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Abstract. Understorey vegetation is a critical component of biodiversity and an
essential habitat component for many wildlife species. However, compared to
overstorey, information about understorey vegetation distribution is scant,
available mainly over small areas or through imprecise large area maps from
tedious and time-consuming field surveys. A practical approach to classifying
understorey vegetation from remote sensing data is needed for more accurate
habitat analyses and biodiversity estimates. As a case study, we mapped the
spatial distribution of understorey bamboo in Wolong Nature Reserve (south-
western China) using remote sensing data from a leaf-on or growing season.
Training on a limited set of ground data and using widely available Landsat TM
data as input, a nonlinear artificial neural network achieved a classification
accuracy of 80% despite the presence of co-occurring mid-storey and understorey
vegetation. These results suggest that the influences of understorey vegetation
on remote sensing data are available to practical approaches to classifying
understorey vegetation. The success here to map bamboo distribution has
important implications for giant panda conservation and provides a good
foundation for developing methods to map the spatial distributions of other
understorey plant species.

1. Introduction

Understorey vegetation is a significant component of biological diversity and

critical habitat for countless wildlife species (MacArthur and MacArthur 1961, Odum

1971, Schaller et al. 1985). However, monitoring of understorey conditions has been

restricted to tedious and time-consuming ground surveys due to a lack of alternative

methods such as remote sensing. More specifically, whereas significant advances in

regional ecology have been made from overstorey mapping (Roughgarden et al.

1991), extensive spatial distribution information of understorey vegetation has

remained unavailable due to the limitations of traditional remote sensing

classification techniques. In this study we examined the feasibility of using artificial

International Journal of Remote Sensing
ISSN 0143-1161 print/ISSN 1366-5901 online # 2004 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/01431160310001598971

*Corresponding author; tel: 517 353 5468; fax: 517 432 1699; e-mail: linderm5@msu.edu

INT. J. REMOTE SENSING, 10 MAY, 2004,
VOL. 25, NO. 9, 1685–1700



neural networks to classify understorey vegetation from optical remote sensing data

based on limited field samples.

Studies have shown that canopy background features have a significant

influence on optical radiance measured by remote sensors even under considerable
cover (Huete et al. 1985, Ranson et al. 1986, Guyot and Riom 1989, Bausch 1993).

In the near-infrared region, understorey can dominate the overall reflectance from

open-canopy stands (Nemani et al. 1993). Studies on the relationship of Leaf Area

Index (LAI) values to optical data have shown that, even in canopies up to 89%

closed, understorey vegetation characteristics have a measurable effect on the

radiance response recorded by a satellite sensor (Nemani et al. 1993, Law and

Waring 1994, Spanner et al. 1994, Qi et al. 2000). However, the influence from

background features is a function not only of the direct reflectance from gaps in the
canopy, but also multiscattering between understorey and the overstorey as well as

transmission through the canopy and is therefore a complex combination of linear

and nonlinear overstorey and understorey contributions (Borel and Gerstl 1994).

Therefore, while understorey vegetation and background features influence the

response measured at distant sensors, the understorey is often not amendable to

traditional classification techniques.

Most standard statistical classification techniques are restricted by underlying

assumptions of the data (Atkinson and Tatnall 1997) and are often limited in their
applications and accuracy for classifying complex scenes (Lillesand and Kiefer

1994). This becomes particularly relevant when considering the complex contribu-

tions of understorey vegetation. Attempts to use traditional methods to map

understorey vegetation, even a coniferous understorey with a leaf-off deciduous

overstorey, have had, at best, mixed results (Stenback and Congalton 1990, Porwall

and Roy 1991, Ghitter et al. 1995). The degrees of linear and nonlinear con-

tributions vary relative to the understorey and overstorey cover, structure, and

other variables. In addition, changes in canopy cover and species composition, and
understorey species composition and cover from pixel to pixel result in a complex

distribution of understorey classes within the feature space.

Spectral unmixing methods, such as linear mixture models and artificial neural

networks, have been shown to be able to parse the proportional effects of individual

canopy features from the radiance response of a single heterogeneous pixel (Cross

et al. 1991, Adams et al. 1995, Carpenter et al. 1999). These approaches are likely to

be more amenable to classifying understorey vegetation. However, linear mixture

models are sensitive to the nonlinear contributions of understorey vegetation. Past
studies using the linear model have had to ignore or assume that the nonlinear

interactions are small (Roberts et al. 1993, Asner and Lobell 2000, Gilabert et al.

2000). Artificial neural networks, on the other hand, in some situations significantly

increased the ability to deconvolve the proportional influence of overstorey features

in part by allowing for nonlinear effects (Foody 1996, Carpenter et al. 1999).

Artificial neural networks may provide a practical approach to understorey

classification. Neural networks are essentially non-parametric data transformations

that are not restricted by underlying assumptions and can account for nonlinear
effects given a sufficiently complex partitioning of the classification space (Atkinson

and Tatnall 1997). Furthermore, neural networks are more likely to learn the

complex variability in the signature due to varying canopy and understorey

conditions and to do so more efficiently than traditional classifications (Foody and

Arora 1997, Atkinson and Tatnall 1997). To test the practicality of classifying

understorey vegetation based on limited ground data, we compared the ability of an
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artificial neural network to predict the presence or absence of understorey

vegetation from optical remote sensing data relative to traditional techniques.

2. Study Area
The impetus for this study was the need for a practical method to classify the

spatial distribution of understorey bamboo irrespective of the canopy conditions

over large regions. Bamboo plays a vital role in the survival of the endangered giant

panda (Ailuropoda melanoleuca) (Schaller et al. 1985, Liu et al. 1999a). The impact

of the spatial distribution of bamboo on panda populations has been well-

documented (Johnson et al. 1988, Taylor and Qin 1997). However, past panda

habitat analyses have been limited in their ability to conduct accurate habitat

assessments over large areas due to the lack of bamboo distribution maps with
sufficient detail or extent as shown in figure 1 (Liu et al. 2001).

Remote sensing would be a preferable method for data acquisition at larger

scales. However, methods to map the extent of bamboo, even employing aerial

photography, have not been successful (Morain 1986, De Wulf et al. 1988, Porwall

and Roy 1991). The main problem in classifying bamboo in much of the panda

range is that it is typically found as an understorey species under variable canopy

species, percentage cover and densities. We required an approach that would be

able to classify the presence/absence of understorey bamboo irrespective of the
overstorey.

Located between 102‡52’ and 103‡24’E and 30‡45’ and 31‡25’N in the Qionglai

Mountains of south-western China, the reserve is approximately 200 000 ha in size

and one of the largest parks dedicated to giant panda preservation (Liu et al. 1999b,

Liu et al. 2001). It is estimated that approximately 10% of the total wild panda

population can be found within this reserve. Within Wolong, elevations range from

1200–6525 m, creating several climatic zones and consequently high habitat

diversity. From the lowest elevation to approximately 1600 m, the canopy consists
mainly of evergreen broadleaf. From 1600–2000 m there is an increasing mixture of

the broadleaf and deciduous. The canopy is dominated by deciduous vegetation

from 2000 m to about 3600 m with an increasing mix from conifer at the higher

altitudes. Above this elevation, subalpine conifers give way to alpine meadow at an

elevation of approximately 4400 m. Throughout the reserve forest canopies

averaged 56% closure and rarely exceed 90%, maintaining significant gap areas

for light penetration.

Within the reserve, bamboo occurs up to an elevation of 4500 m and is typically

an understorey species. Up to 11 species of bamboo are found in Wolong with two
species, Bashania fangiana and Fargesia robusta, predominating (Schaller et al.

1985) (figure 2). In forested areas, bamboo is distributed in patches ranging in size

from single plants to hundreds of metres across. Where bamboo occurs, it averages

41% of the ground cover. However, the spatial distribution of bamboo seemingly

does not follow any trends relative to overstorey or abiotic factors (Reid et al.

1989). Regression relationships based on ground samples of overstorey cover, slope,

altitude and bamboo ground cover in forested areas are shown in table 1 and

suggest that the prediction of bamboo presence/absence is independent of within-
stand characteristics. The lack of correlation of the spatial distribution of bamboo

and environmental factors may be partly due to the unique episodic synchronized

die-offs of large areas of bamboo (Reid et al. 1989, Keeley and Bond 1999).

However, it is precisely this distribution that affects pandas.

The spatial distribution of bamboo is also influenced by human activities and
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(a)

(b)

Figure 1. Examples of past bamboo distribution maps for Wolong Nature Reserve.
Figure 1(b) shows the full-reserve map derived from field survey work conducted
from 1979–1983 (Schaller et al. 1985 (reprinted with the permission of the University
of Chicago Press)). The inset (figure 1(a)) shows the approximate area of the map
shown in figure 1(b), a higher detail, smaller extent map derived from work done by
Johnson et al. (1988) in response to a mass die-off of Bashania fangiana within the
reserve.
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restricted environmentally (e.g. high-altitude permanent rock, alpine meadow).

Grazing and agricultural use have effectively removed bamboo from some areas.

Other regions have been clear-cut leaving a mixed mid-storey shrub layer and a

lower occurrence of bamboo. Finally, selective logging has changed the species

composition of the overstorey and reduced canopy cover in some areas. While

relatively limited in impact, these human activities are transforming the landscape

and introducing additional complexity in classifying the land cover. The complex

relationships between land cover and the lack of substantial correlation between the

presence of bamboo and canopy conditions made prediction or classification using

traditional methods difficult and required a new approach for accurate classification.

3. Methods
3.1. Data

Field data were collected throughout the reserve during the summers of 1998

and 1999. They included vegetation ground sampling plots for algorithm training

(a) (b)

Figure 2. Examples of (a) Bashania fangiana beneath a typical overstorey and (b) Fargesia
robusta with co-occurring vegetation.

Table 1. Relationship between overstorey species and abiotic factors and understorey
bamboo. Mean values show average values measured throughout the reserve. R and
R2 values show regression relationships between the given variable and the
occurrence of bamboo.

Bamboo (%) Canopy (%) Slope (‡) Altitude (m)

Mean 41.2¡36.2 55.6¡20.8 23.0¡10.7 2583¡285
R 0.11 0.30 0.14
R2 0.01 0.09 0.02
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and validation and ground control points (GCPs) to allow registration of the

remote sensing data. Landsat Thematic Mapper (TM) data acquired over Wolong

Nature Reserve in September 1997 were used for this study. The Landsat TM scene

was registered to UTM WGS-84 coordinates to allow co-registration of the ground

data. The remote sensing data were registered using the GCPs collected to an rms

error (RMSE) of less than one pixel. To gather representative ground data,

stratified sampling of the land covers and understorey conditions was conducted.

Ground sample plots were located where access was possible and registered to the

remote sensing data through differential Global Positioning System (GPS) using

Trimble Pro XRS and Community Base Station receivers.

Plots were selected where the vegetation was relatively homogeneous over a

60 m660 m area. A sample area was considered relatively homogeneous where

similar percentages of vegetation were distributed evenly throughout the entire

sample plot. Therefore, any 30 m630 m subplot would contain the same vegetation

percentages regardless of where it was situated within the 60 m660 m plot. The

60 m660 m dimensions were chosen to ensure that one pixel of the Landsat TM

data (30 meter resolution) would be fully contained within a sample plot as prior

knowledge of the GPS position in relation to the remote sensing grid was unknown.

For each plot, information on the biota such as vegetation types for the overstorey,

mid-storey and understorey, as well as the corresponding percentage cover, were

recorded. Percentages of vegetation cover in the overstorey (w5 m), mid-storey

(2–5 m), and understorey (v2 m) were estimated visually for the 60 m plots.

Training data for the artificial neural network were selected from the vegetation

ground data where positions were known at a suitable accuracy (field data were

filtered for GPS measurements with standard deviations greater than 10 metres)

and stratified to include a representative sample of vegetation conditions. On this

basis 189 sample plots were chosen. Approximately, two-thirds of these data were

used to train the neural network and the remaining third reserved for validation.

The data were categorized into presence/absence categories. If bamboo cover was

greater than 10%, the training value was assigned a 1 (presence). Otherwise, the

training value was assigned a 0 (absence). Such categorization was done for three

reasons. First, sampling methods were limited in assigning absolute ground cover

percentages over large sample plots. Second, at less than 10%, the cover was

extremely insignificant, did not provide any useable biomass for pandas, and was

considered to have a limited influence on the spectral response. And third, it was

anticipated that a binary categorization would reduce data transformation

complexity.

3.2. Artificial neural network design

For this study, the neural networks were simulated in the Neural Network

module of Mathworks MATLAB (The MathWorks Inc. 1999). The back-

propagation multilayer perceptron (MLP) is a commonly used and widely available

neural network structure in remote sensing and was used in this study (Atkinson

and Tatnall 1997) (figure 3).

Several variations of internal network structure, input data, and learning

algorithms were tested to determine optimal algorithm characteristics. Different

combinations of the Landsat TM (6 bands excluding thermal band) were examined

as potential data input. As a result, the input layer consisted of three to six input

nodes depending on the layers used. The structure of the hidden layers was also
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tested to determine the necessary number of hidden layers and number of nodes per

layer required. In addition, generalization techniques, methods to reduce over-

fitting, were analysed including techniques such as early stopping by adjusting the

training mean square error (MSE) goal and automated regularization utilizing the

Bayesian Regularization (BR) learning algorithm. Early stopping, as the term

suggests, establishes a higher error convergence threshold and thus stops the

training process before full convergence occurs. This can be done automatically by

comparing an additional reserved data set to determine when error minimization

reduces generalization of the full data set. However, since training data were

limited, preset early stopping error levels of 1610205 and 1610208 were tested

relative to a full convergence level, typically around 1610220 (known from

preliminary trials).

3.3. Performance evaluation

Evaluation of individual algorithms was conducted by examining algorithm

performance through each of the four stages: training, simulation, verification and

validation. The algorithms were first presented with training data (i.e. remote

sensing pixel values and corresponding ground data of presence/absence values).

If the algorithm was able to converge on the preset error goal, a 15 km615 km

evaluation subset of the remote sensing data was fed through the trained data, or

simulated, to output a predicted map of bamboo presence/absence. This output

subset was then examined to determine how well the predicted values conformed to

the expected output values of 0 or 1. As in many practical applications, it was not

possible to collect a completely representative training sample. Therefore, the

output values of pixel values not seen in training are expected to vary relative to

the expected outputs and were categorized if they did not conform exactly to the

expected presence/absence values of 1 or 0. The prediction maps were then verified

with the training data and validated using independent data. The optimal algorithm

Figure 3. Representative schematic of an artificial neural network. The arrows represent a
feed-forward process of transforming input data, such as remote sensing imagery, to
an output space (e.g. bamboo existence/absence). Networks are trained through
a priori knowledge of output and input relations (ground data and corresponding
remote sensing pixel values) and a reiterative back-propagation of training errors to
update the hidden layer weights.
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characteristics were chosen based on the validation accuracy and conformance to

expected output levels for the entire image. This algorithm was then used to

simulate the remaining 17 subsets to produce a full map of the reserve.

3.4. Comparison with traditional techniques

It was hypothesized that the underlying restrictions and assumptions of

traditional classification methodologies would not allow accurate classification of

understorey features. To allow comparison to traditional techniques, supervised

classifications of bamboo distribution were conducted on the 15 km615 km

validation subset using ERDAS Imagine v. 8.3.1 (ERDAS 1999). The same training

data used to train the neural network within the validation subset were used to

gather supervised signatures. These signatures were categorized to allow maximum

likelihood classifications and retained as single signatures for a minimum distance

classification. This allowed testing of the effects of classification algorithms and

merging of spectral signatures. Each method is a standard supervised classification

approach. However, it was anticipated that the extreme topography and overstorey

variation would require more than one signature to obtain accurate results.

Utilizing different combinations of signatures allowed testing of these effects. The

resulting output classes from each method were recombined into presence and

absence categories. These binary classifications were then compared to the

independent validation data to determine classification accuracy.

4. Results

4.1. Design and performance evaluation

Evaluation and comparison of the simulations were initially conducted on a

15 km615 km evaluation subset. For each algorithm where convergence was achieved,

conformance to expected values, verification, and validation results were examined. It

was found that the full TM data set (all six bands) was required for adequate

convergence. Inputs using fewer bands converged more slowly or not at all. Adequate

convergence was also not possible using an algorithm structure containing only one

hidden layer. For comparison between algorithm structures using more than one

hidden layer, verification and validation results were examined.

Prior to verification and validation analyses, the outputs were categorized into

presence and absence values. This was necessary since the training data were not a

fully representative sample of all land covers, combinations of land covers,

topographic effects, and understorey conditions. Therefore, variations in the output

value from the expected 1 or 0 were seen. For example, comparison of output

values corresponding to training data plots showed value ranges of 0.99–1.00 as

classification values for the presence of bamboo and only 0.00 for absence.

However, output values for pixels where ground samples were available but not

used for training showed a larger spread. In fact, for land covers (clouds, exposed

rock, snow) where training data were not available, output values were as high as

2.5. In addition, since complete control even within sampled vegetation types and

abiotic factors was not absolute, output values in vegetated areas ranged from

0–1.90. Therefore, when the entire image was simulated, output values from the

network less than 0.50 or greater than 1.50 were considered absence and values

greater than 0.50 and less than 1.50 were considered presence.

Algorithm verification was significantly higher when using at least 24 hidden

nodes in the first layer and as high as 100% agreement for all convergence levels
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tested when using at least 24 nodes in the first layer and 48 nodes in the second

hidden layer. The validation data for six algorithm architectures given in table 2

show the basic trend in network training. Validation results ranged from less than

50% from networks failing to fully converge (not shown) to 82% for the most

optimal method shown. As shown in table 2, learning algorithms (e.g. Broyden-

Fletcher-Goldfarb-Shanno (BFGS) quasi-newton (BFG) and Levenberg-Marquardt

(LM)) had less influence on the overall accuracy compared to early stopping levels.

Examples of the outputs from the neural network algorithm tests on the

15 km615 km study area are shown in figure 4. Consistent areas of agreement

among the outputs can be seen (figure 4 letterboxes) and represent trends in land

cover such as major clearings and agriculture areas. The differences are less

obvious. In tests run to convergence levels of 161028 and 1610220 (figures 4(b)

and (c)), land covers not represented in the training data are not classified within

the expected 0–1 range of values and are noted as very bright features. Compared

to the 161025 trials (figure 4(a)), the latter image shows more consistent bamboo

classification and better conformance to expected trends in output values (0–1). In

addition, compared to overstorey classifications and knowledge of the region, the

161025 method seems to retain land-use features (i.e. human appropriated areas,

permanent rock, etc.) better. Based on these visual assessments and the validation

results shown in table 1, the algorithm with two hidden layers, 24 and 48 hidden

nodes, and convergence level of 161025 with classification accuracy for the

15 km615 km study area of 80–82% was selected for full reserve analysis.

4.2. Supervised classification

Performing supervised classifications of the validation subset yielded consis-

tently lower classification accuracy than the optimized neural network methods.

Merging the individual signatures into two, presence and absence, signatures and

then performing a maximum likelihood (ML) classification yielded a 71% clas-

sification accuracy based on the validation dataset. Using each of the individual

signatures to perform a minimum distance classification resulted in a 69% clas-

sification accuracy of the bamboo. Subdividing the ML signatures into spectrally

similar categories (i.e. similar aspect, slope, overstorey vegetation) produced similar

results of 71% accuracy.

4.3. Full reserve results

Full reserve images of outputs from the neural net stopped at 161025 are

presented in figure 5. Figure 5(a) shows the mosaic of the 18 outputs. A comparison

Table 2. Influences of learning algorithms (BFGS quasi-newton (BFG) and Levenberg–
Marquardt (LM)) and early stopping (mean square error levels of 161025, 161028,
and 1610220) on validation and verification accuracy (percentage).

Learning algorithm MSE goal Accuracy (verification) Accuracy (validation)

LM 161025 100.0 80.0
LM 161028 100.0 62.2
LM 1610220 100.0 55.6
BFG 161025 100.0 82.2
BFG 161028 100.0 75.6
BFG 1610220 100.0 68.9
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between the bamboo prediction map from the neural network to the field survey

map is shown in figure 5(b) and shows an excellent correspondence between the

predicted and surveyed distributions. Temporal differences of actual distribution

between the surveyed and predicted bamboo maps are expected from natural

(a)

(b)

(c)
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dynamics and human disturbance, but since potential habitat is controlled by

abiotic factors such as altitude, precipitation, and slope, overall distribution should

be consistent through time. A confusion matrix of the full reserve output validation

is presented in table 3. Overall accuracy based on all validation data was 80%. The

matrix shows more clearly the correspondence between predicted and ground truth

data and those pixels not being correctly categorized. Of particular note is the

technique’s inaccurate prediction of pixels containing bamboo as having an absence

of bamboo, or false negatives. This category represents 75% of the incorrectly

assigned pixels.

Further analyses examining factors influencing the errors and these false

negatives in particular showed very interesting trends. For example, no relation

between the percentage of canopy closure and prediction ability was found. In other

words, the distribution of canopy closure for the miscategorized pixels was the same

as all the data. It should be noted, however, that complete canopy closure was rare

and bamboo was not found under 100% canopy closure. Nor was any relation of

(a) (b)

Figure 5. Full reserve output maps from optimal algorithm input and structure. Input data
were Landsat TM data excluding the thermal band and algorithm characteristics
included two hidden layers with 24 and 48 nodes. The BFG learning algorithm with a
convergence threshold of MSE~161025 was used. (a) shows only the bamboo
distribution, with green areas representing bamboo and grey areas the absence of
bamboo. (b) shows the good correspondence of the neural network output as it
compares to the full reserve output. Neural network bamboo prediction is shown as
green overlaying ground survey distribution (for legend see figure 1(b)). Reprinted
with permission from the University of Chicago Press.

Figure 4. Effects of algorithm structure are shown with variations in learning algorithm and
error goal. (a) Output map from BFG training algorithm with convergence threshold
of MSE~161025. (b) and (c) Output maps from training algorithms with conver-
gence thresholds of MSE~161028 and 1610220, respectively. Effects of generaliza-
tion are apparent between methods using a 161025 threshold (a) and LM 161028

and 1610220 outputs (b) and (c). Better delineation of an agriculture area (inset A)
using a 161025 threshold and decreased generalization at 161028 and 1610220

shown as brighter areas in (b) and (c) (inset B) do not conform to expected output
values.
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miscategorized pixels to the percentage bamboo found. Again, the distribution of

miscategorized pixels was similar to that of all the data. However, significant trends

were found in regards to co-occurring mid-storey and understorey vegetation within

miscategorized pixels. In the case of 90% of the false negatives, a mid-storey,

typically 2–5 m deciduous sub-canopy trees and shrubs, either partially covered

and/or intermingled with the bamboo. In every case of the false positives, a grass

understorey, with similar characteristics as Bashania, covered the forest floor.

Ground data plots with co-occurring shrub in the case of false negatives and grass

in the case of false positives in all represent 92% of the miscategorized pixels.

5. Conclusions and discussion

Data and algorithm requirements were found through testing various com-

binations of input, training data format, and algorithm architecture for successful

neural network prediction of understorey bamboo presence/absence. The best

results were obtained when using all six bands of the TM data as inputs. Infrared

wavelengths have a greater canopy penetration compared to shorter wavelengths

(Lillesand and Kiefer 1994). The TM sensor records information in three bands in

the infrared, one in the near and two in the shortwave infrared. In addition, general

application of the trained network was most accurate when stopped from reaching

full convergence. Using this information, we were able to derive spatial distri-

butions with significant correspondence to independent data. The results showed as

high as 82% correspondence between predicted bamboo distribution and ground

truth validation data.

In comparison to the maximum likelihood and minimum distance supervised

classifications, clear gains were made using the neural network for bamboo

classification. Relative to the observed distribution of bamboo, the supervised

classifications seem to be more closely related to the general trends in the dominant

vegetation. It is possible that the gains in the bamboo classification using the neural

network are due to the ability of the neural net to more precisely learn trends in the

dominant vegetation to that of the co-existence of bamboo. However, based on field

observations (table 1) and classification errors we do not believe this is the case.

While not providing conclusive evidence, trends in the classification and the lack of

any discernable correlation of overstorey vegetation in forested regions to the

existence of bamboo lead us to believe that the neural network is more capable of

utilizing canopy gap and sub-canopy influences to more accurately classify

understorey bamboo. The neural network is probably more capable of classifying

minority features, adapting to the variable influences of changing canopy

conditions, and accounting for the nonlinear effects of sub-canopy vegetation.

Table 3. Confusion matrix showing ground data values compared to predicted presence/
absence from full-reserve analysis based on BFG 161025 algorithm output using
Landsat TM data. Numbers in parentheses represent those absence and presence
validation points containing co-occurring grass (*) and shrubs ({), respectively.

Artificial neural
Ground data

network prediction Absence of bamboo Presence of bamboo Accuracy

Absence of bamboo 31 9(8{) 78%
Presence of bamboo 3(3*) 17 85%
Accuracy 91% 65% Overall 80%
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The misclassification trends discussed in the results and shown in table 3 lead us

to believe that the neural network method is basing the classification, at least in

part, on understorey vegetation to increase classification accuracy of understorey

bamboo. We believe, for example, in the case of the false positives the neural
network is falsely classifying other understorey grasses as bamboo. The grasses may

be spectrally similar enough to the bamboo as to cause false positive classifications.

In the case of the false negatives, it is possible that the co-occurring shrubs are

simply masking understorey features. These pixels of co-occurring shrub and

bamboo represent about 89% of the false negatives. The neural net may also be

training against shrub containing plots as typically shrub dominated areas are

devoid of bamboo. To test this, further data are being collected with emphasis on

samples where there is co-occurring vegetation.
Data from other types of sensors may also contribute to these analyses and

make parameterization of understorey conditions more applicable. Significant

structural information (e.g. biomass and vertical distribution) can be inferred (and

consequently some differentiation between structurally distinct vegetation types)

from Synthetic Aperture Radar (SAR) (Luckman et al. 1997, Treuhaft and Siqueira

2000) and light detection and ranging (lidar) (Lefsky et al. 1999). We anticipate that

the fusion of the increased biomass and structural information with the signature

information available from optical sensor data may allow enhanced classifications
and biophysical parameterization.

Canopy cover rarely exceeded 90% in Wolong and was on average around 56%

during the middle of the growing season (Linderman et al. unpublished data).

Neural network classification of canopy gap vegetation is, therefore, very feasible.

The increased classification accuracy and correlation between miscategorized pixels

and understorey vegetation suggest this is probably occurring here. The degree to

which the neural net is capable of incorporating nonlinear effects such as multi-

scattering and IR transmission due to sub-canopy vegetation is unknown. Further
studies are necessary to test this and utilize this information if it is available. For

example, to accurately classify the percentage cover and density of understorey

vegetation, important data for many habitat models and mapping studies, methods

sensitive to the nonlinear influences are most likely required. Determining the fraction

of cover will require that the contribution of the sub-canopy vegetation be

distinguishable and proportional to the fraction of sub-canopy vegetation. To this

end, we are examining the relationship of the percentage cover of bamboo to optical

remote sensing data using neural networks. However, further studies are needed as
well. Analyses on the influence of training data set composition and size, neural

network structure and characteristics, input data composition, among others are

necessary to determine the influence of each of these aspects on understorey

classification.

It is widely recognized that the understorey contains significant biomass and

diversity of vegetation. However, it typically remains unclassified using traditional

remote sensing techniques. The use of artificial neural networks to extract the

complex information available from optical remote sensing data seems promising
as a method to accurately classify understorey features. In addition, the neural

network’s ability to learn the complex trends in the data and to generalize across

land covers make this method broadly applicable. Practical approaches to

classifying understorey vegetation are needed for studies requiring more accurate

information of biomass, biodiversity, and habitat conditions, as in the case for the

endangered giant panda. We believe the results from this study at least point to a
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need for further analyses on the influence of understorey vegetation on remote

sensing data, information available from other data sets, and practical methods to

use these data to classify understorey vegetation. Research in this area has the

potential to provide a practical approach to classifying understorey vegetation and

developing information on the quantity and spatial distribution of understorey

vegetation species on a scale previously prohibitive.
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