cedar (Thuja occidentalis),

black and white spruce (Picea mariana and Picea glauca),

tamarack (Larix laricina)) and upland conifers (European

larch (Larix deciduosa), eastern hemlock (Tsuga canaden-

sis), red and jack pine (Pinus resinosa and Pinus bank-

siana)). Besides the influence of glacial topography and

other edaphic factors, the composition and structure of

canopy and understory vegetation has high spatial varia-

bility due to differences in forest management practices and

gradients of deer browsing pressure (Albert, 1995; Van

Deelen et al., 1996).

2.2. Study species

We chose three bird species for analysis (Latin name and

American Ornithologists’ Union four-letter code): Black-

throated Green Warbler (Dendroica virens; BTNW), Nash-

ville Warbler (Vermivora ruficapilla; NAWA), and Ovenbird

(Seiurus aurocapillus; OVEN). All three of our study

species commonly breed in deciduous and mixed forests

of northern North America and select territories on the basis

of subcanopy composition and structure in addition to

dominant overstory components (Collins, 1981; Collins, et

al., 1982; Dunn & Garrett 1997; Morse, 1976). These birds

perceive and respond to landscapes at a small spatial grain

for many functional reasons including those related to niche

partitioning and territory delineation (MacArthur & Pianka

1966; Robinson & Holmes, 1982; Schoener, 1968).

Predicting the occurrences of these warblers therefore

provides a strong test for assessing the information

embedded in Landsat 7 ETM+ imagery.

Although the study species are included in the same

family and have all shown a general affinity for breeding in

forested areas, they have markedly different habitat associ-

ations. BTNW nest in a wide variety of mature coniferous,

deciduous and mixed forests (Brewer et al., 1991; Dunn &

Garrett, 1997; Morse, 1976). Most foraging and nesting take

place in the midlevels of vegetation, therefore requiring a

multi-storied layering of vegetation, often with a shrub or

coniferous understory component (Collins, 1983; Norton,

1999). NAWA nest within dense ground cover in a variety

of wet and dry open woodlands (Brewer et al., 1991; Dunn

& Garrett, 1997) and often near ecotones (Williams, 1996).

In drier areas, they commonly select early successional

forests that arise following fires or deforestation. OVEN

nest on the ground and often in large stands of mature
deciduous and mixed forests (Brewer et al., 1991; Smith &

Shugart, 1987; Zach & Falls, 1979). Dry upland areas are

most commonly used but they sometimes are found in

lowland forests and swamps. In all OVEN breeding habitat,

however, leaf litter is essential for foraging and nest

construction (Van Horne & Donovan, 1994). Males of all

three species are territorial and vociferous during the

breeding period and have distinctive songs that make them

easy to distinguish from other species in the study region. In

addition, they have characteristic plumages that can be

identified by trained observers.

2.3. The GRAIN protocol for field sampling

The GRAIN protocol was used to select and characterize

locations for BTNW, NAWA and OVEN occurrence

surveys. GRAIN uses the random sampling method

described by Lillesand et al. (1998) for the Upper Midwest

Gap project but modified to incorporate the field data

collection approach of Liu et al. (2001). In 2001, random

United States Geological Survey (USGS) quarter quarter

quads (QQQs; n =28) served as landscape sampling units

(LUs). In 2002 and 2003, random township sections (n =36

and 32, respectively) served as LUs (Fig. 1B). This switch

between roughly equal area QQQs and township sections

(1000 ha vs. 1037 ha, respectively) was made in order to

allow our data to be more easily integrated with public and

private databases such as Michigan’s atlas of breeding birds

(Brewer et al., 1991).

Within each LU, between 2 and 8 plots (Fig. 1C) were

selected for bird surveys for a total of 433 plots surveyed

over the course of the study. These plots were a minimum of

90-m apart with the mean minimum distance of 240-m (194-

m standard deviation) from the next closest plot. Survey

plots encompassed a 30-m radius area so that a single pixel

of Landsat 7 ETM+ imagery sensed over plot centers could

be precisely characterized by data collected within this area

(Fig. 1D). The specific plot selection criterion was that a

hypothetical 30-m�30-m square could be placed anywhere

within the plot and perceived by the field crews as having

the same vegetation structure and composition as a similar

square placed anywhere else within the plot.

Plot selection in general was dependent on two criteria:

1) permission to access the property and 2) maximizing the

biotic and abiotic differences among plots to sample the

spatial and spectral heterogeneity of the study region.

Preference was given to at least one northern hardwood

plot in each LU to satisfy collaborative research priorities if

northern hardwood plots could be located in the field.

Locations of plot centers were georeferenced using a

minimum of 80 global positioning system (GPS) point

locations collected at 5-s intervals with a Trimble Geo-

Explorer 3 (Trimble Navigation Ltd.) and later differentially

corrected to a precision of T5 m using Coast Guard base

station data. Site centers were flagged, as were 30-m

distances in the 4 cardinal directions (sensu Huff et al.,



Fig. 2. Factors affecting the ground instantaneous field of view captured by

pixels in Landsat imagery include: A) unknown pixel location, B) non-

overlapping pixels of multiple images, C) effects of Earth rotation, and D)

inclusion of increasing ground coverage within pixels increasingly farther

from nadir. Gray circles represent 30-m radius field plots. Each grid

represents the ground information contained within a nine-pixel window.

The hashed center cell represents the ground area used to describe the

sampling plot.

Table 1

The number of plots where species were observed within each detection

distance

Species Detection Distance

30 m

n =433

50 m

n =433

100 m

n =321

180 m

n =433

Black-throated

Green Warbler

44 175 196 271

Nashville Warbler 88 208 208 271

Ovenbird 150 309 297 409

All 433 plots were surveyed using 30-m, 50-m, and 180-m detection

distances and 321 plots were surveyed using the 100-m detection distance.
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2000). Accuracy of plot center locations was determined to

be within the precision of Garmin III+ GPS receivers (15 m;

Garmin Corporation) used to navigate to these locations

during repeated point count surveys.

There were several reasons why we used a 30-m radius

circle for selecting survey locations. First, many of our

ground surveys were conducted prior to image acquisition

so the exact pixel location was unknown (Fig. 2A). Also, we

used multiple season imagery for analysis (see Section 2.4)

and pixels from different images do not always overlap (Fig.

2B). Third, the ground information attributed to a pixel is

actually a parallelogram that is not square due to the rotation

of the Earth as the Landsat 7 satellite travels in a

circumpolar orbit (Fig. 2C). Fourth, the Landsat satellites

have sensors that sweep back-and-forth past a central point

called nadir. The ground instantaneous field of view

attributed to pixels farther from nadir is therefore larger

than that of pixels closer to nadir (Fig. 2D). Although

geometric correction during level 1G processing of Landsat

7 imagery makes adjustments for the last two factors, the

resulting image values are still dependent on the geometric

limitations of the sensor and the influence of reflective

features adjacent to the ground area contained in the pixel

(Cracknell, 1998). Finally, circular plots are easier to

inventory for birds than parallelograms.

In addition to detections within the 30-m sampling

radius, species were also recorded if detected within larger

radii circles surrounding plot centers. These radii included

50 m and unlimited distance during all three years. During

2002 and 2003, an additional detection distance of 100 m

was used. These larger spatial thresholds are commonly

employed during point count surveys for birds (e.g., Ralph

et al., 1993; Ralph et al., 1995). Bird detectability was

assumed to be consistent among plots and all detections

were assumed to be made within approximately 180 m from

plot centers (see Wolf et al., 1995).
LUs were divided into 7 (2001), 6 (2002), and 12 (2003)

groups for daily bird surveys to minimize travel time (not

necessarily minimizing distances) among LUs surveyed

during any day. The surveyed order of LU groups, plots

among LUs, and survey timing was randomized, as was the

selection of observer for each survey. Beginning at sunrise,

observers conducted surveys within a 5-h period when

weather conditions did not preclude birds from singing

(Ralph et al., 1993; Ralph et al. 1995). Observers had been

trained to detect the three species in this study and other

species in the region by song and sight using tapes, field

guides and practice prior to data collection.

Bird species were counted as present if detected by song,

call or sight within each detection distance over an 11-min

period. Timing of surveys began immediately when

observers reached the center of the plot. After 10 min an

additional 1 min was spent walking around the plot center to

flush elusive individuals within 30 m. The distance of

flushed individuals detected <180 m from plot centers by

surveyors walking in or out of the plots was also recorded.

Each plot was visited three times during the breeding period

for these species between June 4 and July 3 in either 2001,

2002, or 2003. At least two observers surveyed each site to

account for possible differences in observer’s physical

abilities to detect the study species (Ramsey & Scott,

1981). A total of 8 observers collected data over the 3 years

of this study.

In all, 433 plots (n =112, 86 and 235 for years 2001,

2002 and 2003, respectively) were surveyed for bird

species’ occurrences 3 times during the breeding period

(Table 1). Survey plots were placed in a wide variety of

land cover classes (see Space Imaging Solutions, 2001 for

land cover descriptions) including aspen associations

(n =85), herbaceous openland (n =10), lowland coniferous

forest (n =35), lowland deciduous forest (n =14), lowland

shrub (n =2), mixed upland conifers (n =4), mixed upland

deciduous (n = 6), northern hardwood associations

(n =190), pines (n =23), other upland conifers (n =15),

upland mixed forest (n =36), and upland shrub / low-

density trees (n =10). Within these land cover classes,

surveys were conducted over a wide variety of size classes

(non-forest, sapling, pole, mature), management histories

(clear cuts, selective cuts, no cuts) and ranges of vertical
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structure (homogeneous to diverse). Survey plots were

placed at varying distances from hard and soft vegetation

edges as long as specific plot selection criteria were met

(see Fig. 1D).

2.4. Image processing

We used Normalized Difference Vegetation Index values

(NDVI, Jensen, 2000) derived from bands 3 and 4) and

short-wave infrared values (SWIR, band 5) from multiple

seasons of Landsat 7 ETM+ imagery to create spectral

signatures describing survey plots and to create maps

predicting bird species’ occurrences. Multiple season

images have been found useful in distinguishing among

forest classes with differing phenological leaf canopy

trajectories (Mickelson et al., 1998; Wolter et al., 1995).

NDVI is often used for vegetation classification because

plants reflect or absorb different amounts of red (band 3)

and near-infrared (band 4) light depending on biophysical

factors such as chlorophyll content and leaf area (Jensen,

2000). The longer SWIR wavelengths are also functional for

vegetation discrimination because they are influenced by

leaf moisture content and canopy cover (Asner & Lobell,

2000; Ceccato et al., 2001) as well as coniferous timber

volume (Gammel, 1995). Multiple seasons of NDVI and

SWIR values can therefore be useful in distinguishing

among differences in overstory composition. Leaf-off

images can also be helpful in separating deciduous wood-

lands by non-deciduous components under the canopy

(Mickelson et al., 1998). Subcanopy factors of deciduous

and mixed forests that may be influential to the warbler

species in this study include leaf litter, coarse woody debris,

and the presence of balsam firs, among others.

Two Landsat 7 ETM+ level 1G images of Path 24 Row

28 were obtained from the USGS. Because the study area is

very cloudy due to the influence of Lake Superior and Lake

Michigan, we were limited in our choices for contemporary,

cloud-free imagery. An April 27, 2001 image was selected

to describe early spring leaf-off conditions just after

snowmelt. Photosynthesizing species during this time

included conifers, grasses and early spring ephemeral herbs

and forbs (personal observation). A May 29, 2001 image

was chosen to represent early leaf-on conditions. During late

May in Michigan’s Upper Peninsula, most deciduous

species have small, young leaves (personal observation)

which likely allow some vegetation under the canopy to

contribute to reflectance values.

All image processing was conducted using Imagine 8.7

software (Leica Geosystems GIS and Mapping LLC). The

two images were converted to at-sensor reflectance using

the import utility. At-sensor reflectance was converted to

surface reflectance through a dark object subtraction (sensu

McDonald et al., 1998). Each image was georectified

(RMSE <8 m) using 200 road intersections within and

around the study area. A nearest neighbor transformation

was employed during georectification to maintain the
information content within pixels. Road intersections were

identified using a digital road map obtained from the state of

Michigan’s Center for Geographical Information (http://

www.mcgi.state.mi.us/mgdl/). This road map is a level 3b

product, originally created from Census Bureau TIGER line

files and most recently repositioned using USGS 1:12,000

Digital Ortho Quarter Quad aerial photography.

Visual inspection of the resulting images revealed over-

lap of the two images and 50 ground control road

intersections independently georeferenced in the study

region, hence indicating accurate georectification. Two to

four corners of the ground control road intersections were

georeferenced using a minimum of 100 GPS point locations

collected at 5-s intervals with a Trimble GeoExplorer 3

(Trimble Navigation Ltd.) and later differentially corrected

to a precision of T2 m using Coast Guard base station data.

A lack of canopy at these intersections permitted greater

spatial precision than could be obtained at many of the

forested plots where bird surveys were conducted.

After georectification, the spectral data were relativized

(see McCune & Grace 2002). Relativization of spectral

values is necessary when using simple distance measures in

spectral space during classification. In this way, the values

within bands are modified so that equal weight can be given

to a similar increment of difference in any band (see Section

2.5.3). For these analyses, we rescaled the image bands to

unsigned 8-bit integer values. This conversion type is an

artifact of an earlier PHASE1-type analysis conducted with

scripts written for proprietary software. The PHASE1

software can use long integers and floating point values,

however the use of integers substantially reduces computer

processing time.

The NDVI values were calculated from surface reflec-

tance values of the April and May images. Surface

reflectance SWIR values of these images were range shifted

to have minimum values of 0. For each image, SWIR values

and NDVI values greater than zero were multiplied by 600.

The multiplication constant of 600 was chosen because it

allowed us to take advantage of the full 256-value range of

an 8-bit integer. The 4 grid layers (2 NDVI and 2 SWIR)

were exported as ASCII files for use in PHASE1.

2.5. HABICLASS PHASE1

2.5.1. Validation data

Before each classification procedure, a subset of survey

plots was randomly selected to evaluate the accuracy of

derived occurrence maps (validation data). Detections of a

species within a specified distance of the plot center were

stratified into presence and absence (e.g., Ovenbird detec-

tions within 30 m). One-third of the plots from each of these

strata were randomly selected for validation. The remaining

plots were used to classify maps of species occurrence

within that detection distance using cross-validation (clas-

sification data). The detection distance was then iteratively

modified, all the occurrence data were re-stratified, and the

http://www.mcgi.state.mi.us/mgdl/
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process was repeated for each species and detection

distance.

2.5.2. Signature creation for multiple window sizes

Signature creation, as well as image classification

(Section 2.5.3), cross-validation (Section 2.5.4) and major-

ity map generation (Section 2.5.5) were automated by

means of the PHASE1 program created with the C++

programming language. Points indicating plot centers were

overlaid with the processed imagery to identify focal pixels.

A window size was specified around each focal pixel, and

within that window, all pixel values were averaged for each

grid layer (2 NDVI and 2 SWIR). These 4 values served as a

multivariate spectral signature describing each plot. Four

sets of signatures were created using 4 different window

sizes. They included 0 (per-pixel classification), 1 (3�3

square of 9 pixels), 2 (2 pixel radius containing 13 pixels),

and 3 (3 pixel radius containing 29 pixels).

2.5.3. Image classification

The following classification procedure was followed for

each window size, bird species, and detection distance. The

set of signatures was stratified by species presence and

absence. Two-thirds of the signatures within each species

occurrence stratum were randomly selected. The signatures

were then used to classify all the pixels in the image based

on their minimum spectral Euclidean distance to sampled

plots. Spectral Euclidean distance is a relatively simple,

non-parametric method of image classification. Images were

classified using the following discriminant function

(Richards & Jia, 1999):

min d x; sið Þ2
ih
¼ x� sið Þt x� sið Þ ð1Þ

where si, i =1,. . .M are the signature values, x is a 4�1

vector of values of the pixel to be classified, and t indicates

that the vector is transposed. In other words, each of the 4

grid values for any given pixel was evaluated for its distance

to the respective grid values described in the signatures. The

squared distances for each grid were summed, and the

signature with the smallest square root summed distance to

the pixel was used to classify that pixel. In cases where two

or more signatures had equal distances from the pixel in

question, a random signature from among the alternatives

was assigned.

2.5.4. Cross-validation

PHASE1 implements a cross-validation procedure to

quantify the statistical distribution of accuracy for the maps

it generates in each combination of window size, species

and detection distance. We generated eleven maps during

each combination. Each map was generated from two-thirds

of the signatures randomly selected from both occurrence

strata. The remaining one third of the classification data

were used to test the accuracy of the map. Accuracy

statistics of proportion correctly classified (PCC) and Kappa
were calculated for each of the 11 maps. The distribution

moments from the 11 instances for each combination were

then calculated.

Like PCC, the Kappa coefficient (Cohen, 1960) generally

ranges from 1 for perfect agreement to 0 for no agreement

(negative values indicating less than chance agreement are

dependent on marginal distributions (Rosenfield & Fitzpa-

trick-Lins, 1986). Unlike PCC, Kappa removes chance

agreement from consideration in accuracy assessment.

Kappa uses all the cells in the error matrix and therefore

includes a measure of overall thematic classification

accuracy as well as omission and commission error for

each class. While other accuracy measures such as

sensitivity and specificity (e.g., Hepinstall et al., 2002) can

be calculated from the error matrix, for simplicity we

compare only PCC and Kappa.

2.5.5. Majority map validation

A majority classification was implemented in PHASE1

to summarize the 11 maps created during cross-validation.

The majority classification created a new map whereby each

pixel in the majority map was labeled using the most

common occurrence class for that pixel from the 11 maps

created during the cross-validation procedure. Accuracy

statistics for this map was assessed using the 1/3 of plots

reserved for validation (see Section 2.5.1). Because the

validation data were randomly selected for each species and

detection distance but not window size used in signature

development, differences in classification accuracy within

species and detection distances were solely due to differ-

ences in window sizes.

2.6. Gap Analysis

The Michigan Gap Analysis Program (MI-GAP) was

recently instituted and initial maps predicting the occurrence

of bird species across the state were released in 2004

(Donovan et al., 2004). These maps were developed based

on known habitat associations (e.g., Brewer et al., 1991) and

expert opinion (J. Skillen, personal communication). Using

a recently derived land cover map (Space Imaging

Solutions, 2001), land cover classes considered to be habitat

for each species (Table 2) were classified as presence while

all others were classified as absence. The spatial precision of

Gap maps was presented to the public at a 90-m resolution.

The maps, however, represented resampled versions of the

original 30-m resolution Landsat imagery-derived maps,

which we obtained and used in this study.

The accuracies of Gap maps were assessed in several

ways using the entire set of field data. Pixels overlapping

plot centers were assessed for their ability to predict

species’ occurrences using PCC and Kappa for each

detection distance. For example, a 30-m�30-m pixel

overlapping a survey plot and classified by MI-GAP for

Ovenbird occurrence (using known land cover associa-

tions) was assessed for its accuracy in predicting whether



Table 2

Land cover classes used to classify species presence in Gap Analysis

Black-throated

Green Warbler

Nashville Warbler Ovenbird

N. hardwood assoc. N. hardwood assoc. N. hardwood assoc.

Mixed upland

deciduous

Oak assoc. Oak assoc.

Pines Aspen assoc. Aspen assoc.

Other upland

conifers

Mixed upland

deciduous

Mixed upland

deciduous

Mixed upland conifers Pines Pines

Upland mixed forest Other upland conifers Upland mixed fores

Mixed upland conifers

Upland mixed forest

Lowland deciduous forest

Lowland coniferous forest

Lowland mixed forest

Lowland shrub
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Ovenbirds were present or absent within 30 m, 50 m, 100

m, and 180 m. We also assessed whether pixels in regions

surrounding the plot centers accurately predicted species’

occurrences using the other window sizes employed during

signature creation (see Section 2.5.3). If the Gap maps

predicted species’ presence within any pixels contained

within each window size then the plot was labeled present.

Otherwise, it was labeled as absent. The accuracies of MI-

GAP predictions were thus compared with field observa-

tions over all combinations of detection distances and

window sizes.
Fig. 3. Relationships between the proportion of plots where species were

detected and accuracy measures of proportion correctly classified (PCC;

open symbols) and Kappa (filled symbols) values for (A) cross-validation,

(B) validation, and (C) Gap Analysis maps. Each symbol represents the

results of a single analysis for a given species (Black-throated Green

Warbler=triangle; Nashville Warbler=square; Ovenbird=circle), detection

distances and window size. First-order polynomial model fit is provided

only as a descriptive measure of dependence as each point represents

accuracy statistics from random subsets of the same pool of plots classified

in different ways.
3. Results

3.1. Information content of imagery

Presence and absence were accurately predicted better

than chance using unclassified imagery for all species within

most detection distances (Fig. 3A). However, there were

large differences between accuracy statistics. Comparisons

between PCC and Kappa showed that PCC was greatly

influenced by the proportion of plots where the species were

detected, independent of which species, detection distance,

or window size were used in map classification (Fig. 3A).

For example, in situations where a species was rarely

detected (e.g., BTNW within 30-m radius; Table 1),

classification of the entire landscape as absent for that

species would yield high PCC values. Alternatively, in

situations where a species was nearly ubiquitous (e.g.,

OVEN within 180 m; Table 1), classification of the entire

landscape as presence would yield high PCC values. Such

classifications, however, do not yield predictions better than

could be made with a random assignment of pixels to

classes. The Kappa coefficient accounts for this problem by

including row and column totals of the error matrix in its

calculation and therefore provided a measure of prediction

accuracy that was less dependent on the proportion of plots



Fig. 4. Proportion correctly classified (gray squares) and Kappa values

(black diamonds) for maps predicting the occurrence of A) Black-throated

Green Warbler, B) Nashville Warbler, and C) Ovenbird using different

detection distances and window sizes. Filled symbols represent mean values

of accuracy statistics for 11 cross-validation iterations with error bars

indicating minimum and maximum values. Open symbols represent

accuracy statistics of a majority map summarizing the cross-validation

runs and tested with a subset of data reserved for validation.

E.J. Laurent et al. / Remote Sensing of Environment 97 (2005) 249–262 257
where species were detected (as indicated by lower R2

values in Fig. 3).

The accuracy of maps differed among species. However,

both accuracy measures were most affected by the detection

distance used to separate sites into species occurrence strata.

For BTNW, Kappa increased and PCC decreased with

detection distance (Fig. 4A). Maps classified for NAWA

occurrence show a similar, although less distinct relation-

ship between the two accuracy measures (Fig. 4B). OVEN

occurrence maps on the other hand, had a unimodal

relationship between the Kappa coefficient and detection

distance (Fig. 4C). PCC values for these maps increased

with detection distance.

Window sizes used in signature creation had less of an

effect than detection distances onKappa values of BTNWand

OVEN maps. For example, the difference between mean

Kappa values for BTNW predictions at detection distances of

30 m and 180 m was larger than the range of mean Kappa

values for any window size within those detection distances

(Fig. 4A). However, window size appears to have a larger

effect on Kappa values within detection distances where

Kappa was highest. For example, highest mean Kappa values

were obtained for BTNWat a detection distance of 100 m but

also showed a greater range of variability over window sizes

within this detection distance (Fig. 4A). Similar results were

obtained for OVEN within a detection distance of 50 m (Fig.

4C). Kappa values for NAWA were affected primarily by

window size (Fig. 4B).

In summary, differences in Kappa values allowed insight

into factors affecting the predictive accuracy of species

occurrence maps. While Kappa had a weak dependence on

the proportion of presence or absence plots used as

signatures during classification (i.e., small R2 values in

Fig. 3), both the detection distance used to separate plots

among occurrence strata and the window size used to create

spectral signatures caused most of the variation in Kappa

values (Fig. 4). However, the relative influence of these

factors was species dependent. PCC on the other hand, was

almost completely dependent on the proportion of presence

or absence plots used as signatures (i.e., large R2 values in

Fig. 3). PCC therefore summarized the relative number of

plots per signature category and provided little information

about the influence of detection distance or window size on

classification accuracy.

3.2. Majority map validation

Majority maps accurately predicted species’ occurren-

ces from validation data better than chance for most

detection distances and window sizes (Fig. 3B). Similar to

the maps created via cross-validation, PCC provided little

information. In fact, majority classification increased the

dependence of PCC and reduced the dependence of

Kappa on the distribution of plots among occurrence

strata (increased and decreased R2 values, respectively;

Fig. 3B).
Majority maps classified validation data better than any of

the cross-validation runs for some detection distances and

window sizes (Fig. 4). Like the cross-validation maps,

detection distance had a strong effect on Kappa values of

majoritymaps.However, window size had a stronger influence

on Kappa than detection distance for NAWA (Fig. 4B).
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3.3. Gap maps

Gap maps yielded a linear relationship between PCC

and the proportion of plots where species were detected

regardless of species, detection distance or window size

(Fig. 3C). As the proportion of detections increased

within the dataset (e.g., via larger detection distances),

PCC increased. Kappa values for Gap maps, like those

for spectrally derived species’ occurrence maps, were less

dependent on the proportion of plots where species were
Fig. 5. Distribution of accuracy statistics (proportion correctly classified

and Kappa values) for majority maps created from the 11 cross-validation

runs and tested with a subset of data reserved for validation (filled

diamonds) and for Gap Analysis maps (open squares) tested with data from

all 433 plots. Statistics are shown for A) Black-throated Green Warbler, B)

Nashville Warbler, and C) Ovenbird. Larger symbols represent larger

detection distances. Symbol location indicates mean values for all window

sizes used to classify maps for each detection distance, with error bars

indicating minimum and maximum values.
detected and therefore provided a better measure than

PCC of how detection distance and window size affected

prediction accuracy. Detection distance (Fig. 5 symbol

sizes) had little effect on Gap map Kappa values. Most of

the variation in these values was due to the window size

used to assess prediction accuracy (Fig. 5 error bars).

Only the 50-m detection data of OVEN (Fig. 5C) were

comparable to maps created using PHASE1. However,

window size also had a very strong impact on these

values.

Spectrally derived maps yielded larger Kappa values than

Gap maps in most situations (Figs. 3 and 5). For all three

species, highest Kappa values were obtained using spectral

associations. In particular, NAWA occurrence was predicted

better than chance only by using spectral associations (Fig.

5B). OVEN, on the other hand, was predicted better from

spectral associations only when using moderate detection

distances (Fig. 5C).
4. Discussion

Using a relatively simple, non-parametric method of

image classification, we predicted the regional occurrences

of three warbler species with the spatial and spectral

precision of Landsat 7 ETM+ imagery and independent of

a land cover map. Maps were validated for all three species

with Kappa values >0.3 and PCC >0.6. Furthermore,

spectral information was used to predict the occurrence of

these species that use forest subcanopy components, with

Kappa values 0.1 to 0.3 higher than achieved by the

Michigan Gap program.

Bypassing subjective land cover categorization thus

avoided land cover classification errors and exploited a

large range of information provided in six bands of imagery.

For example, all three species are known to use areas of

mixed pine species in Michigan (Brewer et al., 1991).

Mixed pines, however, are included in the same land cover

class as pine plantations. In the study region, none of the

study species were found in pine plantations. Thus, Gap

maps would err on the side of commission for these species

in pine plantations. This explicit intent of Gap Analysis to

err on the side of commission for purposes of mapping

‘‘potential’’ habitat (Hepinstall et al., 2002) also likely

contributed to the linear relationship between PCC and the

proportion of plots where species were detected (Fig. 3C). If

subtle spectral differences among different combinations of

pine in the study region are detectable within pixels of

Landsat 7 ETM+ imagery, then occurrence maps created

using spectral associations would not systematically incur

this error.

Although classification methods differed between Gap

maps and direct use of spectral associations, similar

factors likely affected their predictions. Misclassification

of both types of maps could have occurred via the

influence of spectrally undetectable components of habitat
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on prediction accuracy. These components include vege-

tation structure (Collins, 1983; Collins et al., 1982; Probst

et al., 1992; Smith & Shugart, 1987) and landscape

factors such as edge effects, patch sizes and patch

isolation (Dijak & Thompson, 2000; Kotliar & Wiens,

1990; Sisk & Haddad, 2002). Future uses of PHASE1

and efforts by the Michigan Gap program need to

integrate additional data types into predictive models to

account for these habitat associations and improve

prediction accuracy. For example, additional data sources

such as digital elevation models (O’Neill et al., 1997),

radar (Imhoff et al., 1997), and lidar (Lefsky et al., 1999)

will likely provide some of the non-spectral information

needed to improve species’ occurrence prediction accu-

racy and land cover map precision. Indices of landscape

configuration and context (Conner, 2002; Pearson, 1993;

Saab, 1999), land use and other land owner activities

(Boren et al. 1997; Lepczyk et al., 2004), and the

connectivity of potential wildlife occurrence areas (Fahrig

& Merriam, 1985) could provide additional sources of

information for increased prediction accuracy and inter-

pretation of results. Alternative parametric measures of

spectral dissimilarity such as Mahalanobis distance

(Richards & Jia, 1999) also show promise for mapping

species’ occurrences through spectral associations (see

Conner, 2002).

Comparison of PCC and Kappa in this study emphasizes

the importance of selecting a measure of prediction accuracy

that can be interpreted in a meaningful way. PCC did not

provide a valid measure of prediction accuracy for binary

classification of species presence and absence using either

spectral associations or the approach of Gap Analysis. For

the three species in this study, PCC provided little

information other than a summary of the distribution of

samples among classes. These results were obtained

regardless of species, detection distance or window size.

In contrast, Kappa values were nearly independent of the

distribution of plots among occurrence classes, especially

after majority map classification. Thus, Kappa values

provided a more complete picture of classification accuracy

than PCC.

The range of Kappa values, however, varied given the

species, detection distance and window size. Kappa values

spanned 20% to 30% the scope of the index over any group

of 11 cross-validation iterations. Majority classification

helped hone in on the ‘‘true’’ predictability of occurrence

maps. Furthermore, majority maps often predicted species’

occurrences better than any of the maps created during

cross-validation. Cross-validation followed by majority

classification thus shows potential for improving the

accuracy of any image classification method. However, no

single measure, including Kappa, tells the entire story about

the quality of classification accuracy. Other accuracy

measures such as sensitivity and specificity (Hepinstall et

al., 2002) can shed additional light on reasons for omission

and commission errors.
Our results also indicated that the detection distance used

to characterize each species’ occurrence affected Kappa

values substantially (Fig. 4). Moderate-to-large detection

distances (100 and 180 m) best classified maps of BTNW

and NAWA occurrences. However, moderate detection

distances, which ignored remote observations, provided

the best source of information for classification of OVEN.

Unlimited distance point counts for this very loud and

common species in the study region may consequently

include detections unrepresentative of the vegetation

described by pixels used in signature creation. These larger

detection distances are also subject to increased bias from

differences in observer’s hearing abilities (Ramsey & Scott,

1981). Attention should therefore be given to using

appropriate detection distances when creating occurrence

maps through spectral associations.

Besides detection distances, window sizes used in

signature creation also influenced accuracy statistics but

to a lesser extent. Highest Kappa values of majority maps

were typically obtained using moderate window sizes.

These window sizes of 9 to 13 pixels (0.8 to 1.2 ha) used

in our analyses are best representative of the study species

territory sizes (Morse, 1976; Schoener, 1968). These

results emphasize the importance of considering the

species’ natural history when choosing among alternative

classification parameters. However, habitat features within

their territory may be of the greatest importance for some

species, while landscape factors may be more influential

for others (Pearson, 1993; Saab, 1999). In our analyses,

window size provided an indication of how averaging the

spatial variability of pixels surrounding survey plots

affected our results. Spatial variability is expected to affect

prediction accuracy as a function of the feature being

classified, the information content of the imagery, edge

effects, the interspersion of spatial autocorrelation from

higher order edaphic gradients and landscape structure

(Collins & Woodcock, 1999; Hurlbert, 1984; Legendre et

al., 2002).

In addition to the influence of window size and detection

distance investigated in this study, prediction accuracy is

likely dependent on several other factors. Kappa values are

expected to vary as a function of the extent of the study area,

type and timing of imagery, grain of imagery, image

processing methods, and image classification methods.

The type of occurrence data used in supervised image

classification will also affect prediction accuracy. This is

because the occurrences of some species are expected to

vary spatially as a function of ontogenic changes in life

history strategies (Kolasa & Waltho, 1998; Polis, 1984;

Temple, 1990) and temporal changes in habitat use (Morse,

1985). The influence of all these factors on prediction

accuracy can be tested within a strong inference framework

(sensu Jenkins et al., 2003b; Murphy & Noon, 1992) using

maps generated with PHASE1.

Descriptions of landscape heterogeneity will therefore

differ given the process of interest as well as the grain of
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analysis, the classification system in use and the variability

of spectral information employed. For these reasons, a

quantitative examination of all possible factors affecting

prediction accuracy is warranted. The GRAIN protocol and

HABICLASS procedure introduced in this paper provide a

general framework for such an examination. By controlling

for scale and aggregation effects and permitting a strong

inference approach for investigations into causal mecha-

nisms behind the predicted occurrence patterns, GRAIN and

HABICLASS provide a compelling complement to regional

mapping efforts of wildlife occurrences such as GAP

Analysis.
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