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A B S T R A C T

China’s water policies in the past decades have relied heavily on the construction of massive water

conservancy projects in the form of dams and reservoirs, water transfer projects, and irrigation

infrastructure. These facilities have brought tremendous economic and social benefits but also posed

many adverse impacts on the eco-environment and society. With the intensification of water scarcity,

China’s future water conservancy development is facing tremendous challenge of supporting the

continuous economic development while protecting the water resources and the dependent ecosystems.

This paper provides an overview of China’s water conservancy development, and illustrates the

socioeconomic, environmental and ecological impacts. A narrative of attitude changes of the central

government towards water conservancy, as well as key measures since the 1950s is presented. The

strategic water resources management plan set by the central government in its Document No. 1 of 2011

is elaborated with focus on the three stringent controlling ‘‘redlines’’ concerning national water use,

water use efficiency and water pollution and the huge investments poised to finance their

implementation. We emphasize that realizing the goals set in the strategic plan requires paradigm

shifts of the water conservancy development towards maximizing economic and natural capitals,

prioritizing investment to preserve intact ecosystems and to restore degraded ecosystems, adapting

climate change, balancing construction of new water projects and rejuvenation of existing projects, and

managing both ‘‘blue’’ (surface/groundwater) and ‘‘green’’ water (soil water).
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1. Introduction

Over the past three decades, the economy of China has grown
the fastest among major nations and now is ranked second in the
world. However, China’s development is increasingly constrained
by limited water resources. As the biggest developing country with
the largest population, China has been facing serious water scarcity
(Yong, 2009). With only 6% of the world’s total water resources and
9% of the world’s arable land, China feeds 21% of the world’s
population. This achievement was not possible without a huge
number of water conservancy projects, e.g. dams, reservoirs,
irrigation infrastructure, and water transfer projects.
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Today, China possesses the largest number of dams (about half
of the world’s total), the largest amount of hydropower generation
(�20% of the world’s total), the largest irrigated area (�21% of the
world’s total) (FAO, 2011), the largest hydropower project (i.e.
Three Gorges Hydroelectric Project, TGHP) and water transfer
project (i.e. South-to-North Water Transfer Project, SNWTP) of the
world. These water projects have brought tremendous benefits in
flood control, water scarcity alleviation, clean energy generation
and have supported the food security and overall economic
development (Mei, 2010; Wu et al., 2006). The benefits, however,
come with high costs. The massive projects have caused many
problems concerning the environment impacts (Li and Wilcove,
2005; Zhao et al., 2008), degradation of freshwater and soil
ecosystems (Wang et al., 2006b), soil and river erosion (Yang et al.,
2011), and large population resettlements (Chang et al., 2010).

China’s water conservancy development is facing a number of
challenges. Apart from the negative ecological, environmental and
social impacts, water resources scarcity is posing increasing
obstacles. The situation is particularly grave given the fact that
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most suitable sites for water conservancy projects have been
developed. Hence, the potential for constructing new water supply
projects is limited. The problem has been further aggravated by
insufficient investment for water infrastructure and conservancy.
Facing the serious water challenges, on January 29, 2011, the
Chinese government issued the Central Document No. 1, titled
‘‘The Decision on Accelerating the Reform and Development of
Water Conservancy.’’ (CPC Central Committee and Council, 2010).
Historically, every year’s Central Document No. 1 is the most
important policy for that year and beyond. This document is the
first-ever comprehensive policy document released for water
conservancy. It acknowledged the lagging water infrastructure
investment in the last few decades and vowed to reverse the
situation in the next 5–10 years. Development of water conser-
vancy projects is given priority in the national infrastructure
construction. On July 8–9, 2011, the central government held a
high-profile conference, which reiterated the aspiration to upgrade
the country’s water infrastructure. This conference was the highest
level on water conservancy issues since the founding of the
People’s Republic of China in 1949. Improving rural infrastructure
with focus on irrigation and water conservancy is emphasized.
China has planned to invest 4 trillion Yuan (US$618.8 billion) in
water conservancy over the next decade to harness the resources of
its rivers and lakes and to establish a water system that can shield
the country from threats of floods and droughts.

There have been many studies investigating the environmental
and ecological impacts of water conservancy projects in China.
Most of them have focused on specific projects, e.g. impacts of the
TGHP on ecological processes and biodiversity (Lopez-Pujol and
Ren, 2009; Wu et al., 2003a, 2004; Xie et al., 2003), environmental
and ecological effects of the SNWTP (Zhang, 2009), impacts of dam
construction on river discharge and sediments in the Yellow River
(Wang et al., 2006b), the Yangtze River (Yang et al., 2011) and the
Peal River (Zhang et al., 2008). However, a comprehensive review
of the path of China’s water conservancy development and
Fig. 1. Spatial distribution of irrigated area, and locations of the Three Gorges Hydroelect

with the hydrological region delineation.
investigation of the achievements, problems and challenges has,
to the best of our knowledge, not been available in the literature. A
detailed elaboration of implications of the renewed aspiration of
the central government on water conservancy development has
been missing in the literature.

Understanding the achievements and problems of China’s
water conservancy development is a key to directing future
construction and investment for new water conservancy projects.
Meanwhile, China’s experience can also provide valuable lessons
for other developing countries where huge water infrastructure
investments are planned. In this article, we provide an overview of
China’s water resources and development of the major water
conservancy projects (see a few projects in Fig. 1), and illustrate
their socioeconomic, environmental and ecological impacts. We
also discuss future challenges that confront China’s water
conservancy projects. In particular, we elaborate the far-reaching
implications of Central Document No. 1 for China’s integrated
water resources management. We conclude with some recom-
mendations on the paradigm shifts to achieve the goals set by the
Chinese government in the future water conservancy develop-
ment.

2. Overview of water resources in China

China’s annual average total freshwater resources are about
2800 billion m3 (MWR, 2011b). Although the absolute freshwater
volume is big, ranking as the sixth largest among all countries in
the world, the per capita water resources were only 2040 m3/cap/
yr in 2008, about one-fourth of the world average (Wang et al.,
2008). Besides the small per capita water resources, the uneven
temporal and spatial distribution of water severely worsens the
water scarcity problem (Fig. 2). Dominated by a continental
monsoon climate, 60–70% of annual precipitation in most regions
of China is concentrated in summer. The percentage is even higher
in northern China (Cheng et al., 2009). Annual precipitation in
ric Project (TGHP) and the South-to-North Water Transfer Project (SNWTP) in China



Fig. 2. Spatial distribution of China’s water and land resources. (A) Spatial pattern of per capita water resources. The data are based on the long-term average run-off

assessment (GWSP Digital Water Atlas, 2008) and population for the year of 2000 (CIESIN, 2005) with a spatial resolution of 30 arc-minutes. (B) Percentage of population

under different levels of water stress. (C) Share of cultivated land area. The cultivated land data are from Fischer et al. (2008) with a spatial resolution of 5 arc-minutes. (D)

Share of arable land with different levels of water scarcity. In order to compare cultivated land area with water scarcity, we first convert per capita water resources data (A)

into a spatial resolution of 5 arc-minutes. There are 15,585, 8899, 7527, and 31,000 grid cells falling into the category of absolute water scarcity, water scarcity, water stress,

and water sufficiency, respectively. The shares of cultivated land in these grid cells are shown in (D) contrasted to levels of water scarcity.
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China gradually decreases from the highest amount of over
2000 mm/yr along the southeast coast to the lowest amount of less
than 100 mm/yr in the northwest inland. Per capita water
availability shows even larger spatial heterogeneity. Water
resources availability is low in the north, but rich in the south
(Fig. 2A). For example, the Huanghe, Huaihe, and Haihe (3H) river
basins, mainly located in the North China Plain, account for one-
third of China’s population, 35% of the industrial output, 40% of
China’s cultivated land and 50% of the national grain production,
but this region has only 7.6% of the nation’s water resources. The
3H basins are a region of acute water scarcity, where water
resources management is of crucial importance to maintain water
and food security, social stability, economic growth, and environ-
mental health at both regional and national levels. Largely due to
the uneven distribution of water resources and population, 44% of
the population live in regions with absolute water scarcity
(<500 m3/cap/yr), and 16% live in regions with water scarcity
(500–1700 m3/cap/yr) (Fig. 2B).

A high imbalance between water and arable land resources
worsens the water scarcity problem. China’s arable land was only
0.08 ha/cap in 2008, less than 40% of the world average (FAO,
2011). The largest shares of arable land are located in the North
China Plain, North East Plain, and the Sichuan Basin (Fig. 2C), but
these regions are all suffering from serious water scarcity (Fig. 2A).
Most cultivated land is in the water-scarce regions (Fig. 2D), such
as the North China Plain – a bread basket of China. Precipitation is
not sufficient to support the large crop production, and irrigation is
needed to achieve high crop productivity. However, with the
increasing demand for water from industrial and domestic sectors,
and the increasing awareness of ecological water use of natural
ecosystems, agriculture is under great pressure to obtain sufficient
irrigation. Water scarcity becomes more crucial with the
competitive water uses among sectors (Yang and Zehnder, 2001).

3. Development of water conservancy projects and the attitude
changes of the Chinese government

The development of water conservancy projects in China has
been predominated by the central government’s ideology towards
water conservation. After the establishment of the New China in
1949, the then – Chairman Mao Zedong stated that ‘‘water
conservancy is the life vein of agricultural production’’. It spurred
the massive construction of small- and medium-sized dams and
fast expansion of irrigated land between the 1950s and 1970s. The
investment in the water conservancy projects accounted for 8–10%
of the total national capital construction investment during this
period (Fig. 3). From the early 1980s to the end of last century,
water conservancy was regarded as an important foundation and
safeguard to support the rapid growth of the national economy.
This period was characterized by fast growth of large-sized dams
with consequently higher capacity of reservoir storage and
hydropower generation, and construction of water diversion
projects. Irrigated areas further expanded during the period. The
investment in the water conservancy projects increased by 5.6
times during the period, although the share in the total capital
construction investment declined to about 3%. The first decade of



Fig. 4. Development of dams/reservoirs in China since the 1950s.

Data on number and storage capacity of dams are from Ministry of Water Resources

of China (MWR) (MWR, 2010a). Data on number of dams higher than 30 m in 1949,

1999, and 2002–2005 are from Pan and He (Pan and He, 2000) and the Chinese

Society of Hydroelectric Engineering (Chinese Society of Hydroelectric Engineering,

2009) and in other years are from MWR (MWR, 2010a).

Fig. 3. Investment of water conservancy projects. The pie chart shows the

distribution of investment in water conservancy projects, which is mainly used for

the purposes of flood control and water supply.

Data for investment for water conservancy projects and the ratio of this investment

to total capital construction investment before 2004 were obtained from the China

Rural Statistical Year Book (State Statistics Bureau, 2008). Data for investment for

water conservancy projects during 2004 and 2009 and its distribution for different

purposes were obtained from the series of the Statistic Bulletin on China Water

Activities (MWR, 2011a). Data for the capital construction investment during 2004–

2008 were obtained from the web site of the Central People’s Government of China

(CPGPRC, 2009).
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the twenty-first century has been characterized by continuous
increase in large-sized dams, reservoir capacity, hydropower
generation and water diversion. There has been a decline in
irrigation water use while the irrigated area increased at a slower
rate, as a result of the competition for water from the urban sectors
and the implementation of water-saving measures in irrigation. A
notable phenomenon is the skyrocketed investment in water
conservancy projects and a diving share of the investment in total
capital construction investment, due to even larger increases in
other infrastructure investments in an economy with an annual
growth rate of around 10%. During 2005–2009, water conservancy
projects only accounted for less than 2% of the total investment of
capital construction (Fig. 3).

With regard to the management, before 1990, China’s water
conservancy was dominated by the ‘hard-path approach’, which
was characteristic by Gleick (2003) as emphasizing on the
construction of massive infrastructure and increase in water
supply. According to the main focuses of water conservancy
projects, this period can be divided into three sub-periods (Chen
et al., 2007). During 1949–1956, the New China was just
established after long-time wars and the national main focus
was to recover economic production and secure social life. The
main focus of water conservancy was to repair river embankments,
dredge flood channels, and release flood disasters. The period
1957–1979 was characterized by the balanced emphasis on
disaster protection and comprehensive utilization of water
resources. Due to the serious flood disasters in the 1950s and
1960s, flood control drew much attention of the government.
During 1980–1989, the economic reform and open-door policy had
brought about fast socio-economic development. The focus of
water conservancy had shifted from flood control and irrigation to
supporting all-around national economic development. Some
attention began to be paid to water allocation among different
sectors, water resources protection and water pollution control.

Between 1990 and 2010, China experienced a transition from
hard-path to soft-path approach. The ‘soft-path approach’ empha-
sizes economic and institutional measures to manage water
resources and improve water use efficiency. The main driver of the
transition is the increasing water scarcity and water pollution in
the country. Also, the huge and disastrous floods in 1998 gave a
good lesson to water managers about the importance of ecological
roles of natural ecosystems. This period had witnessed the
implementation of some economic instruments, particularly water
pricing, to curb the demand. Meanwhile, harmonizing human–
nature relations, water markets and water rights were widely
discussed (Grafton et al., 2011). Many water-related laws and
regulations had been issued during this period, including the Law
on Water and Soil Conservation (issued in 1991), Law on
Prevention and Control of Water Pollution (issued in 1996), Flood
Control Law (issued in 1997), and Water Law (revised in 2002).
Building a water-saving society was first written in China’s water
law. Despite the efforts in promoting the soft-path approach, the
enforcement is much lagged due to various obstacles. China’s
water conservancy is becoming increasingly difficult to meet the
demand to support the continuous economic development.

4. Achievements, benefits and challenges of water conservancy
projects

Water conservancy projects include construction, expansion,
reconstruction, strengthening, and repair of water-related projects
for the purposes of flood control, water supply (e.g. irrigation,
industrial and domestic water supply, water transfer projects),
water and soil conservation, ecological and environmental
protection, power generation, and other supporting and ancillary
works and activities (e.g. project-induced immigration). This
section focuses on flood control dams, irrigation infrastructure
and water transfer projects in addressing the achievements,
benefits and challenges of China’s water conservancy develop-
ment.

4.1. Flood control: a focus on dams and reservoirs

4.1.1. Achievements

China has set up a flood control system by integrating dams/
reservoirs with dykes, river channel management, flood diversion
zones, and other non-project measures (e.g. afforestation and
reducing soil and water erosion). Dam and reservoir construction is
a major flood control measure and has been a major focus of the
Chinese government. China has built 87,873 dams and reservoirs of
all sizes. In addition, China has constructed about 294,104 km of
embankments and dykes and about 43,300 water gates (MWR,
2011a). In 2010, the total storage capacity of reservoirs was 716.2
billion m3, ranking the fourth in the world and accounting for
almost 10% of the world’s total storage capacity (MWR, 2011b).
China’s total hydropower generation was 721 billion kW h in 2010,
ranking first in the world and accounting for around 21% of the
world’s total hydropower (IEA, 2010). This was equivalent to 17.4%
of the total electricity generated in China.



J. Liu et al. / Global Environmental Change 23 (2013) 633–643 637
There have been three major periods of dam construction in
China. The first was the ‘‘slow-growth’’ stage in the 1950s. By then,
the importance of water conservancy had been realized by the
government, but due to technical limitations and capital con-
straints, large-sized dam construction was very difficult. The
number of dams of all sizes was almost doubled from 1222 dams in
1949 to 2301 dams in 1957. The second period was the ‘‘fast-
growth’’ stage in the 1960s and 1970s. Both the number of dams
and storage capacity increased remarkably. The number of dams
rose sharply to 86,822 by 1980. As a result, the total storage
capacity of reservoirs increased substantially (Fig. 4). The third
period has been the ‘‘stable in number but increasing in storage
capacity’’ stage. After 1980, the increase in number of dams
fluctuated from year to year. However, the reservoir storage
capacity continued to increase, and particularly after 2000, the rate
of increase was higher than before. This has been due mostly to
large-sized dams with heights over 30 m (Fig. 4). Typical examples
include the first (TGHP) and fourth (Longtan Hydroelectric Project)
largest dam storage capacities in China, completed in 2008 and
2009, respectively.

4.1.2. Benefits

Mainly with the construction of dams and reservoirs but also
with other forms of infrastructure (e.g. dykes), the flood control
system in China has played an important role in managing flood
disasters. As a result, 46.8 million hectares of farm land and 598.5
million people have been protected (MWR, 2011a). For example,
the Xiaolangdi Dam has significantly reduced the flood threat
below the Huayuankou Station in the Yellow River and enhanced
the downstream flood control standard from 100-year to 1000-
year recurrence interval, while the operation of the TGHP has
increased the flood control standard of the Jingjiang section on the
Yangtze River from 10 years to 100 years (Mei, 2010). The flood
control systems on major rivers in China can basically defend the
level of the largest floods occurred since the founding of New China
in 1949 (Mei, 2010). The accumulated direct economic benefits of
flood control between 1949 and 2009 totaled 4 trillion Yuan (about
12% of the national gross domestic product, GDP, in 2009), and the
annual death toll caused by flooding has decreased by 83% from
8900 in the 1950s to 1500 in the early 2000s (Mei, 2010).

Besides flood control, dams and reservoirs also play a role in
electricity generation, and irrigation water supply. Hydropower
energy generation in China has increased from 1.2 billion kWh in
1949 to 721 billion kWh in 2010 (Fig. 5). The first hydropower
station was built in Shilongba, Yunnan Province, in 1912, with only
500 kW installed capacity. In 2007, China’s gross installed
hydropower capacity and hydropower energy generation reached
145.3 million kW and 486.7 billion kWh (Huang and Yan, 2009),
both ranking the highest in the world. The share of hydropower
Fig. 5. China’s annual total electricity production and hydropower electricity

production. The share of hydroelectricity to total electricity of each year is also

indicated (MWR, 2010a).
energy in total energy supply has remained relatively stable at
around 16% since 1990. This share is expected to increase in the
future. In 2007, China issued the Medium- and Long-term Plan of

Renewable Energy Development, and proposed a gross installed
capacity of hydropower of 300 million kW by 2020, which is more
than double the size in 2007 (Huang and Yan, 2009). In the same
year, China issued the national climate change programme, and
planned to enhance the proportion of renewable energy (including
large scale hydropower) in primary energy supply (Government of
China, 2007). Considering the higher energy demand and more
emphasis on clean energy, it is inevitable that China will continue
its effort to explore hydropower in the near future (Chang et al.,
2010).

Another benefit of building dams and reservoirs is the ability to
farm the huge areas of arable land that had not been usable before
by temporally changing distribution of regional water resources to
meet the seasonal demands of agricultural production. Dam/
reservoir-fed irrigated land increased to account for about one-
third of total effective irrigated area in 2009 (MWR, 2010a),
indicating the significant role of dams/reservoirs in sustaining
irrigation for agriculture in China.

4.1.3. Challenges

Most of China’s dams were built between the 1950s and the
1980s (see Fig. 4), and many have approached or even exceeded
their designed lifespan. About 36% of the dams, or some 30,000
dams, are at high risk due to structural obsolescence or lack of
proper maintenance (Sheng et al., 2006). The aging dams that do
not satisfy current flood or other loading criteria and do not adhere
to current state-of-the-art practices pose significant risks to
downstream regions. Hence, dam renovation or decommissioning
has become a growing concern.

Dams/reservoirs pose many environmental and ecological
challenges by reducing sediment flux and changing the temporal
pattern of river discharge to downstream and ultimately the
ocean. In water-rich river basins, the impacts on sediments are
more obvious than on discharges. About 45,197 dams (MWR,
2011b) have been built so far throughout the Yangtze River
basin. While having little impact on annual river discharge (Xu
et al., 2010), they have caused downstream channel erosion,
coarsening of bottom sediment, and erosion of the subaqueous
delta (Yang et al., 2011). The sediment discharge of the Yangtze
River, as measured at Datong Station located around 600 km
from the river mouth, decreased by 94% from 490 million ton/yr
in the 1950s and 1960s to 29 million ton/yr in 2008, mainly as a
result of the trapping effect of the human-made dams,
particularly the Three Gorges Dam (Yang et al., 2011). The
water discharge measured at the Datong Station has remained
more or less constant since the 1950s, averaging about 900 km3/
yr even after the construction of the TGHP (Xu et al., 2010). The
estuary has experienced declining sediment loads, and a
consequent decrease in coastal salt marsh accretion and net
erosion in the subaqueous delta front. The sediment loads are
likely to further decline, and the middle to lower river channel
and delta will continue to erode as new dams are built and the
SNWTP starts the operation. The lower sediment flux to the sea
resulted in significant degradation of the Yangtze delta (Yang
et al., 2006) and posed serious challenges to maintaining the
geometry of the delta and protecting Shanghai and nearby
wetlands (Xu et al., 2010). Similarly, the 387 large and medium-
sized dams/reservoirs along the Pearl River (Zhujiang) basin
(with a total storage capacity of 46.7 billion m3, 15% of the total
river discharge) did not affect the river discharge, but led to a
33% decrease in sediment flux to the ocean (Zhang et al., 2008).

In arid and semi-arid river basins, the dams/reservoirs have
significant dual impacts on both discharges and sediments. For



Fig. 6. Historical development of effective irrigated area (in million ha) and grain

production (in million ton).

Data is from State Statistical Bureau of China (State Statistical Bureau, 2010).
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example, in the Yellow River basin, about 3150 dams/reservoirs
had a total storage capacity of 57.4 billion m3 by 2000, even
higher than the long-term (1951–2000) mean annual water
discharge (57.0 billion m3) of the basin (Wang et al., 2006b). The
construction of dams/reservoirs has led to dramatic decreases of
discharges and sediments. The average annual water and
sediment discharges from Yellow River to the sea in the
1990s were 13.2 � 109 m3 yr�1 and 389.9 � 106 tons yr�1, re-
spectively. They were only 28.7% and 29.5% of annual fluxes in
the 1990s, respectively (Wang et al., 2006b). Meanwhile, the
dams/reservoirs weakened the natural seasonal variability and
drastically decreased peak discharge of the Yellow River (Wang
et al., 2006b). The decreases of water, sediment, and total
dissolved solid flux of the river have resulted in profound
physical, ecological, biogeochemical, and geomorphological
impacts on the lower reaches, its delta-front estuaries, and
the Bohai Sea (Bianchi and Allison, 2009; Wang et al., 2006b).

Dams and reservoirs affect biodiversity by inundation, flow
manipulation, fragmentation of habitat, and the subsequent
resettlement of human populations in new areas (Vörösmarty
et al., 2010; Wu et al., 2004). Flow regulation of dams is
considered one of the main adverse ecological consequences
(Bunn and Arthington, 2002). Dams also fragment aquatic
habitats (Nilsson et al., 2005), impeding not only the movement
of species but also the delivery of nutrients and sediments to
downstream and the reduction of riverine habitat-forming
substrate available for critical life stages such as fish nesting
and refuge (Lehner et al., 2011). For example, the building of over
3000 dams along the Pearl River (Zhujiang) and its tributaries
since the 1950s has caused the blockage of fish migration routes
and the decline of species such as Tenualosa reevesii and the
Chinese sturgeon (Acipenser sinensis) (Dudgeon, 2005; Lopez-
Pujol and Ren, 2009). The construction of the Gezhouba Dam in
the 1980s in the Yangtze River resulted in large declines in the
populations of three endemic, ancient, and nationally protected
fish species because of the fragmentation of their populations
and disruption of their migratory routes (Xie et al., 2003). The
Chinese paddlefish (Psephurus gladius), one of only two species of
paddlefish in the world, has become functionally extinct (Stone,
2007). After the construction of the TGHP, several endemic
aquatic mammals, such as the Yangtze finless porpoise (Neo-

phocaena phocaenoides asiaeorientalis) and the Chinese river
dolphin (Lipotes vexillifer), have recently been categorized as
‘‘functionally extinct’’ (Wang et al., 2006a; Zhao et al., 2008).
Overall, dam/reservoir construction has affected directly and
indirectly about 14% and 18% of imperiled fish in China,
respectively (Li and Wilcove, 2005).

Dam-induced resettlement is a big social concern in China and
elsewhere. Construction of dams/reservoirs in China has led to over
22 million people being resettled to accommodate reservoirs
(Chang et al., 2010). Displacement can cause a series of problems,
including landlessness, joblessness, homelessness, food insecurity,
community disarticulation, increased mobility, loss of community
resources, depression among the displaced residents, and loss of
cultural heritage sites (Michael, 1997). Prior to the mid-1980s,
resettlement often led to a lower living standard because of the low
compensation for loss of land, homes, and nature-based liveli-
hoods. Since then, the Chinese government has shifted the
resettlement paradigm to a longer-term process, coupling
compensation with ‘‘mobilization’’ and economic development
(Webber and McDonald, 2004). Nevertheless, with the growing
economy and higher living standards, resettlement becomes more
difficult. Relocated people have to adapt to sudden socioeconomic,
cultural, and demographic changes, which is particularly difficult
for many minority groups due to their unique religions and
cultures.
4.2. Irrigation: water supply to agriculture

4.2.1. Achievements

Since 1949, the Chinese government has paid much attention to
the development of irrigation infrastructure. The effective irrigated
area of China was around 15 million ha in the early 1950s but
increased sharply to 44.04 million ha by 1985 and to 60.35 million
ha by 2010 (MWR, 2011a; State Statistics Bureau, 2010). The
number of mechanical and electrical wells for irrigation increased
from 114,000 in 1961 to 5.01 million in 2010 (MWR, 2011a). There
are 402 large irrigation districts with more than 20,000 ha of
irrigated area in each (Li and Zou, 2000). The large irrigation
districts account for 12% of total arable land, but they produce 25%
of the total national grain (Wu et al., 2006).

4.2.2. Benefits

Irrigation plays a key role in China’s agriculture and food
security. Accounting for about 45% of the arable land, irrigated land
produces about 70% of the total grain, 80% of the cotton, and 90% of
the vegetables and fruits in China (Wu et al., 2006). Irrigation has
enabled an significantly higher crop yield in the main food-
producing regions like the North China Plain, where irrigated
wheat yield is 70% higher than rainfed wheat yield (Liu et al., 2007).

A strong relationship exists between grain production and
irrigated areas in China, e.g. during 1985–1999 and 2004–2009
(see Fig. 6). In both periods, expansion of irrigated area was an
important reason for the increased crop production. The exception
was in 2000–2003, when irrigated area remained almost
unchanged but grain production sharply decreased. This was
mainly attributable to the decline in the planted area of grain due
to urbanization and implementation of the 1999 Grain-to-Green
Program—large-scale ecological projects to convert rainfed crop-
land on steep slopes to forest and grassland (Liu et al., 2008).

Despite the close relationship between expansion of irrigated
area and growth of grain production, there is no clear correlation
between agricultural water use and grain production (Fig. 6). This
is largely due to the fast development and extensions of water-
saving technology in China, especially since the 1990s. The Chinese
government has been heavily investing in research on water-
saving agricultural techniques since the beginning of the Seventh
Five-Year Plan (1986–1990). Area equipped with water-saving
technology increased from 15.24 million ha in 1998 to 27.31
million ha in 2010 (29.1–45.3% of total effective irrigated land)
(MWR, 2011a; State Statistics Bureau, 2010). Largely due to the
expansion of water-saving technology, agricultural water use even
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decreased by 12.5% from 392 billion m3 in 1997 to 343 billion m3 in
2003. Afterward, it increased slowly to 369.1 billion m3 in 2010
(MWR, 2010b), still not as high as the 1997 level.

4.2.3. Challenges

Irrigation is often cited as a main cause for unsustainable water
use (groundwater abstraction exceeds the groundwater recharge)
in many regions, e.g. sharp declines in groundwater levels. For
example, nearly 40% of water used in the main wheat production
areas such as Hebei, Shannxi, Henan, and Shandong provinces is
from groundwater (Lohmar et al., 2003). Among these provinces,
Hebei has the highest share of groundwater in total irrigation
water, as high as 68% (Lohmar et al., 2003). Abstraction of non-
renewable groundwater for agriculture in China has reached
20 km3 yr�1 since 2000 (Wada et al., 2012). The over-withdrawal
of groundwater led to sharp declines in groundwater tables, large
cones of depression, land subsidence, and intrusion of sea water
(Lohmar et al., 2003). The groundwater level declined rapidly from
about 10 m below the surface in the 1970s to 32 m in 2001 in
Luancheng County in the North China Plain (Zhang et al., 2003).

Irrigation has been a key cause for river discharge decline in arid
or semiarid areas (Wang et al., 2006b; Yang et al., 2004). Supported
by the construction and operation of dams/reservoirs, agricultural
water abstraction from the Yellow River increased from 155.4 m3/
yr in the 1950s to 294 m3/yr in the 1990s while irrigated area
increased by a factor of 10 to about 10 million ha in the 2000s (Yang
et al., 2004). Another more representative example is the Tarim
River, the largest inland river in China. Irrigated area in the Tarim
River basin expanded from 350,000 ha in 1950 to 780,000 ha in the
1990s, and agricultural water use reached 0.148 billion m3 in the
1990s (Zhang et al., 2011). Largely due to the increase of irrigation,
the mainstream has continuously decreased during the past 50
years even though its headwaters typically have experienced an
increasing discharge due to more rainfall (Tao et al., 2011). In the
Haihe River basin, the total annual agricultural water use in the
1990s reached 28.5 billion m3, 32% higher than the total river
discharge, which led to a drop in the groundwater table (Zhang
et al., 2011).

Despite the fast expansion of water-saving irrigation, wasteful
water use still remains a big problem in agriculture. According to
the Ministry of Water Resources, only about 45% of the water
withdrawal can reach irrigated fields (Peng, 2011). This low water-
use efficiency of 0.45 is much lower than the level of 0.7–0.8 in
developed countries (Wu et al., 2003b). A dilemma lies between
increasing investment in water conservancy projects and insuffi-
cient capital to maintain and rehabilitate existing irrigation
infrastructure. Bulk of the capital channeled through the govern-
ment has gone enthusiastically to new, giant water conservancy
projects while channel leakage associated with old systems has
often been ignored (Peng, 2011).

Irrigation is facing intense competition from the growing
demand from municipal, industrial, and environmental uses,
which will pose significant challenges for China to achieve its
goals of increasing grain production by 50 million tons by 2020
(Peng, 2011). The steadily increasing water demand of other
sectors, especially the industrial sector, has posed significant
pressure to divert water away from agricultural production (Yong,
2009). The higher economic value of water use in industry leads
local governments to put industrial use first when facing water-use
conflicts between industry and agriculture. With decreasing water
supply for irrigation, agriculture needs to increase water produc-
tivity and produce more crops for each drop of water (Marris,
2008). This has posed additional challenges to the existing
irrigation schemes, which were designed primarily to maximize
crop yield. The decrease in irrigation water supply renders a need
for the development of irrigation scheme to be redirected to
optimize irrigation volume to achieve the maximized crop water
productivity.

4.3. Water transfer projects to alleviate water shortage problems

across regions

4.3.1. Achievements

Currently, China has over 20 major inter-basin water transfer
projects with a total length of over 7200 km, 16% longer than the
Yangtze River. Appendix 1 summarized these major water
diversion projects. A key attribute of the spatial distribution of
the projects is that they are mainly located in northern China.
According to statistics in 2006, the amount of water diverted by
interbasin water transfer projects accounts for 2.5% of total surface
water resources; the ratio may increase to 10% upon the
completion of SNWTP in 2050 (Cheng et al., 2009). SNWTP, with
its total length of 3187 km, is the longest water diversion project in
the world.

4.3.2. Benefits

One direct benefit of water diversion projects is the transfer of
water from water-surplus to water-deficit regions to alleviate
water shortage in the receiving areas. These water diversion
projects mainly aim to supply water for domestic and industrial
uses, although some also serve for irrigation. For example, Tianjin
is a city with the lowest per capita water resources in China
(�180 m3/cap/yr). The Yin Luan Ru Jin water diversion project was
started in 1982 to alleviate the water shortage in Tianjin. By 2009,
this project had diverted 19.2 billion m3 of water into Tianjin
mainly for domestic and industrial uses. Another example is the
Yin Huang Ru Jin project to divert the Yellow River water to Shanxi
Province, which has one-quarter of the total coal reserve in China.
Each year the project diverted 0.56 billion m3 to Datong City and
Shuozhou City and 0.64 billion m3 to Taiyuan City, three major coal
production bases in China.

Environmentally and ecologically oriented water diversion
projects also have recently emerged. A typical example for water
quality improvement is the Yin Jiang Ji Tai project that diverts the
Yangtze River water into Taihu Lake. As the third-largest
freshwater lake in China, Taihu Lake serves as a major water
source for drinking, aquaculture, and industrial needs, as well as
being a popular tourist attraction. The Taihu basin accounts for
0.4% of the total area of China, 2.9% of the national population, but
14% of China’s GDP (Yang and Liu, 2010). With economic growth
and population increase, Taihu Lake began to suffer from several
environmental problems, including deterioration of its water
quality and consequently increasing frequency of noxious algae
blooms (Yang and Liu, 2010). Started in 2001, the Yin Jiang Ji Tai
project increased flow velocity, improved self-purification capaci-
ty, reduced the water exchange period, and alleviated degradation
of Taihu Lake. By the end of 2006, it had transferred 7.42 billion m3

of water from the Yangtze River into Taihu Lake basin, of which
3.24 billion m3 went into Taihu Lake. Despite the positive short-
term effect of improving water quality in Taihu Lake, its long-term
function is a concern because of the large net input of nitrogen and
phosphorus from the river to the lake (Yang and Liu, 2010).

Restoring degraded ecosystems caused by reduced water inputs
is a typical application for ecologically oriented water diversion
projects. For example, to alleviate the ecological degradation
(degrading riparian vegetation and desertification) of the lower
reach of the Tarim River, there have been eight times of water
diversions from other basins in to the river since 2000, with a total
volume of 2.27 � 109 m3 of water, to maintain environmental
flows in the stream (Huang and Pang, 2010). These ecological water
diversion projects raised water table depth and correspondingly
restored partial riparian vegetation, resulting in significant
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improvement of the ecological function in the lower reach (Chen
et al., 2008). Another example of ecological water diversion
projects is associated with the Heihe River, the second-largest
inland river. Due to the overexploitation of water resources in the
middle reach of the river, serious environmental degradations,
such as river-flow interruptions, shrinkage of lakes, groundwater-
level drawdown, disappearance of vegetation cover, and desertifi-
cation, occurred in the lower reach (Xi et al., 2010). To alleviate
these environmental problems, the Heihe River Management
Administration launched ‘‘Integrated Water Resource Manage-
ment of the Heihe River Basin’’ in 2000. A core part of the plan was
to increase stream discharge by diverting water from upstream
and midstream man-made reservoirs to lower reaches using a
man-made channel. From 2000 to 2006, a total volume of
5.29 � 109 m3 of water was delivered to the lower Heihe River
through intermittent water diversions for over 20 times (Xi et al.,
2010). As a result, East Juyan Lake, which is the end of the river and
dried up in 1992, was replenished to an area of 38.6 km2 by 2006
(Xi et al., 2010).

4.3.3. Challenges

Water transfer projects artificially transfer a huge amount of
water from its origin to the receiving areas. These transfers change
the natural flow regime, which potentially leads to sea/saline
water intrusion and loss of the ecological functions of the river
channel and adjacent floodplain wetlands (Dudgeon, 1995). Water
transfer projects also potentially function as expressways to
accelerate the processes of biological invasion (Ding et al., 2008).
Another common problem is that the groundwater level along the
canals of water diversion projects rise significantly, leading to soil
degradation caused by secondary soil salinization (Shao et al.,
2003). Furthermore, water diversion projects require giant
infrastructures that need huge capital investments. Water from
the diversion projects is usually expensive, and normally can only
be justified by political or strategic necessity (e.g. domestic
consumption or strategic industrial use). Water consumption is
thus usually subsidized as a burden on local and central
governments.

In order to alleviate the water shortage in northern China, the
SNWTP has been implemented with a total designed transferred
volume of 43 billion m3 per year. However, each year, the water-
scarce north exports a large amount of food to the water-rich
south, and the virtual water transfer embedded in the traded
commodities is equivalent to 52 billion m3 (Liu and Savenije, 2008;
Ma et al., 2006), higher than the volume of the real transfer project.
This contrast raises the question of whether such a huge water
transfer project is necessary. Certainly, water is not the only factor
influencing decisions about water transfer projects. Co-existence
of the large real and ‘‘virtual’’ water transfer projects is also a result
of uneven distribution of land and different economic structures in
the south and the north. A more comprehensive assessment is
required to study the feasibility as well as costs and benefits of
water transfer projects, and decision makers should be extremely
cautious and conservative in building water transfer projects.

In water-scarce regions, efficiency of water transfer projects is
largely limited by local water use and water-saving incentives
among different water user sectors. For example, the water
diversions to the Tarim River helped reduce the length of the
drying-up riverway from around 850 km in 2001 to about 400 km
in 2002 and 2003, and shortened the drying-up period from 185
days in 2001 to 46 days in 2003. However, the length increased
after 2003 to about 1200 km in 2009, while the drying-up period
sharply increased to 302 days in 2009. The water diversion does
not help reduce the drying-up length and period in the long run.
One important reason is that local residents use more water from
the river for irrigation and domestic or industrial activities.
Without adjusting the economic structure and capping water use,
the water diversion projects alone cannot solve water scarcity
problems.

5. Renewed water conservancy aspirations and way forward

5.1. Combining the soft-path with the ‘stringent control’ in water

resources management

Recognizing the increasingly prominent bottleneck of water
scarcity to the economic development and the low investment in
water conservancy projects is an important reason for the release
of the Central Document No. 1 of 2011. It was an important
milestone in China’s strategic water development. For the first
time, the Document explicitly pointed out that water constitutes
‘‘the origin of life, the key element of production, and the basis of
ecology’’. It emphasized that ‘‘speeding up the reform of water
conservation is not only important for flood control security, water
supply security, and food security, but also important for economic
security, ecological security and national security’’. Water conser-
vancy projects are set as a priority area for the government’s future
investment. The annual investment to water conservancy is
doubled compared to the level of 2010. A total of 4 trillion Yuan
($618.8 billion) is planned to be allocated for water conservation in
the next 10 years.

Implementing stringent water resources management is a key
feature of Document No. 1. Three ‘‘redlines’’ are set to control the
national water use, water use efficiency and water pollution. As a
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follow-up document, in 2012, the Chinese Central Government
released the ‘‘Opinions of the State Council on the Implementation
of the Most Stringent Water Resources Management’’ (the
‘‘Opinions’’) (State Council, 2012). The Opinions concretized the
three ‘‘redlines’’ mentioned in Document No. 1 by setting
quantitative goals for 2020 and 2030 (Fig. 7). By 2030, the national
total water use is controlled within 700 billion m3; water use
productivity should reach or be close to the world advanced level;
water use intensity of CNY10,000 industrial added value (calcu-
lated according to the price in 2000) should be reduced to less than
40 m3, and irrigation water effective utilization coefficient should
increase to more than 0.6; total major pollutants into rivers and
lakes will be controlled within the pollutant discharge capacity in
the water function zones, and water quality compliance rate in the
water function zone will reach 95%. The three ‘‘redlines’’ at the
national level are now allocated to river basins, provinces, cities
and even counties with quantitative targets (or local ‘‘redlines’’).
For example, China’s seven river basins conservancy commissions
have worked out their master plans for 2020 and 2030 in line with
the ‘‘redlines’’ for each river basin. By early December 2012, all the
seven river basins’ master plans have been approved by the
Ministry of Water Resources, and will be sent to the State Council
for final approval. The realization of these goals will shed great and
long-term impacts on China’s water systems.

The quantitative indicators for the three ‘‘redlines’’ make sure
that the water management achievements are measurable,
reportable and verifiable. Officials at the level of county and
above are responsible for meeting the regional water resources
management targets. More importantly, the effectiveness of water
resources management will be added to the evaluation and
promotion system for officials. This requirement may to a large
extent change the ideological stereotype and force the local
officials to pay special attention to water resources management in
line with the goals defined by the three redlines.

Document No. 1 also emphasized the renewed effort for rural
infrastructure development and rehabilitation of water conser-
vancy projects. Currently, only about 45% of the water withdrawal
can reach irrigated fields, due partly to the impairment of irrigation
infrastructure (MWR, 2011b). Repairing and upgrading existing
irrigation facilities and technologies can substantially improve
irrigation water-use efficiency. The document encouraged equal
emphasis of investment on both large- and small-scaled rural
water conservancy projects. In particular, many aspects that have
been ignored in the past are addressed, e.g. rehabilitating small-
scaled irrigation infrastructure and small dams, developing and
improving rain-fed agriculture, removing or strengthening dan-
gerous dams.

5.2. Paradigm shifts in the water conservancy development

The most stringent water resources management will provide a
unique opportunity for grand-scale experiments on managing and
planning water uses to support the continuous economic
development. There are many challenges faced with China’s future
water conservancy development. Some paradigm shifts are
necessary to ensure the meet of the goals.

Firstly, traditional water conservancy projects had aimed to
maximize the economic values (e.g. GDP). The future water
conservancy needs to emphasize maximizing the sum of economic
and aquatic ecosystem service values. A framework integrating
both economic capital and natural capital (i.e. values of nature’s
ecosystem services) (Carpenter et al., 2011) should be established
to assess aquatic ecosystem services, competing uses for fresh-
waters, and the processes that underpin the long-term protection
of freshwaters. Such effort has emerged in some individual cases
but a general practice requires a formal institutionalization of the
framework. One recent example was a proposal for the dam
construction across the northern end of Poyang Lake, 27 km from
the Yangtze River, to guarantee the water supply in Jiangxi
Province. This proposal was seriously challenged by a group of
prominent Chinese scientists for its detrimental effect on the
delicate habitats for some rare aquatic species, including Yangtze
finless porpoises (Jiao, 2009). Their appeal reached to Premier Wen
Jiabao, leading to a halted approval of the project and a more
comprehensive and holistic assessment of pros and cons of the
dam construction. This case suggests a necessity for institutional-
izing the framework to ensure a holistic assessment being
conducted for all water conservancy project proposals.

Second, a strong will from the government is needed to
prioritize the investment to preserve the intact ecosystems and
restore those degraded. The past water conservancy in China has
put a massive investment in physical infrastructure, with the
primary goal of taming the river flows. The merits of investing in
natural conservation are generally overlooked. For example, only
around 3.3% of investments in water conservancy went to soil and
water protection and ecological recovery projects in 2010. The
future water conservancy needs to encourage nature-respected
projects (Wang, 2006). Also important is to shift from merely
‘‘keeping the flood away’’ to ‘‘giving the flood way’’ (Yin and Li,
2001; Opperman et al., 2009). To this end, ‘‘let rivers and lakes
recover themselves’’, promoted by the former Chinese president
Hu Jintao in early 2008, may be one of the options.

Third, future water conservancy projects need to explicitly
consider the shifting patterns of climate change. The existing water
projects in China have been designed and operated generally
without consideration of climate change. Such a stationary design
of projects is fundamentally flawed (Matthews et al., 2011; Milly
et al., 2008; Pittock and Hartmann, 2011). Climate change during
the past decades has already caused significant alterations of water
resources in China (Piao et al., 2010). One example is the solid
evidence of a drying trend in the Hanjiang River basin (the
tributary of the Yangzi River), which is the water source of the
Central Route of the SNWTP currently under construction (Chen
et al., 2007). If such a trend continues, the Hanjiang River would
have no spare water for diversion, unless itself receives water
transfer from somewhere else first. One adaptive approach to
reduce impacts of climate change and maximize operational
lifetimes of projects is to build infrastructure in stages as ecological
response and climate trends become clear. This requires a shift
from pursuing short-term achievements to long-term effective
functions of the projects under uncertain future climate condi-
tions.

Fourth, investment is needed to rejuvenate the effective
functions of aging and impaired water facilities. Repairing and
upgrading existing facilities and technologies could substantially
improve irrigation water-use efficiency. Similarly, given the huge
number of flood prevention works already in place and a large
percentage of them in aging and unsound status (Kobayashi and
Porter, 2012), rehabilitating the existing facilities might be much
cheaper than starting new ones. However, allocating more
investment to rehabilitation needs horrendous mentality changes
because developing new and large projects often has higher
visibility in the local governments’ political achievements. Besides,
construction of water conservancy projects often benefits local
governments because they can obtain large amounts of money
from the central government. This has been a key reason for the
strong local interest in constructing new projects.

Last but not least, there is a need for a balanced emphasis on
blue water and green water. The traditional definition of water
conservancy is confined only to surface and groundwater, or so-
called blue water. There is a general neglect of the management of
another important water source, green water, which is soil
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moisture stored in unsaturated soil and eventually used by
vegetation through evapotranspiration (Falkenmark and Rock-
ström, 2006). The Central Document No. 1 of 2011 paid particular
attention to blue water while neglected green water. In reality,
green water dominates water use for agriculture by providing over
80% consumptive water use, and for natural ecosystems such as
forests and grassland by providing almost all consumptive water
use (Liu et al., 2009). Given the importance of green water, the
future focus of water conservancy should be redirected from a
blue-water project perspective toward considering the full water
balance as ‘‘manageable,’’ including green-water flow (Falkenmark
and Rockström, 2006).

The development of Chinese water conservation is in a cross
road. With the aspiration of the government to continuously lead
the country on the fast track of economic growth and the gradual
recognition of the importance of environmental and water
protection to support its long-term economic development goal,
paradigm shifts in water conservation projects towards harmo-
nizing the needs for humans and nature is essential. The rapid
increase in the national wealth and the investment capacity has
provided the Chinese government with the financial means to
break the new ground. The political will to take the necessary
paradigm shifts remains to be made.
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