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a b s t r a c t

Managing landscape-scale environmental problems, such as biological invasions, can be facilitated by
integrating realistic geospatial models with user-friendly interfaces that stakeholders can use to make
critical management decisions. However, gaps between scientific theory and application have typically
limited opportunities for model-based knowledge to reach the stakeholders responsible for problem-
solving. To address this challenge, we introduce Tangible Landscape, an open-source participatory
modeling tool providing an interactive, shared arena for consensus-building and development of
collaborative solutions for landscape-scale problems. Using Tangible Landscape, stakeholders gather
around a geographically realistic 3D visualization and explore management scenarios with instant
feedback; users direct model simulations with intuitive tangible gestures and compare alternative
strategies with an output dashboard. We applied Tangible Landscape to the complex problem of man-
aging the emerging infectious disease, sudden oak death, in California and explored its potential to
generate co-learning and collaborative management strategies among actors representing stakeholders
with competing management aims.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Software and data availability

Tangible Landscape is available under GNU General Public Li-
cense and can be downloaded at http://tangible-landscape.github.
io together with installation and setup instructions. Tangible
Landscape was developed by Anna Petrasova and Vaclav Petras
(Petrasova et al., 2014, 2015). The source code of the epidemio-
logical spread model used in this study is available under GNU
General Public License and can be downloaded at https://github.
com/f-tonini/SOD-modeling with installation and setup in-
structions as well as set of GIS layers necessary to run the model.
The code was developed by Francesco Tonini and based on the
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original epidemiological framework presented by Meentemeyer
et al. (2011).

1. Introduction

Critically addressing complex environmental problems requires
cross-disciplinary participatory approaches that facilitate stake-
holder engagement and improve the development of collective
management strategies (Cabin et al., 2010; Reed, 2008; Stokes et al.,
2006; Voinov and Bousquet, 2010; Voinov et al., 2016). However,
the substantial research effort devoted to the study of large-scale
problems such as biological invasions has overwhelmingly
focused on generating model-based understanding of invasion
dynamics, rather than implementation of management and inter-
vention, creating what has become known as the knowledge-
practice gap (Esler et al., 2010; Matzek et al., 2014). Biological
invasions pose a severe threat to ecosystem services and
public health worldwide (Daszak, 2000; Hatcher et al., 2012;
Kilpatrick et al., 2010), with average annual global economic costs
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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exceeding those of natural disasters (Lovett et al., 2016; Ricciardi
et al., 2011). Yet, scholarly incentives to build knowledge irre-
spective of practice (Matzek et al., 2015), and mismatches between
research and stakeholder priorities (e.g., academic priorities to
publish ecological studies and stakeholder priorities to find man-
agement solutions, Bayliss et al., 2013) have limited the generation
of evidence-informed solutions. In the management of invasive
species, the application of knowledge-based tools has been prob-
lematic in landscapes that include a mosaic of management juris-
dictions (Epanchin-Niell et al., 2009; Stokes et al., 2006), often
resulting in competing interests between stakeholders and confu-
sion as to who makes resource allocation decisions, who will
benefit, and who pays (Voinov and Bousquet, 2010; Voinov et al.,
2016). In consequence, efforts to eradicate or control the spread
of invaders have generally been unsuccessful (Simberloff et al.,
2005).

One strategy for bridging the knowledge-practice gap involves
making scientific models applicable by adding local context and
easing accessibility (McCown, 2001). A suggested solution lies in
the adoption of participatory modeling frameworks, which itera-
tively include stakeholders throughout the modeling process, and
have been shown to maximize information transfer, generate buy-
in, and create advocates for actions best supported by complex
models (Perera et al., 2006). A special case, participatory simula-
tion, has been proposed to move participants from passive or di-
dactic learning about complex processes to experiential learning
through immersion in what Colella (2000) calls the “computa-
tional sandbox,” i.e., simulations with realism adequate to
temporarily suspend disbelief and constitute a shared experience.
However, for complex, place-based problems like biological in-
vasions, participatory modeling efforts have been hindered by a
lack of realistic and intuitive geospatial modeling interfaces
needed to generate contextualized understanding of spread dy-
namics among participants, thereby reducing barriers between
specialists, management professionals, and stakeholders with
varying levels of technical expertise. The availability of such in-
terfaces could communicate complex system dynamics in clear
visualizations, help all participants to understand and interpret
multidimensional data, and facilitate decision-making consensus
among stakeholders.

To address this need, we present Tangible Landscape (Petrasova
et al., 2015), a flexible geospatial visualization and analysis platform
that enables people with different backgrounds and levels of
technical knowledge to direct dynamic computational simulations
using simple tangible gestures. This novel approach seeks to bridge
the knowledge-action gap by translating models of biological in-
vasions into tools for strategic application to specific invasion
challenges in real-world landscapes with targeted practitioner and
stakeholder communities (Esler et al., 2010; Kueffer and Hadorn,
2008). Tangible Landscape allows individuals and groups to
generate data-driven, spatially and temporally explicit projections
of environmental management outcomes in near real-time in order
to explore ramifications and risks associated with management
action without threat of consequence.

In a pilot exercise to test the capacity of Tangible Landscape to
facilitate learning and generate collaborative management strate-
gies, we simulated the management of an emerging forest disease,
sudden oak death (SOD, caused by the pathogen Phytophthora
ramorum). From the onset of the SOD epidemic in California, de-
lays in identifying the pathogen, understanding the mechanisms
of spread, and developing management treatments have resulted
in the disease becoming established well beyond initial in-
troductions (Meentemeyer et al., 2011; 2015). Time to action is a
critical determinant of eradication efficacy for any disease, and the
critical time horizon for eradication has passed (Cunniffe et al.,
2016); SOD infects 35% of its anticipated range, an increase of
500% from 2006 (Filipe et al., 2012; Meentemeyer et al., 2011).
While modeling suggests that large-scale eradication in California
is no longer possible, local to landscape-scale efforts are still very
useful for protecting high-value trees in priority areas (Cunniffe
et al., 2016). There is widespread recognition that collective
effort is needed to reach scales of management likely to succeed
(Frankel, 2008).

We developed a customized deployment of Tangible Landscape
that (1) adapted a dynamic spatially explicit model to a local study
system parameterized using data on the spread of P. ramorum; (2)
enabled place- and time-dependent interaction with the model
using tangible representations of disease management actions on
a physical model; (3) provided a shared environment for partici-
pants to discuss competing management perspectives and learn
from each other; (4) created opportunities to develop and
compare individual and collective management strategies; and (5)
provided a graphic dashboard to track epidemic outcomes and
cost of management treatments, providing feedback regarding
how interactions influenced simulated disease spread. We role-
played several stakeholder typologies associated with the study
system and compared the performance of individual strategies
with a strategy emerging from stakeholder consensus.

2. Methodology

2.1. Model development

2.1.1. The tangible geospatial modeling interface
Tangible Landscape (Petrasova et al., 2014, 2015), formerly

TanGeoMS (Tateosian et al., 2010), is a tangible user interface (TUI)
that allows participants to direct computational modeling through
tangible gestures on a scaled physical model of a landscape, onto
which raster and vector environmental data from a GIS are pro-
jected (Fig. 1).

Users conduct typical GIS functions on the projected data,
including editing and parameterizing simulation models, as direct
manual interactions with the scaled model are detected by
continuous automated 3D scanning (Fig. 1a). Changes in the
physical model are detected, recorded and input into GIS for
visualization, analysis, and simulation, e.g., whenever a user alters
model topography (such as sculpting with sand or plasticine),
places markers, or moves building blocks. Tangible interaction
frees participants from needing prior technical knowledge before
directing sophisticated geospatial models. Maps or animations
produced during tangible interaction are projected in near real-
time, creating visuals that are readily understood and can inform
future interaction. A decision support dashboard reports analytics
and the results of queries using spreadsheets, charts, and info-
graphics (Figs. 1f and 2d, Fig. 3). Tangible Landscape runs as a
Python plugin for GRASS GIS that can be extended using the
GRASS Python Scripting Library and R scripting (R Core Team.,
2015). System hardware include a computer, a projector, a 3D
scanner, and a physical model (Petrasova et al., 2015). Laptops and
portable projectors allow Tangible Landscape deployments outside
of the lab.

2.1.2. A socio-ecological dilemma: the SOD epidemic in Sonoma
Valley

Circa 1995, conspicuous and unexplained tree mortality (Fig. 4)
was observed in several locations within central-coastal California



Fig. 1. Tangible Landscape continuously scans (a) a physical terrain model (b), also “relief” in Fig. 6, identifies markers (c), computes geospatial analyses and simulations (d) and
projects the resulting maps onto the model (e), together with the resulting analytics as a decision support dashboard (f).

Fig. 2. Participants using Tangible Landscape to designate treatment areas and limit spread of the sudden oak death (SOD) epidemic in the Upper Sonoma Valley, California. (a)
Markers digitized as treatment areas, (b) a single participant 3D-sketching a treatment area using a map of oak density as a guide, (c) a group of participants collaboratively 3D-
sketching treatment areas using a map of California bay laurel density as a guide, and (d) a dashboard showing the cost and number of oaks saved.
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and spread to Sonoma Valley by 2000, generating a high degree of
concern among the public (Rizzo and Garbelotto, 2003). Named
sudden oak death (SOD) due to its rapid symptoms, the causal
agent was traced to the pathogen Phytophtora ramorum. By 2013,
P. ramorum had killed millions of oak (Quercus spp.) and tanoak
(Notholithocarpus densiflorus) trees in California and Oregon (Cobb
et al., 2013a,b) . Subsequent studies found a complex network of
transmission and about two dozen naturally occurring host spe-
cies (Meentemeyer et al., 2004), including a non-terminal (i.e. not
suffering mortality from disease) “super spreader” foliar host,
California bay laurel (Umbellularia californica). The broad variety of
host species and the environmental resilience of the pathogen
makes SOD extremely difficult to manage (Frankel, 2008), and the
few available management options are controversial among



Fig. 3. Authors playing the role of local stakeholders visualizing results on Tangible Landscape and discussing implications of their collaborative management actions.

Fig. 4. Example of widespread oak mortality by sudden oak death (SOD) in the Cali-
fornia wildlands.

Fig. 5. Views of Upper Sonoma Valley, California. a) Forest trail intermixed with open foreste
woodlands and denser forests of mixed evergreen species.

F. Tonini et al. / Environmental Modelling & Software 92 (2017) 176e188 179
private and public stakeholders. Treatments include tree culling
via cutting or herbicide application as well as the treatment of
individual stems with prophylactic antifungal chemicals (phos-
phates) (Garbelotto and Schmidt, 2009). These treatments are
costly and chemical treatments are often politically stigmatized in
California.

The Sonoma Valley is a mixed landscape (Fig. 5aec) of urbanized
areas and widespread agriculture, especially wine grape produc-
tion, and spans private and public ownerships including state and
regional parks (e.g., Jack London State Historic Park). Forested areas
are a mix of open oak (Quercus spp.) woodlands and denser mixed
evergreens, with Coast redwood (Sequoia sempervirens) dominating
cooler mesic drainages and north-facing slopes. California bay
laurel, the most significant source of spore production and release
by P. ramorum, is abundant in most forest types within the region
(Meentemeyer et al., 2008).

2.1.3. Adaptation of an epidemiological spread model
We adapted a previously validated stochastic, spatially-explicit

susceptible-infected (SI) model developed to simulate the spread
of the SOD pathogen P. ramorum in California (Meentemeyer et al.,
d landscape; b) urbanized areas surrounded by forested landscape; c) mix of open oak



Fig. 6. Data representations used in a deployment of Tangible Landscape to explore
collaborative management of SOD in Upper Sonoma Valley, CA. This illustration mimics
the overlay of multiple physical, human, and environmental GIS maps projected onto a
3D physical model base. a) Relief map of the 10 km � 10 km Upper Sonoma Valley
study area, noting prevailing wind direction; b) orthophoto of the region (USGS HRO,
2011); c) land use map (Fry et al., 2011); d) land tenure including public roads
(California Department of Parks and Recreation, 2015; US Census Bureau, 2015); e)
Vegetative mapping of super spreader host California bay laurel (Ohmann and Gregory,
2002; LEMMA, 2016) and f) terminal hosts Quercus spp. (Ohmann and Gregory, 2002).
with first known sites of pathogen Phytophtora ramorum infection (Kelly et al., 2004).
See text for details.

3 https://github.com/f-tonini/SOD-modeling.
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2011; Cunniffe et al., 2016) for use in Tangible Landscape. The
raster-based model incorporates forest community structure, local
weather conditions, seasonality, as well as transmission of the
pathogen among host species. Increased spore production and
pathogen transmission are the direct consequence of steady local
moisture conditions (e.g., from consecutive days with precipitation
events), thus fluctuations in local temperature and moisture con-
ditions strongly affect outbreak patterns. With favorable weather
conditions, spores are produced on the leaves of foliar hosts, such as
bay laurel, and passively transmitted between trees and forest
patches via wind-blown rain and rain splashes (Davidson et al.,
2005; V�aclavík et al., 2010). Within each cell of the model, forest
composition directly affects host susceptibility and pathogen pro-
duction capacities; in the Sonoma Valley study area, transmission
occurs primarily via spore production and release (sporulation) on
bay laurel, which does not suffer mortality or any other known
negative effects from infection (Cobb et al., 2010).

We adapted the simulation model to the Upper Sonoma Valley
by first choosing a 1-ha (100 m � 100 m) resolution to match
surveillance and field management for SOD (Valachovic et al., 2013)
and partitioning the study area into a detailed lattice of contiguous
1-ha cells containing multiple susceptible and infected trees (bay
laurel and oaks, Fig. 6e and f). The model was run for the interval
2000e2010 at discrete weekly time steps, using a predominant
northeast wind direction typical for the chosen study area (Fig. 6a).
In the model, sporulation within an infected site, the dispersal
distance and direction, and the probability of successful infection of
a susceptible host species are stochastic processes. The modeling
framework involves a number of initial GIS layers and core sub-
processes repeated at any generic time step (Appendix A). To ac-
count for uncertainty in simulation outcomes, the model was
routinely run 100 times for a given scenario. Such a number rep-
resents a reasonable compromise between short computational
time and higher precision in the estimated number of infected oaks,
expressed as a Monte Carlo (or multi-run) average, i.e., as arith-
metic mean of all simulation runs. The model was implemented in
R and Cþþ using the Rcpp package (Eddelbuettel and Francois,
2011) and coupled with GRASS GIS through the rgrass7 package
(Bivand, 2015). The source code and a set of GIS layers necessary to
run our model are freely available.3

For this deployment of Tangible Landscape, we used computer
numeric control (CNC) machining to fabricate a 1:10,000 m scale
physical model for a 10 km2 region of the Upper Sonoma Valley,
onto which the GIS layers were projected (Fig. 6a). To create the
physical model, we first exported a digital elevation model (DEM)
of the region as a point cloud using GRASS GIS, and then generated
a toolpath for CNC machining from a computed mesh. We used a
3-axis CNC router to carve a landscape topography model from a
block of medium density fiberboard. The model was sanded and
coated with magnetic paint so that magnetized markers would
hold to its sloping topography (see Petrasova et al., 2015 for a
guide to CNC machining topographic models). GIS layers
(Fig. 6bef) including orthoimagery, vegetation cover, land use and
ownership, and initial sites of P. ramorum infection were projected
onto the physical model, creating a contextually immersive 3D
environment with information relevant to the management
problem.

2.2. Application

2.2.1. Choice of stakeholder types for roleplaying
We identified a diverse subset of stakeholders within the study

area and categorized them into three idealized typologies for
roleplayeeForest Manager, Landowner, and Conservationistee-
with different goals for disease containment. The Forest Manager
was concerned with forest health within national and state park
boundaries and motivated to manage a forest epidemic with the
responsibility of maintaining public safety and biodiversity. The
Landowner was not concerned with the overall size and extent of
the infested areas unless the epidemic directly affected their
properties; rather, they were most likely to manage disease by
reducing host numbers in narrow bands on their own land, to
reduce fuel accumulation for fire management. Despite the pres-
ence of multiple private properties over the area, we restricted
ourselves to a single representative landowner for simplicity. The
Conservationist was concerned with preservation, restoration or
improvement of the natural environment, generally not in favor of
deforestation, but in favor of disease management that preserved
limited resources such as old growth trees and species of conser-
vation concern. With these roles, we conducted a mock planning
workshop to address the SOD epidemic in the study area. Another

https://github.com/f-tonini/SOD-modeling
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co-author helped players with details of the basic working princi-
ples of the spread model and provided assistance and facilitated
interaction with Tangible Landscape when necessary. Although
several details about the spread dynamics of an emerging infec-
tious disease can be intuitively learned by visualizing them directly
on a physical model, we acknowledge that pre-training may be
necessary to provide actual stakeholders with additional informa-
tion about the main processes and assumptions involved in the
model.

2.2.2. Rules of the roleplaying exercise
After observing the average outcome of a baseline (no treat-

ment) simulated scenario and locations of pathogen introductions
in the year 2000 (Fig. 8), the players sought to maximize the
number of oaks saved by the year 2010 and to minimize manage-
ment costs (total and cost per oak saved, described below). The sole
control method was removal of susceptible foliar host trees,
defined as 99% culling of bay laurel trees within 1-ha units. Players
accomplished this by placing small wooden markers on the phys-
ical model (Fig. 2b and c; Fig. 7). When scanned, each marker
generated a vector point within the GIS, and an automated algo-
rithm digitized those points as nodes in a convex shell polygon or
linear polygon representing the area, shape, and geo-referenced
position of culling. Treatment polygons directed the epidemiolog-
ical simulation model by reducing mapped bay laurel density in
Fig. 7. Disease management treatments for sudden oak death (SOD) in the field (upper) and
bay laurel. In the field, culling of bay laurel trees can be achieved with hand clippers for sa
arranged in order to enclose areas where culling treatments are needed.
those units to 1% regardless of starting value, an action analogous to
culling the trees. The sole option of culling bay laurel reflects the
paucity of real-world options for controlling P. ramorum as, to date,
no curative chemical treatment or comprehensive biological con-
trol has been found (Garbelotto and Schmidt, 2009; Rizzo et al.,
2005).

Players could cull up to a total of 62 ha (z150 ac) per simu-
lation, acknowledging the real-world limitation that treatments in
excess of this amount require a lengthy and costly application
process as part of the California Environmental Quality Act (CEQA)
or National Environmental Policy Act (NEPA) (Buck, 1991). We
based the estimated costs of culling on those associated with a
trial treatment at the University of California Big Creek Reserve,
where 99% of bay laurel was culled from 1 ha with a crew of 16
people. Site planning by personnel had included locating suitable
sites using aerial orthophotography, scouting, and purchasing
materials to locate plot centers and boundaries; hand culling of
bay laurel had required 13 person hours per 1% cover. Disregarding
capital costs (e.g., purchase of chainsaws) and transportation
expense to and from the site, we arrived at the following formula
to use in the model:

Cost ($ USD)/ha ¼ (Relative cover in whole numbers/ha x 13.0
person hours x $18.00/person hour) þ $800 planning fee.

After examining the average outcome of a baseline (no treat-
ment) simulated scenario 2000e2010 (Fig. 8), players were
their equivalent on Tangible Landscape (lower) via culling of “super spreader” California
plings (a) or chainsaws for older trees (b). On Tangible Landscape, wooden dowels are



Fig. 8. Number of infected oaks predicted by a baseline (no treatment) simulated scenario between 2000 and 2010. The chosen geographical extent matches the smaller area
outlined on the physical model, Fig. 6a. Values are averaged over 100 model runs. Darker values correspond to higher oak mortality: by 2007, a total of 430 oaks were expected to
die, and by 2010 a total of 2770.
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allowed three trials to individually create a management strategy,
and the epidemiological model was run after each trial to
generate maps of infection outcomes by 2010. These maps were
projected onto the physical model (Figs. 2d and 3) and used for
comparison with the no-treatment scenario. A graphic dashboard
further tracked oaks saved and costs (Fig. 2a, d; Fig. 3), providing
feedback of how management decisions influenced the simulated
spread of the disease. Near-instant feedback after each trial pro-
vided opportunities for the players to test placement of culling.
For each player, we quantified the average amount of infected
oaks for each grid cell and the average amount of total infected
area (i.e., infected bay laurel and oaks), as well as the cost of
treatments (total and per tree saved). The three players performed
treatments and viewed outcomes in the presence of all other
participants, allowing co-learning. After each player performed
three trials, we worked together for three trials as a collaborative
team. We then compared individual participant results with those
of the group.
3. Results

3.1. Outcomes of simulated management

Forest Manager was the first player to deploy a strategy and
noticed in the no-treatment scenario that little oak mortality was
predicted to occur near the easternmost initial infection site; so
they placed treatments close to the southwestern foci (Fig. 1f).
Concerned with park management, they chose to cull bay laurel
from groves of oaks near frequently visited state park trails and
entrances. On average, these simulated management actions saved
68 oaks per hectare (Fig. 9a) and a total of 400 oak trees over the
entire study area (Fig. 10) at a cost of $251,759 USD, or $693 per oak
(Table 1).

Landowner deployed their strategy next and restricted culling to
linear treatments along minor roads bordering their private prop-
erty, reflecting legacy management behaviors that emphasize
managing fuel accumulation as part of a rural fire protection pro-
gram. The simulation demonstrated, however, that establishing
defensible space along property boundaries did not control the
spread of P. ramorum. Management away from the three infection
foci, in areas with little bay laurel near personal property, had no
significant impact on preventing oak mortality ahead of the culling
treatments (Figs. 9b and 10, Appendix B). Despite a lower overall
cost ($190,158), this treatment produced a high average cost per
saved oak due to the negligible number of oaks saved from mor-
tality (Table 1).
After observing the strategies of Forest Manager and Landowner,
Conservationist decided to use a containment strategy typical of
reactive culling (i.e., culling of all host species around detected
infection sites, in this case bay laurel). This was the most suc-
cessful approach among the players, with an average of 189 oaks
saved per hectare, about 2000 trees saved over the entire study
area (Figs. 9c and 10, Appendix B), and a cost of $159 per oak saved
(Table 1). High overall treatment costs were compensated by the
large number of oaks saved from mortality, thus lowering the
average cost per saved oak (Table 1). Despite targeted culling
around infection foci, the pathogen was still able to spread beyond
the treated areas due to small amounts (1%) of remaining bay
laurel and the occurrence of long-distance dispersal events. This is
analogous to real-world evidence that even under the best prac-
tices P. ramorum is rarely eradicated, with success rates often
measured in terms of the degree to which disease outbreaks are
slowed down.

For the final series of simulations, the three players collabo-
ratively designed a management strategy (Fig. 3). By observing the
outcomes of previous strategies, we learned that treatments near
individually valued resources, such as oak groves or properties, did
not perform as well as targeted reactive culling approaches meant
to contain the disease at its origins, regardless of land ownership.
The resulting collaborative effort led to a high average number of
oaks saved per hectare as well as total amount saved over the
study area (Figs. 9d and 10, Appendix B). Total overall costs and
average cost per oak saved were similar to that observed for
Conservationist. Although the spatial configuration of areas
partially saved from the disease was similar between the collab-
oration exercise and Conservationist (Fig. 9c and d), the Conserva-
tionist's strategy saved more oaks per weekly time step than the
collaborative strategy (Fig. 10), ultimately resulting in more total
oaks saved. This was likely due to the cumulative effect of slower
disease spread in the first years of simulation as pathogen accu-
mulation was reduced by targeted treatments around the three
initial infection foci.
4. Discussion

For the first time, we demonstrated how a 3D interface such
as Tangible Landscape can facilitate decision-making among
management stakeholders with different initial objectives
collectively facing the spread of an invasive plant pathogen. In
this pilot exercise, we deployed a real-world epidemiological
model using Tangible Landscape and compared individual and
collaborative performances for decreasing the spread of sudden



Fig. 9. Number of oaks saved from mortality compared to the baseline (no treatment) scenario between 2000 and 2010. The color ramp is the same for all maps: legends show
minimum and maximum values for the specific simulation year and trial. The small negative values are caused by residual stochastic differences between average outcomes of the
baseline (no treatment) and the management scenarios under consideration. (a) Forest Manager with treatments centered on trails, campgrounds, and other high-use areas within
state parks boundaries, (b) Landowner with treatments along roads, (c) Conservationist with treatments placed around initial known foci of infection (red squares), and (d)
collaborative action, with treatments placed according to shared interests. Values represent per-pixel averages over 100 model runs. The chosen geographical extent matches the
smaller area outlined on the physical model, Fig. 6a. Only the most successful trial for each category is shown.(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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oak death. When working together, players compromised where
they would each prefer to enact management in order to
maximize the overall number of oaks saved. We found that
directing computation by simply placing markers on a 3D
physical model of the study system enabled us to quickly and
easily explore management alternatives and engage in active
discussions while evaluating “what-if” scenarios. The near-real
time assessment of alternative management interventions
inspired discussion and co-learning, thus building consensus
when making decisions.

The way people interact with and access models and data is
evolving rapidly, demanding changes in how models are built,
disseminated, and consumed via interactive platforms (Voinov
et al., 2016). The Tangible Landscape framework constitutes a
novel methodology designed to bridge the knowledge-practice
gap and make model-based research actionable. In translating
the spread model to Tangible Landscape, we considered how
participants might interact with and manipulate the driving pa-
rameters. For example, recognizing weather as a key SOD spread
driver beyond human control, we held climatic parameters con-
stant and instead allowed participants to alter the abundance
host density via culling treatments. Further, we developed and
reported metrics relevant to stakeholders groups (e.g. treatment
costs based on host density and labor), not just researchers, to



Fig. 10. Total number of oaks saved from mortality over the entire study area compared to a baseline (no treatment) simulated scenario between 2000 and 2010. Lines represent
averages over 100 model runs, enclosed by their Monte Carlo confidence interval (shaded areas).

Table 1
Treatment outcomes and costs associated with disease management scenarios implemented by roleplaying, individually and collaboratively.

Stakeholder
typology

Trial Treatment size
(ha)

Saved oaks
(average)

Cost
(USD)a

Price per saved oak (average) a

Forest manager 1 62 51 $187,382 $3680
2 b 59 363 $251,759 $693
3 62 8 $249,377 $29,973

Landowner 1 57 43 $274,945 $6359
2 52 104 $190,158 $1822
3 b 60 73 $280,857 $3865

Conservationist 1 b 62 1991 $315,863 $159
2 59 236 $300,862 $1276
3 61 1270 $480,678 $378

Collaboration 1 61 1196 $326,528 $273
2 b 62 1275 $315,371 $225
3 62 615 $334,937 $545

a Costs were calculated based on site planning, labor, materials, and transportation necessary for culling treatments (see formula in Rules of the roleplaying exercise section).
Costs per saved oak are averaged over 100 model runs. Lowest costs within each stakeholder typology are in bold.

b Shown in Figs. 9 and 10.
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ease the communication of trade-offs associated with alternative
management strategies.

4.1. Lessons learned from roleplay

Using Tangible Landscape, we were able to explore some of the
substantial challenges facing those charged with managing SOD. A
key question, acknowledging the generalist nature of P. ramorum,
was whether it was more effective to deploy preemptive treat-
ments downwind from the sites of known introduction or attempt
to contain the disease at its source (Cunniffe et al., 2016; Filipe et al.,
2012; Hansen et al., 2008). In our case study, the Conservationist's
management strategies aimed at culling the reservoir host solely
around the three known infection foci (Fig. 9c) did not contain the
spread of the disease, most likely due to the practical impossibility
of fully removing the reservoir host. The containment strategy did,
however, slow down the disease in the short term and reduce
overall oak mortality (Fig. 10). The location and spatial extents of
areas saved from the diseasewere similar between Conservationist's
approach and the alternative collaborative strategy (Fig. 9d). The
latter resulted in slightly higher costs but brought a high degree of
realism to the management effort by considering the necessary
trade-offs and multiple local interests involved (Cobb et al., 2013b;
Rizzo et al., 2005).

In order to develop collaborative strategies, management prac-
tices initially favored by representative interest groups (i.e., Land-
owner, Forest Manager, and Conservationist) were modified,
abandoned, or exchanged to accommodate competing interests. For
example, participants noticed that treatments placed around the
easternmost infected site (see Conservationist, Fig. 9c) had little to
no effect on reducing oak mortality in the surrounding areas. As a
consequence, ~10 ha of land were re-allocated near the central
portion of the study area to prevent part of the disease outbreak
projected to hit by year 2010 (Fig. 8) should no management action
be taken. Landowner abandoned linear road treatments after seeing
how the investment did not save many trees. Forest Manager re-
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allocated 20 ha of treatments in order to better protect oak groves
downwind from the central source of infection (Fig. 9d), while ac-
commodating the treatment area originally placed by Conserva-
tionist around the same infected site. Although a single individually
developed strategy (as seen here by Conservationist) might achieve
the best outcome in terms of number of oaks saved (Figs. 9c and 10),
the overall treatment costs can easily exceed those of a carefully
planned collaborative strategy (Table 1; Hansen et al., 2008).

4.2. Technical considerations

This pilot application of Tangible Landscape to a management
planning scenario revealed technical challenges for us to address.
In particular, the variability observed between stochastic runs of
the same scenario (Fig. 10) still leaves an open question concern-
ing the optimal compromise between model replications and
computational burden. The three main components implemented
in the epidemiological model (i.e. sporulation, dispersal, infection)
are stochastic processes in which differences between any two
simulations can grow between successive time steps, and some-
times even lead to snowballing divergences. The presence of small
positive and negative values in the Landowner strategy (Fig. 9b)
exemplifies this problem. Increasing the number of model repli-
cations leads to a more accurate average outcome while reducing
variability and accounting for a range of extreme possibilities
(Monte Carlo simulation). However, the purpose of Tangible
Landscape is to offer the user a near real-time interaction with the
physical model and the layers of spatial information projected
onto it, thus necessitating a reduced computational burden
(Petrasova et al., 2015). A method to deal with large numbers of
independent model runs may be to launch them in parallel on
multiple processors possibly on a remote infrastructure. The re-
sults would then be averaged into a single outcome and presented
to stakeholders. In the future, we intend to explore computational
improvements that could enable inclusion of multiple adaptive
disease interventions through time in Tangible Landscape.

5. Conclusions

Our pilot exercise demonstrated the potential for Tangible
Landscape to run a responsive epidemiological model with user
input through an easy-to-use 3D interface. Our next step for
exploring collaborative decision-making with Tangible Landscape
is to deploy this model in a real-world setting out of the lab, with
real stakeholders that include private citizens and representatives
from state and national government agencies, academia, and in-
dustry, exploring control scenarios for the SOD epidemic in a
focal area of pressing concern. As we observed in our pilot study,
we expect that the participatory tangible modeling environment
will empower stakeholders to experiment, granting them
freedom to make mistakes, evaluate outcomes, and negotiate
costs and benefits in order to reach individual and collective
objectives.

Our mock planning workshop illustrated some of the chal-
lenges of uniting multiple stakeholders with overlapping juris-
dictional boundaries and exposed some of the difficult trade-offs
required to arrive at consensus in management decisions. We
predict that in a real-world setting, several technical and visual
advantages of Tangible Landscape will help reduce barriers be-
tween participants with varying objectives and types of expertise:
Tangible Landscape provides the degree of information density
and realism needed for participants to 1) quickly and intuitively
learn the salient details and dynamics of a complex epidemio-
logical spread model, 2) virtually place themselves into a land-
scape they know and care about and allow their decision making
to be geographically and contextually informed, 3) quickly develop
and test management strategies, often by observing and learning
from each other, and 4) receive near-real time feedback as to the
efficacy of their actions over time. This leads us to suggest that
customized deployments of Tangible Landscape will facilitate un-
derstanding, interpretation, and compromise when examining
complex ecological interactions and potential solutions for
management.
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Appendix A

Vegetation maps

We derived tree densities from detailed GIS structure (species-
size) maps from the Landscape Ecology, Modeling, Mapping &
Analysis (LEMMA) project webpage (Ohmann and Gregory, 2002;
http://lemma.forestry.oregonstate.edu/). Tree densities (per hect-
are) for bay laurel and oak species of interest (coast live oak, black
oak, canyon live oak) were calculated using the live tree density
attribute (TPH_GE_3) multiplied by fractions of total basal area
(BA_GE_3) as follows:

DensityK ¼ TPH GE 3� BAk
BA GE 3

;

where the index K indicates the species of interest and BA in-
dicates basal area (m2/ha). This resulted in maps of oak and bay
laurel density (Fig. 6e and f, respectively) that informed stake-
holders as to the location of susceptible tree populations and
super-spreaders of P. ramorum, aiding the development of man-
agement strategies.

http://lemma.forestry.oregonstate.edu/
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Initial disease records

To initiate the model, we used empirical records of the disease
collected in three different appelocations within the study area
(Fig. 6f) around year 2000. These records include plot-level data on
P. ramorum incidence collected by Phytosphere Research and the
California Oak Mortality Task Force (Kelly et al., 2004), which re-
ports infections confirmed by the California Department of Food
and Agriculture (Meentemeyer et al., 2008).

Weather conditions and seasonality

Fluctuations in temperature and moisture conditions strongly
affect sporulation rates and transmission of P. ramorum in forests
(Davidson et al., 2005; V�aclavík et al., 2010). Specifically, increased
pathogen production is the direct consequence of steady local
moisture conditions (e.g. from consecutive days with precipitation
events) that coincide with mild temperatures. These conditions
are typical of spring precipitation events in the study region. In
this work, we used weekly maps of weather condition indices
derived from average temperature and consecutive days of pre-
cipitation as described in Meentemeyer et al. (2011). The com-
bined index is defined in [0, 1], where zero corresponds to
unsuitable conditions for spore production and transmission.
Seasonality is included in the model by restricting pathogen
spread and infection in forests between the months of January and
September, following the start of the rainy season in California's
Mediterranean climate.

Sporulation and pathogen dispersal

The amount of spores produced each week within each infec-
ted site is sampled from a Poisson distribution with rate equal to
4.4 spores/week as calibrated in Meentemeyer et al. (2011). This
rate corresponds to the maximum expected number of spores an
infectious host can produce if weather conditions were most
suitable. Weather conditions affect sporulation by reducing the
amount of spores produced through a low value of the weather
condition index. Pathogen intensification and transmission are
controlled by a probabilistic kernel that describes the spatial
spread over short distances (�1 km) as well as occasional jumps
(1e100 km) caused by anthropogenic activity (Rizzo et al., 2005).
Although SOD is a “spillover” disease, where outbreaks on oaks are
caused by transmission of the pathogen from foliar hosts in close-
proximity, it is crucial to account for occasional long-range
dispersal events. In fact, these types of rare jumps ultimately
drive pathogen spread over regional extents, complicating the
implementation of effective management and control strategies
for invasive species (Frankel, 2008). Further, because wind-driven
rain is thought to be a major dispersal process at local scales (Rizzo
et al., 2005), we considered wind direction as an additional
component to the spread model. In contrast with Meentemeyer
et al. (2011), we used a particle-emission anisotropic reformula-
tion of the dispersal kernel: the spores produced within each
infected cell of the landscape are dispersed in a direction sampled
from a Von Mises circular probability distribution on [0, 2p) by a
distance distributed according to the dispersal kernel. The pre-
dominant wind direction for the study area (Northeast ¼ 45�

or z 0.78 rad) was used to parameterize the mean of the angular
distribution and we set its concentration value equal to 2 (k ¼ 2).
The dispersal distance was sampled from a Cauchy probability
distribution parameterized with values from Meentemeyer et al.
(2011). Because the study area is relatively small
(10 km � 10 km), in this work we ignored the long-distance
component of the dispersal kernel.
Infection

Susceptible host species are probabilistically challenged for
infection by the pathogen proportionally to their density and
adjusted by a variable indicating the suitability of weather condi-
tions. Transmission and mortality are independent processes
within the model which provides the flexibility to reflect the
epidemiology of this disease in real forests. For example, the
parameter values for bay laurel provide relatively high rates of
sporulation on bay laurel with mortality rates set to zero. In
contrast, transmission is set to zero for oaks, but mortality is the
greatest relative to other species within the host landscape. Spread
of infection is approximated as a function describing the probability
of infection p(I) given spatial location - distance and angle from
infection at the previous time step - climate factors, and sporulation
rate. Changes in probability of dispersal of new infections is
included as a Cauchy distribution conditioned on distance to the
target cell. Within cell infection is allowed across bay laurel and oak
species while dispersal outside of the cell is to bay laurel only. These
rules are consistent with spatially extensive datasets on pathogen
spread.

Within cell infection is taken as:

p Ið Þ ¼ S
N
�w�

X
bi;jxi;j

where b is a species (i) and location (j) specific rate of new
potential infections per species. This introduces independence
between acquisition of infection and transmission. Species
with b ¼ 0 can acquire but cannot transmit infection which, in this
case, would represent oak species. The probability of new in-
fections is dependent on the susceptible population size (S) and
the suitability of weather conditions (w). Dispersal outside of
target cell follows a similar construction but restricted to acqui-
sition of infections in bay laurel and adjustments for spatial
relationships:

p Ið Þ ¼ Sbay
N

�w� Kðd;gÞ � f�
X

bbay;jxbay;j

where K(d;g) is a Cauchy dispersal kernel, with scale parameter g >
0, for movement of inoculum over distance d, and f is a function
describing the effect of wind velocity (v) and direction (d). This
takes the form:

f ¼ n� d

which provides the additional flexibility to restrict dispersal di-
rection according to dominant storm tracks and observed dominant
dispersal directions
Appendix B



Figure B.1. Number of oaks saved from mortality by each player in multiple attempts, compared to the baseline (no treatment) simulated scenario between 2000 and 2010. The
color ramp is the same for all maps: legends show minimum and maximum values for the specific simulation year and trial. The small negative values are caused by residual
stochastic differences between average outcomes of the baseline (no treatment) and the management scenarios under consideration. Initial known foci of infection are shown (red
squares). Values represent per-pixel averages over 100 model runs. The chosen geographical extent matches the smaller area outlined on the physical model, Fig. 6a. Available in
color online.
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