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Abstract
1.	 Species' ranges are changing at accelerating rates. Species distribution models 

(SDMs) are powerful tools that help rangers and decision-makers prepare for rein-
troductions, range shifts, reductions and/or expansions by predicting habitat suit-
ability across landscapes. Yet, range-expanding or -shifting species in particular 
face other challenges that traditional SDM procedures cannot quantify, due to 
large differences between a species' currently occupied range and potential future 
range. The realism of SDMs is thus lost and not as useful for conservation manage-
ment in practice. Here, we address these challenges with an extended assessment 
of habitat suitability through an integrated SDM database (iSDMdb).

2.	 The iSDMdb is a spatial database of predicted sites in a species' prediction range, 
derived from SDM results, and is a single spatial feature that contains additional, 
user-friendly data fields that synthesise and summarise SDM predictions and un-
certainty, human impacts, restoration features, novel preferences in novel spaces 
and management priorities. To illustrate its utility, we used the endangered New 
Zealand sea lion Phocarctos hookeri. We consulted with wildlife rangers, decision-
makers and sea lion experts to supplement SDM predictions with additional, more 
realistic and applicable information for management.

3.	 Almost half the data fields included in this database resulted from engaging with 
these end-users during our study. The SDM found 395 predicted sites. However, 
the iSDMdb's additional assessments showed that the actual suitability of most 
sites (90%) was questionable due to human impacts. >50% of sites contained un-
natural barriers (fences, grazing grasslands), and 75% of sites had roads located 
within the species' range of inland movement. Just 5% of the predicted sites were 
mostly (>80%) protected.

4.	 Integrating SDM results with supplemental assessments provides a way to ad-
dress SDM limitations, especially for range-expanding or -shifting species. SDM 
products for conservation applications have been critiqued for lacking transpar-
ency and interpretation support, and ineffectively communicating uncertainty. 
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1  | INTRODUC TION

Species' geographical ranges are changing at accelerating rates, 
largely due to climate change, anthropogenic pressures and anthro-
pogenic introductions of non-native species (Doherty et al., 2021; 
Pecl et al., 2017). In some cases, species are expanding their ranges 
due to successful conservation and management, often recolo-
nising ranges from which they were once extirpated (Le Boeuf 
et  al., 2011; Smeraldo et al., 2017). To inform the conservation of 
reintroduced, range-shifting or range-expanding species, scholars 
and practitioners often map habitat suitability or probability of oc-
currence across a species' potential range using methods such as 
expert opinion (Adem Esmail & Geneletti,  2018), statistical mod-
els (Smeraldo et al., 2017) or machine-learning algorithms (Phillips 
et  al.,  2006). These approaches help rangers and decision-makers 
designate or restore protected areas (Angelieri et al., 2016; Villero 
et  al.,  2017), assess threats posed by invasive species (Rodríguez-
Merino et al., 2017) and assess habitat availability under changing 
anthropogenic or environmental conditions, among other purposes 
(Engler et al., 2017; Schwartz, 2012).

While many studies acknowledge the importance of predictive 
habitat models for conservation management (Villero et al., 2017), 
practical, comprehensive results for decision-makers are needed 
(Araújo et  al.,  2019; Sofaer et  al.,  2019). Rangers and decision-
makers have additional considerations when working with range-
shifting or -expanding species compared to species whose ranges 
are relatively stable or shrinking. For example, new biotic (interspe-
cific) interactions could arise and negatively impact a range-shifting 
or established species, or native populations could be threatened by 
an expanding invasive species. For species recolonising their historic 
ranges, high population densities in new colonies could be at greater 
disease risk (Lavigne & Schmitz, 1990). Reintroduced species could 
expand outside the protected areas where they were introduced 
(Smeraldo et  al.,  2017), requiring rangers and decision-makers to 
engage with local communities to generate awareness and support 
(Karamanlidis et al., 2016). Natural and unnatural barriers, such as 
topographic changes or roads, could inhibit a reintroduced species' 
expansion (Engler et  al.,  2012; McFadden-Hiller & Belant,  2018). 
Furthermore, mapping a species' potential range requires 
understanding and proper handling of predictive model limitations, 
for example, how much extrapolation to allow into new regions 

(Elith et al., 2010) or a model's inability to account for environmental 
conditions that are non-existent in a species' current range but be-
come important as the species expands its range (Leroux et al., 2017; 
Swinnen et al., 2017). Besides accurate mapping of potential habi-
tats, rangers and decision-makers need to assess additional circum-
stances for species dispersing into ranges with novel conditions, and 
such information has to be accessible, concise and practical.

We demonstrate a decision-support tool to address such chal-
lenges for range-shifting or -expanding species by creating an 
integrated species distribution model database (iSDMdb). Species dis-
tribution models (SDMs) are statistical or machine-learning models 
that predict probabilities of occurrence or habitat suitability in novel 
(unsampled or unoccupied) areas. They compare environmental con-
ditions (e.g. climate, land cover) at species presence locations with 
conditions where the species is absent or location data are lacking. 
The iSDMdb is a spatial, descriptive database of predicted sites in a 
species' predicted range, derived from SDM results, that contains 
additional data fields that synthesise and summarise SDM predic-
tions and uncertainty, potential human impacts, restoration fea-
tures, novel preferences in novel spaces and management priorities. 
Data fields are generated using a wide range of assessments outside 
traditional SDM procedures, resulting in an enhanced, practical and 
accessible decision-making database to guide management.

We demonstrate how the iSDMdb can be created and assessed 
for informing decision-making at a national scale, using the New 
Zealand sea lion (Phocarctos hookeri; NZSL). We predicted the NZSL's 
potential breeding colony range and engaged with wildlife rangers, 
NZSL experts, and decision-makers to supplement SDM predictions 
with additional assessments to address SDM limitations in the spe-
cies' predicted range. We discuss how this example can be applied 
for informing the management of other range-shifting or -expanding 
species, and provide exemplary materials to create an iSDMdb using 
open-source tools.

2  | MATERIAL S AND METHODS

2.1 | Case study species and iSDMdb framework

The NZSL was once found throughout mainland New Zealand's 
coasts (Collins et  al.,  2014). Human exploitation extirpated them 

The iSDMdb addresses these issues and enhances the practical relevance and util-
ity of SDMs for stakeholders, rangers and decision-makers. We exemplify how 
to build an iSDMdb using open-source tools, and how to make diverse, complex 
assessments more accessible for end-users.

K E Y W O R D S

anthropogenic impacts, ecological niche model, multi-criteria decision analysis, multi-state 
species distribution model, Phocarctos hookeri, qualitative decision-making, range shift, 
recolonisation
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from the mainland and restricted their population to islands in the 
Subantarctic (Childerhouse & Gales,  1998; Figure  1). Since the 
1990s, multiple recolonisation events have occurred on the main-
land (Department of Conservation, 2017; Figure 1). Yet, their range 
expansion presents new challenges. Local residents do not always 
welcome recolonising NZSLs, and NZSLs have been hit by cars on 
roads or deliberately killed (Lalas, 2008). Mainland habitats also dif-
fer from their Subantarctic habitat, with new habitat features such 
as commercial pine forests, or anthropogenic features such as live-
stock fencing (McConkey et  al.,  2002). Decision-makers need to 
determine where human interactions would most likely occur, and 
engage with communities to generate awareness (Department of 
Conservation,  2017). Finally, SDM assumptions and uncertainties 
need to be made explicit so rangers and decision-makers can deter-
mine their confidence in, and gauge the potential effectiveness of, 
alternative management options.

The iSDMdb can address these challenges as this species recolo-
nises. Its methodology has five main components: (a) SDM prediction, 
(b) human impacts, (c) novel preferences in novel spaces, (d) locations 
of inquiry and (e) integration (Figure  2). Throughout this process, 
engagement with decision-makers, rangers and experts (hereafter, 
end-users) can identify the most important assessments and features 
to include while also minimising misinterpretations of these complex 
methods.

In SDM prediction, an SDM (any algorithm or an ensemble) is 
trained in the species' current range and projected to a different or 
expanded range. A multi-state SDM (sensu Frans et al., 2018b) then 
uses SDM predictions and statistical thresholds to map potential 
suitable sites for a minimum number of individuals, as defined by 
end-users. A multi-state SDM is an SDM framework that accounts 
for multiple distinct habitat types due to a species' changes in move-
ment, behavioural states or life-cycle stages. It transforms SDM 
predictions into minimum habitat patches (polygons) for minimum 
numbers of individuals, which we adapted to form the main, sim-
ple structure of the iSDMdb. SDM uncertainties and limiting factors 
impacting predictions are also assessed via coefficient of variation 
(CV), multivariate environmental similarity surface (MESS), most 
dissimilar variable (MOD) and limiting factor mapping (sensu Elith 
et al., 2010). CV informs on the spread of the prediction from the 
mean predicted value within a given pixel across SDM runs, where 
relatively high CV percentages show caution for higher uncertainty 
in a prediction. MESS and MOD help determine potential extrapola-
tion errors when evaluating and prioritising among predicted sites, 
indicating locations to consider with caution (i.e. less reliable if high 
extrapolation). Limiting factor grids indicate which variables within a 
pixel would increase suitability if its values were changed, highlight-
ing potential variables that could be ground-truthed or prioritised for 
habitat restoration.

In human impacts, expert opinion informs a multi-criteria decision 
analysis (MCDA) on potential threats from novel anthropogenic fea-
tures. MCDA groups criteria by objectives, assigns weights based on 
expert-opinion-based judgements of relative importance and com-
bines the criteria to reach a final output of suitability (Adem Esmail 

& Geneletti, 2018). The human impacts step can additionally include 
feature summaries, for example, presence of unnatural barriers to 
species' movement.

Novel preferences in novel spaces assesses the availability of hab-
itat features important to the species in their predicted range but 
unable to be modelled sufficiently within their current range. In lo-
cations of inquiry, other important features are included to, for exam-
ple, identify protected areas overlapping predicted sites of species' 
presence or estimate predicted sites' proximity to known occurrence 
locations within the predicted range. Finally, in integration, the as-
sessments' outputs are summarised into a spatial database and ap-
pended to the SDMs' predicted sites. The iSDMdb is convertible into 
multiple formats to facilitate end-users' use.

2.2 | Study area, data collection and preparation

This study covers the entire coastline of mainland New Zealand and 
Stewart Island, from the shoreline to 2.5 km inland, totalling an area 
of approximately 209,000 km2 (Figure 1).

We prepared 19 environmental, anthropogenic and management-
related spatial layers (variables) at a 25-m resolution. Table 1 pro-
vides details on their correspondence to each iSDMdb step, purpose 
and assumptions for their use, data sources and derivation. We used 
ArcGIS (ESRI, 2019) and r (R Core Team, 2021) for data preparation, 
extraction and modelling.

2.3 | Predictive modelling: Multi-state 
SDM prediction

We previously used Maxent (Phillips et al., 2006) to build and train 
a multi-state SDM from breeding females on Sandy Bay, Auckland 
Islands (Figure 1; Frans et al., 2018b), which we used to predict po-
tential terrestrial habitats for breeding colonies across the mainland. 
Multi-state SDMs were necessary because breeding female NZSLs 
undergo three states of inland movement in the breeding season 
(breeding state, S1; transition state, S2; dispersion state, S3), pre-
ferring three distinct habitat types that cannot be modelled in a 
single SDM (Augé et al., 2012; Frans et al., 2018b); three separate 
SDMs needed to be modelled and combined. This methodology is 
also later used to form the iSDMdb's main, simple structure for data 
integration.

For model training, we used 2,247, 1,333 and 293 Sandy Bay 
breeding female occurrences for S1, S2 and S3, respectively. We ran-
domly selected 133 occurrences for 75/25% training/testing against 
10,000 background points for 100 Maxent iterations per state, using 
eight environmental variables (Table 1). In Frans et al.  (2018b), we 
assessed variable responses and model performance (Appendix S1). 
All state SDMs had mean area under the Receiver Operating 
Characteristic curve (AUC) test scores >0.99 and True Skill Statistic 
(TSS) test scores >0.92, which were expected given the NZSL's small, 
restricted breeding range (Lobo et al., 2008). Sørensen's similarity 
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index, an accuracy metric that avoids inflation from true negatives 
(Leroy et  al.,  2018), indicated good performance (mean ± SD of 
0.82 ± 0.13, 0.58 ± 0.09, 0.59 ± 0.08 for S1, S2 and S3, respectively; 
Appendix S1).

For model prediction, we used Maxent-generated training in-
formation data (.lambda files) to predict habitat suitability across 
the mainland (Appendix  S2). We calculated the mean prediction 

per state and used Maxent's maximum sum of sensitivity and spec-
ificity threshold to generate binary suitable/unsuitable maps per 
state. We used the multi-state SDM framework to define predicted 
sites for a breeding colony of ≥35 females (minimum requirement 
to designate Stewart Island as a breeding colony; Department 
of Conservation,  2017), estimated using the minimum mapping 
unit (MMU) formula from the framework (mmu.calc function; 

F I G U R E  1   Study area with known 
historic and current (1990–2019) New 
Zealand sea lion pupping sites and current 
breeding colony locations (sources: 
Childerhouse & Gales, 1998; Collins 
et al., 2014; New Zealand Department 
of Conservation; Dragonfly Database, 
https://seali​ons.drago​nfly.co.nz/demog​
raphi​cs/sighting)

https://sealions.dragonfly.co.nz/demographics/sighting
https://sealions.dragonfly.co.nz/demographics/sighting
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Appendix S2). With female NZSL densities of 85 per 100 m2 in S1, 
30 per 100 m2 in S2 and 1 per 10,000 m2 in S3 (Augé et al., 2009), 
and a 25-m resolution, suitable breeding sites for ≥35 females 
needed to be ≥0.35  km2 (MMU ≥  562 pixels). From each state 
prediction, we removed non-contiguous pixels <MMU per state. 
We summed these maps and extracted all contiguous predicted 
areas ≥MMU. This gave us the final predicted breeding sites for the 
study, which we converted into vector polygons for the iSDMdb 
(Appendix S2).

2.4 | Assessing SDM uncertainties and limitations

We generated MESS, MOD and three limiting factor grids (one 
per behavioural state) in Maxent, and calculated CV. These were 
essential for evaluation since the prediction area (mainland) was 

not included in model training and differed from the training area 
(Auckland Islands).

We calculated MESS and MOD using Maxent's density.tools.Novel 
command (see Appendix S3). We inputted the training area variables 
from Frans et  al.  (2018b) to contrast with the mainland variables' 
values at each pixel and produce the two maps. MESS values range 
from positive (no extrapolation) to negative (extrapolation). MOD 
corresponds with MESS and indicates the most dissimilar variable at 
a pixel that affected the MESS score.

To generate limiting factor grids, we used Maxent's density.tools.
LimitingFactor command to input the .lambda and sampleAverages.
csv files generated from model training for 100 iterations per state. 
These were compared against each of the mainland variables' pix-
els to produce 100 limiting factor grids per state. We calculated the 
mode for each state to evaluate the most frequent limiting factors 
across predictions (Appendix S3).

F I G U R E  2   Workflow for building an iSDMdb for the New Zealand sea lion (NZSL). SDM prediction refers to a species distribution model 
(SDM) and an analysis of uncertainties and limitations; human impacts refers to a multi-criteria decision analysis (MCDA) of impacts and 
evaluating unnatural barriers; novel preferences in novel spaces assesses preferred variables in the predicted range that the SDM is lacking in 
the SDM training range; locations of inquiry estimates locations of pupping sites and sizes of conservation areas; and integration summarises 
the outputs from these first four steps into a spatial database with data fields addressing seven main categories (in bold italic) to assist 
in decision-making. The abbreviated data field names correspond to the data field summaries in Table 2. (Abbreviations: spp.: species 
occurrences; env.: environmental variables; MESS: multivariate environmental similarity surface; MOD: most dissimilar variable)
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TA B L E  1   Variables used in this study, reasoning for their use, data sources and their derivation

Variable Purpose/Assumptions Source
Preparation steps (25-m 
resolution)

Species distribution model (SDM) prediction and limitations (Augé et al., 2009, 2012; Frans et al., 2018b; McNally et al., 2001)

Cliff edges Avoidance of cliffs NZ Mainland Topo 50 (LINZ 2013, 
http://data.linz.govt.nz)

Rasterisation of cliff edge 
polygons

Coastline distance Accounting for female inland movement NZ Mainland Topo 50; LCDB4 
(Landcare NZ 2014, https://lris.
scinfo.org.nz)

Euclidean distance from 
coastline polygons

Forest distance Movement into forests towards the end of 
the breeding season

LCDB4 Euclidean distance from 
forest polygons

Grass distance Movement from the beach to high sward 
after having the pups

LCDB4 Euclidean distance from grass 
polygons

Inland water distance Water for thermoregulation LCDB4 Euclidean distance from water 
polygons

Land cover Differentiating between land cover types, 
whether preferred by the NZSL or not

NZ Mainland Topo 50; LCDB4 Simplification of LCDB land 
cover classifications (12 
categories); merged with 
Topo 50 sand polygons 
to extend the beach and 
match satellite imagery

Sand distance Beaches required for all states; implies 
access to forests, grass and areas for 
foraging

NZ Mainland Topo 50; LCDB4 Euclidean distance from sand 
polygons

Slope Female NZSLs tend to prefer areas with 
slopes of less than 20°

NZ DEM (Landcare NZ 2010, 
https://lris.scinfo.org.nz)

Calculated slope from NZ 
DEM

Human impacts (Lalas & Bradshaw, 2003; MacMillan et al., 2016; consultation with experts, managers and meeting attendees)

Residential areas 
distance

Accounting for areas with potentially 
more human-NZSL interactions, and 
development in or near suitable sites 
may also imply that environmental 
suitability (the SDM prediction) will have 
to be further examined

LCDB4 Three-dimensional (path) 
distance from LCDB 
residential area polygons

Sealed roads distance History of NZSLs on the mainland being 
hit by cars as they move inland; sealed 
roads are assumed more of a threat than 
unsealed roads, due to the density of 
cars that use them

NZ Mainland Topo 50 Three-dimensional (path) 
distance from sealed road 
centrelines

Unsealed roads 
distance

History of NZSLs on the mainland being hit 
by cars as they move inland; unsealed 
roads are assumed to be less of a threat 
than sealed roads, due to a potentially 
lower density of cars that use them

NZ Mainland Topo 50 Three-dimensional (path) 
distance from unsealed 
road centrelines

Fences Presence of fences could create barriers to 
NZSL inland movement on the mainland, 
making less suitable areas available; 
can also imply potential human-NZSL 
conflict

NZ Fence Centrelines Topo 50 
(LINZ 2019, http://data.linz.
govt.nz)

Rasterisation of fence 
centrelines, with 1 for 
presence and 0 for 
absence

Grazed grasslands Not all fence lines may be accounted for in 
the Topo50 dataset. Pasture for grazing 
can have fences, creating barriers to 
NZSL inland movement, lessening the 
number of suitable areas available and 
posing potential human-NZSL conflict

LUCAS NZ Land Use Map 1990 
2008 2012 2016 v006 
(Ministry for the Environment 
2016)

Extraction of high- and 
low-producing grassland 
polygons, for the 
subclasses '502 - Grazed 
- dairy' and '503 - Grazed 
- non-dairy'

Novel preferences in novel spaces (Consultation with experts, managers and 2019 meeting attendees)

Inland water distance See SDM data; added as a searchable 
feature in the database

See SDM data See SDM data

(Continues)

http://data.linz.govt.nz
https://lris.scinfo.org.nz
https://lris.scinfo.org.nz
https://lris.scinfo.org.nz
http://data.linz.govt.nz
http://data.linz.govt.nz
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To assess uncertainty in the SDM predictions, we calculated CV 
(SD/mean  ×  100) across the 100 predictions for each behavioural 
state (Appendix S3).

2.5 | Human impacts: Multi-criteria 
decision analysis

To include human impacts on the mainland (Department of 
Conservation, 2017; Lalas, 2008; MacMillan et al., 2016), we used an 
expert opinion-based evaluation via the Analytic Hierarchy Process 
(Saaty,  1990), a weighted MCDA. Using pairwise comparisons, we 
determined criteria weights for three human impact variables (resi-
dential areas, sealed and unsealed road distances; Table  1), with 

relationship values ranging from 1 (equal importance) to 9 (extreme 
importance; Saaty, 1990). While MacMillan et al.'s (2016) previous 
work ranked residential areas as two times more of a potential dis-
turbance to NZSLs than roads, road types were not evaluated. We 
updated this evaluation based on further expert opinion and ranked 
sealed roads as two times more of a threat than unsealed roads. 
Pairwise values for residential areas relating to both sealed and un-
sealed roads were thus 4; sealed roads' relation to residential areas 
and unsealed roads was ¼ and 2; and unsealed roads' relation to resi-
dential areas and sealed roads was ¼ and ½. We put these values into 
a pairwise matrix, added each variable's row, and divided them by 
the total variables compared (n = 3; Saaty, 1990), yielding weights 
of 0.655, 0.211 and 0.134 for residential areas, sealed roads and un-
sealed roads, respectively. To check uncertainty, we calculated the 

Variable Purpose/Assumptions Source
Preparation steps (25-m 
resolution)

Planted pine forests 
(Pinus radiata)

NZSL females on the mainland have been 
dispersing into pine forests, making 
them key habitats at some newly 
recolonised sites; as commercial, 
privately owned forests, this can 
highlight areas for community 
engagement and outreach

LUCAS 2016 Extraction of Pinus radiata 
planted pine forest 
polygons, subclass '201 
- Pinus radiata'

Conservation regions (Consultation with experts, managers and 2019 meeting attendees)

Region names To facilitate suitable site queries in the 
database

Regional Council 2019 Clipped 
(generalised; Stats NZ 2019, 
https://data.mfe.govt.nz/)

Rasterisation of polygons by 
region name

DOC public 
conservation 
areas

To query sites by protected areas; to 
calculate the proportion of a site that is 
protected

DOC Public Conservation Areas 
(DOC 2017, https://koord​
inates.com/)

None

DOC operation 
regions

To facilitate suitable site queries in the 
database; used to assign unique site IDs

DOC Operations regions (DOC 
2017, https://koord​inates.
com/)

Rasterisation of polygons by 
region name

Known breeding areas (Consultation with experts, managers and 2019 meeting attendees)

Current female/pup 
mainland sightings 
(1990–2019)

To compare predicted sites with areas 
where female NZSLs or pups have been 
sighted since the 1990s

Department of Conservation South 
Island Sighting Data; Dragonfly 
database sightings (Stewart 
Island and South Island, https://
seali​ons.drago​nfly.co.nz/demog​
raphi​cs/); NZ Geographical 
Names Topo 50 (LINZ 2019, 
http://data.linz.govt.nz)

Subsetting female/pup (alive) 
sightings only; extraction 
of unique location fields 
and text mining (keyword/
pattern searching) of 
sighting comments to 
extract location names 
from the database; 
matching of location 
names to geographical 
names in LINZ shapefile 
to approximate XY 
coordinates; 10 km buffer 
around the points

Archaeological 
evidence of 
breeding sites

To compare predicted sites with known 
historic breeding sites from before their 
extirpation from the mainland

Childerhouse & Gales, 1998 
and Collins et al., 2014; NZ 
Geographical Names Topo 50 
(LINZ, 2019, http://data.linz.
govt.nz)

Matching of location 
names to geographical 
names in LINZ shapefile 
to approximate XY 
coordinates; 10 km buffer 
around the points

Abbreviations: DEM, digital elevation model; LCDB, Land Cover Database; LINZ, Land Information New Zealand.

TA B L E  1   (Continued)

https://data.mfe.govt.nz/
https://koordinates.com/
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https://sealions.dragonfly.co.nz/demographics/
https://sealions.dragonfly.co.nz/demographics/
http://data.linz.govt.nz
http://data.linz.govt.nz
http://data.linz.govt.nz
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matrix's consistency ratio (CR) to objectively validate the weights 
(Saaty, 1990) and determined judgements were consistent at CR = 
6.87% (pairwise comparisons are consistent when CR < 10%). We 
demonstrate all calculations in Appendix S4.

Next, we standardised the three distance variables to a 0 to 1 
scale using fuzzy membership in ArcGIS (ESRI, 2019). Fuzzy stan-
dardisation reclassifies a variable by following an increasing lin-
earised sigmoidal function along three main values, A, B, C. Values 
< A are reclassified to 0; values between A and B gradually increase 
to 1, following ((x − A)∕(B − A)), where x = value; C is the maximum 
value (B to maximum were reclassified to 1). Here, A for sealed roads, 
unsealed roads and residential areas were 200, 100 and 0 m, respec-
tively (sensu MacMillan et al., 2016); B was 5 km for all variables; C 
was each variable's maximum distance. We multiplied these stan-
dardised layers by their corresponding weights and summed them, 
yielding a map of suitability scores ranging from 0 to 1. We reclas-
sified this grid to indicate presence or absence of human impacts, 
according to a 0.4 threshold. We derived this threshold by visually 
inspecting the values around Otago Peninsula (45°51′S, 170°39′E), 
where some recolonising females have been breeding in an area 
near potential human impacts since 1993 (McConkey et al., 2002), 
and by verifying with experts from the New Zealand Department of 
Conservation (DOC).

2.6 | Supplemental features, consultation and 
integration into an iSDMdb

To create a list of additional assessments and data to include with 
the predicted sites identified in the SDM prediction step (Table 1), 
we reviewed government reports and publications (Table  1), 
and, from July 2018 to October 2019, consulted with DOC end-
users and attendees at DOC New Zealand Sea Lion/Rāpoka 
Conservation Services Programme and Threat Management Plan 
Technical Working Group Meetings. Based on end-users' relevant 
concerns, we added supplemental assessments or data (Table  1) 
and simplified model results to improve accessibility and ensure 
their practical use.

We summarised the SDM, MCDA, supplemental assessments 
and data into seven categories: site identification, size, model un-
certainty, restoration features, human impacts, additional suitability 
and locations of interest (Figure 2). We created custom functions in 
r to extract these categorised features within predicted site poly-
gons and append them to a data frame. They extract the mean, 
minimum and maximum values (get.mmm), mode (get.mode), per-
cent coverage of suitable or unsuitable pixels (get.perc1 and get.
perc0, respectively), presence or absence of a feature (get.pa) and 
lists of place names (get.text; see Appendix S5). We merged these 
extracted data to the predicted site polygons to create the iSD-
Mdb, with data fields corresponding to these extractions. The final 
iSDMdb was a polygon shapefile of predicted sites harbouring ≥35 
females, with the accompanying data fields as attributes for each 
polygon.

To increase accessibility, we created other formats, such 
as printed maps, spreadsheets and an interactive HTML map 
(Appendix S6). The interactive map was made using the tmap package 
(Tennekes, 2018). This map includes areas of reference with the pre-
dicted sites for easier navigation, such as DOC conservation regions, 
Open Street Map (www.opens​treet​map.org), known historic and 
current pupping locations, and human impact areas identified from 
the MCDA. The predicted sites were set to have pop-ups containing 
data for each site, corresponding to the seven data field categories.

3  | RESULTS

3.1 | iSDMdb and selected data fields

Our resulting iSDMdb for the NZSL has 34 data fields (Table 2). 
Almost half of these data fields (n  =  15) were included in re-
sponse to end-users' recommendations, while the rest (n = 19) 
were based on literature review and studies. The data fields 
summarise the SDM prediction, human impacts, novel preferences 
in novel spaces and locations of inquiry outputs from Figure  2. 
To address end-users' concerns about model uncertainty and 
their desire to identify variables that could improve habitat 
suitability, we included MESS, MOD, limiting factors and CV 
in the iSDMdb. While some variables were used within the 
SDM and MCDA, end-users requested that they also be readily 
available for query (e.g. road or inland water distances). Upon 
incorporating these and other assessments beyond the SDM, 
we found that the actual availability of ~90% of the predicted 
sites was conditional on these additional features included in 
the iSDMdb.

The resulting iSDMdb had multiple formats to suit application 
needs. We exemplify the interactive map in Figure 3.

3.2 | Predicted sites, uncertainty and limitations

The multi-state SDM identified 395 breeding sites for ≥35 females, 
covering 798.2 km2 of the mainland (0.38% of the study area). There 
were more predicted sites on North Island (n = 227; 490 km2) than 
South Island (n = 168; 308.2 km2; Figure 4a; Appendix S7).

Most sites had low levels of extrapolation (MESS −100 to 0; 308 
sites; ~78%; Figure  4b), indicating that most predicted sites were 
similar to the model training area (Auckland Islands). Only one site, 
located on North Island, was strongly extrapolated (MESS −1,000 to 
−500). Slope was the most dissimilar variable among sites (n = 132; 
Figure 4c), followed by land cover on North Island (56 sites) and sand 
distance on South Island (59 sites).

The most limiting variables across the three state predictions 
were grass and sand distance (Figure 4d–f). Grass distance was the 
most limiting for over half the sites for all three states (212, 306 
and 312 sites for S1, S2 and S3, respectively). Sand distance was 
the most limiting for almost half of the S1 sites (n = 183), but not as 

http://www.openstreetmap.org
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TA B L E  2   Names and descriptions of iSDMdb data fields, and how they apply to NZSL management. Fields marked with an asterisk (*) 
were added to the study based on comments from sea lion experts, wildlife rangers and decision-makers

Data field name Description Management application

Site identification

id Numerical ID, corresponding to the row number To differentiate among sites; site queries

site_ID (site identification number) Three-letter + number-coded ID for each site See id

DOC_region DOC operations region where a majority of the site is 
located

To query and locate sites by management 
region

region Name of the New Zealand region where the site is 
located

See DOC_region

main_isld (main island) North or South Island (includes Stewart Island) See DOC_region

X X centrepoint coordinates (UTM) To map sites

Y Y centrepoint coordinates (UTM) see X

Size

Area Area of the site in km2 To prioritise or evaluate sites by size or 
capacity

S1_area_pc (S1 suitable area 
coverage (%))

Proportion of a site (in percent) that is environmentally 
suitable for the first behavioural state in the 
breeding season, S1 (breeding), based on the multi-
state SDM

To assess the availability of a habitat for 
each behavioural state

S2_area_pc (S2 suitable area 
coverage (%))

Proportion of a site (in percent) that is environmentally 
suitable for the second behavioural state in the 
breeding season, S2 (transition), based on the multi-
state SDM

See S1_area_pc

S3_area_pc (S3 suitable area 
coverage (%))

Proportion of a site (in percent) that is environmentally 
suitable for the third behavioural state in the 
breeding season, S3 (dispersion), based on the multi-
state SDM

See S1_area_pc

Model uncertainty

MESS_class* (multivariate 
environmental similarity surface 
grid mean value class)

Classified mean multivariate environmental similarity 
surface grid value. A measure of extrapolation 
impact on an area's prediction, based on similarity 
comparisons with the SDM training area (Auckland 
Islands). Five classes describe extrapolation levels as 
follows:

1.	none (values 0 to 100)
2.	 low (values −100 to 0)
3.	 intermediate (values −500 to −100)
4.	 strong (values −1,000 to −500)
5.	very strong (values −1,600 to −1,000)

To critically review predicted sites; 
sites with MESS class of ‘none’ to 
‘low’ have qualities that are most 
similar to the Auckland Islands; sites 
with ‘intermediate’ to ‘very strong’ 
MESS classes have qualities that are 
dissimilar to the Auckland Islands, 
so there could be errors in the 
predictions

MOD_md* (mode of the most 
dissimilar variable)

Mode (most common) of the most dissimilar variable for 
a site, corresponding to the MESS grid

To determine the variable that is the 
most dissimilar from the training area 
(Auckland Islands), which caused 
extrapolation

S1_uncrt (uncertainty for the S1 
prediction (%))

Coefficient of variation (CV) value (in percent) for the S1 
prediction, estimating how far a prediction at a site 
deviates from the average prediction in the model-
building process

To gauge uncertainty in the SDM's 
prediction of habitat suitability. 
Relatively low percentages indicate 
low uncertainty (more reliable 
predictions), and relatively high 
percentages indicate high uncertainty 
(less reliable predictions)

S2_uncrt (uncertainty for the S2 
prediction (%))

Coefficient of variation (CV) value (in percent) for the S2 
prediction, estimating how far a prediction at a site 
deviates from the average prediction in the model-
building process

See S1_uncrt

(Continues)
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Data field name Description Management application

S3_uncrt (uncertainty for the S3 
prediction (%))

Coefficient of variation (CV) value (in percent) for the S3 
prediction, estimating how far a prediction at a site 
deviates from the average prediction in the model-
building process

See S1_uncrt

Restoration features

S1_limit* (mode of limiting factor for 
the S1 prediction)

Mode (most common) of limiting factor (or, model 
variable) for the S1 prediction

To evaluate the variable that limits 
the suitability of a site for that 
behavioural state; if this variable's 
values are improved, then site 
suitability can improve

S2_limit* (mode of limiting factor for 
the S2 prediction)

Mode (most common) of limiting factor (or, model 
variable) for the S2 prediction

See S1_limit

S3_limit* (mode of limiting factor for 
the S3 prediction)

Mode (most common) of limiting factor (or, model 
variable) for the S3 prediction

See S1_limit

Human impacts

hum_im_pc (potential human impacts 
coverage (%))

Proportion (in percent) of a site that has potential human 
impacts, based on the multi-criteria decision analysis 
of 3D distances from sealed/unsealed roads and 
residential areas

To examine the degree or potential NZSL 
interactions with humans by roads 
and residential areas; to prioritise 
areas for community engagement and 
outreach

rd_sl_mi* (minimum sealed roads 
distance (3D; km))

Minimum 3D path distance (in km) of a site from sealed 
(paved) roads

To expand on the information from the 
multi-criteria decision analysis; vehicle 
collisions are a threat to NZSLs

rd_unsl_mi* (minimum unsealed 
roads distance (3D; km))

Minimum 3D path distance (in km) of a site from 
unsealed (unpaved) roads

See rd_sl_mi

fences The presence or absence of fences within a site To assess barriers that could not be 
included in the SDM; presence of 
fences implies that there is less 
suitable area available for the NZSL 
than predicted

graze_pc* (grazing grasslands (%)) Proportion (in percent) of a site that has high-/low-
producing grasslands for dairy and non-dairy grazing

See fences

Additional suitability

in_watr_mi* (minimum inland water 
distance (km))

Minimum Euclidean (straight line) distance of a site from 
inland water bodies (lakes, ponds, streams; excludes 
inlets)

To ground-truth the predicted sites; 
this SDM variable is limited because 
it is lacking inlets, which are also 
important for thermoregulation

in_watr_me* (mean inland water 
distance (km))

Mean Euclidean (straight line) distance of a site from 
inland water bodies (lakes, ponds, streams; excludes 
inlets)

See in_watr_mi

in_watr_mx* (maximum inland water 
distance (km))

Maximum Euclidean (straight line) distance of a site from 
inland water bodies (lakes, ponds, streams; excludes 
inlets)

See in_watr_mi

pine_pc* (pine forest (%)) Proportion (in percent) of a site that contains planted 
pine Pinus radiata forest (as of 2016)

To account for additional, non-native 
forest types that are preferred by 
recolonising NZSLs on the mainland

Locations of interest

curr_NZSL* (current New Zealand 
sea lion sites)

Names of known current (1990–2019) sites where 
females and/or pups have been sighted during the 
breeding season (December–March) that are within a 
10 km Euclidean (straight line) distance from a site

To investigate or ground-truth areas near 
where current management actions 
are taking place; optional suitable 
locations where NZSLs are likely to 
be found due to proximity to existing 
pupping sites

TA B L E  2   (Continued)

(Continues)
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limiting across S2 (n = 71) and S3 (n = 15) sites. S1 had a larger vari-
ety of limiting factors across sites compared to S2 and S3, which in-
cluded inland water distance (39 sites), coastline distance (27 sites), 
sand distance (15 sites) and slope (2 sites).

Across all predicted sites and state models, uncertainty in these 
predictions was low. CV ranged from 0.01% to 3.25%, with a mean 
± SD of 1.11 ± 0.38%, 0.46 ± 0.12% and 0.59 ± 0.28% for S1, S2 and 
S3, respectively (Appendix S6).

3.3 | Human impacts and supplemental 
evaluation features

Almost a third of the sites had the highest potential for human im-
pacts from residential areas and roads (MCDA score >0.4; 122 sites; 
Figure 5a), making the actual suitability of the predicted sites ques-
tionable. Only 69% of the sites were suitable for breeding colonies 
after these impacts were considered. South Island had fewer sites 

Data field name Description Management application

histr_NZSL* (historic New Zealand 
sea lion sites)

Names of known historic (archaeological) breeding 
sites identified in Childerhouse & Gales, 1998 and 
Collins et al., 2014 that are within a 10 km Euclidean 
(straight line) distance from a site

To use as reference if future actions 
lead to proactive measures such as 
reintroductions

DOC_code (DOC conservation area 
codes)

List of DOC conservation area codes within a site To query if sites are found within an area 
under other management priorities

DOC_name (DOC conservation area 
names)

List of DOC conservation area names within a site see DOC_code

DOC_size (DOC conservation areas 
size (km2))

Total size of DOC conservation areas within a site To assess how much of a site is already 
being managed for other purposes

DOC_pc (DOC conservation area 
coverage (%))

Proportion (in percent) of a site that is a DOC 
conservation area

See DOC_size

TA B L E  2   (Continued)

F I G U R E  3   Example screenshot of the interactive iSDMdb map and how to retrieve summaries for each predicted site, with data fields 
corresponding to descriptions in Table 2
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with potential human impacts than North Island (58 vs. 64 sites, re-
spectively). However, this accounted for 18% (56 km2) of the total 
predicted area in South Island, compared to 9% (42 km2) of the total 
predicted area in North Island.

Over half the predicted sites had unnatural barriers, con-
taining grazing grasslands (n = 268; Figure 5b), fences (n = 191; 
Figure 5c) or both (n = 189). With these features considered, the 
estimated sizes of at least 48% of these sites were thus poten-
tially less than predicted by the SDM. Grazing grasslands cov-
ered as much as 92% of a site's area in North Island (mean ± SD: 
19 ± 18%), and 60% of a site's area in South Island (mean ± SD: 
21 ± 16%).

Seventy-five percent of sites (n = 297) had sealed roads within 
2 km of them (Figure 5d). North Island had more sites with nearby 
sealed roads than South Island (177 and 120 sites, respectively). 
Most sites (86%; n  =  341) were within 2  km of unsealed roads 
(Appendix S7).

Although almost two-thirds of the total predicted sites contained 
some conservation areas (n = 251), the amount of coverage per site 
ranged from 0.01% to 100% (median 12.20%; Figure 5e). Only 18 
sites (5 and 13 in North and South Island, respectively) were mostly 
(80%–100%) protected.

3.4 | Sites near current breeding locations

We found 19 sites within 10 km of known current pupping locations 
(Figure 6), ranging from 0.4 to 3.76 km2 in size (Table 3). All areas 
had little to no uncertainty (CV < 1.85%) or extrapolation (MESS 
values between −100 and 100), except for site SSI-36 on Stewart 
Island. Most sites had sand distance as the most dissimilar variable, 
followed by slope. The most limiting factors across behavioural state 
models were sand and grass distances. Only three sites had poten-
tial human impacts according to the MCDA (ESI-21, ESI-24 and SSI-
24), but most sites contained unnatural barriers. All except five sites 
were partially protected.

4  | DISCUSSION

4.1 | Wider applications for an iSDMdb

We demonstrated how to create an iSDMdb that can be used by 
managers to inform their actions. SDMs alone can provide useful 
information to guide conservation efforts, but in practice, enabling 
their use by rangers and decision-makers is challenging. End-users 

F I G U R E  4   iSDMdb output of predicted breeding sites (a), and multivariate environmental similarity surface (MESS) classifications (b), 
most dissimilar variables (MOD) (c) and state model limiting factors (d–f) for each site. Predicted sites found within 10 km of known pupping 
locations are also indicated (a). See Table 2 for data field descriptions and interpretations
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may want to delineate manageable sites and systematically prioritise 
among them, which is difficult when providing only raw SDM pre-
dictions. Uncertainty also tends not to be brought to the forefront 
(either in model training or prediction), but is necessary for identify-
ing habitat limitations and restoration targets. Furthermore, human 
activities and barriers limiting predicted area availability cannot be 

sufficiently modelled in traditional SDMs for cases where training 
occurrences capturing these circumstances are lacking. Similarly, 
newly emerging habitat preferences or adaptations may not be ac-
countable in SDM training, but instead need to be considered post-
hoc. The iSDMdb incorporates such essential considerations and 
makes them easily accessible.

F I G U R E  5   iSDMdb output of predicted sites, with percent cover of human impacts (a) and grazed grasslands (b), presence of fences (c), 
minimum sealed road distance (d) and percent cover of conservation areas (e). See Table 2 for data field descriptions and interpretations

F I G U R E  6   iSDMdb subset of predicted 
sites located within 10 km of known 
current pupping locations, and areas of 
potential human impact from roads and 
residential areas (MCDA scores > 0.4)
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We also demonstrated the iSDMdb's use for a recolonising spe-
cies. The iSDMdb should be tested for species whose ranges are 
shifting due to climate change or other anthropogenic pressures, 
or expanding into historic or novel regions via natural or human-
mediated introductions. In climate change cases, for example, spe-
cies may not always change their geographical range, but rather 
their realised niche; as opposed to MESS/MOD, which better in-
form on extrapolation to novel geographical spaces, mechanistic, 
cause-effect models may be used and integrated into the iSDMdb. 
In many conservation cases, species' ranges are shrinking. For such 
species, and considering that SDM training and prediction areas may 
be equivalent, the iSDMdb may be helpful in the following ways: (a) 
monitoring extrapolation errors if species are rare, elusive or few oc-
currences are available (MESS/MOD); (b) supplementing SDMs with 
expert opinion on human impacts or with local ecological knowledge 
(MCDA); (c) instead of highlighting new behaviours in the novel pref-
erences in novel spaces step, making other habitat features of interest 
accessible for decision-making; and (d) extracting habitat patches 
from the SDM step, in conjunction with the restoration features data 
field, to examine possibilities for increasing population densities. In 
other applications, the iSDMdb can also be integrated with outputs 
from additional models, such as those that limit predicted suitable 
habitat extents due to dispersal or barriers (Engler et al., 2012), or 
statistical or simulated models of human interactions (Arenas-Castro 
& Sillero, 2021). As an open-source tool, there are many possibilities, 
so we encourage using only relevant portions or expanding the iSD-
Mdb as needed.

Our example of the iSDMdb process and its evaluation demon-
strates the value of discussing SDM development steps with con-
servation decision-makers and rangers. We supplemented our 
SDM prediction with evaluations we would not have otherwise 
included (e.g. MESS, limiting factors, barriers that could restrict 
the predicted sites' actual size), providing more practical results 
to conservation practitioners than many previous SDM studies. 
Syntheses of SDM studies remark that many SDM products for 
conservation or management applications lack transparency and 
interpretation support, and do not effectively communicate uncer-
tainty (Araújo et al., 2019; Guisan et al., 2013; Sofaer et al., 2019; 
Villero et al., 2017). Our study demonstrates how to, respectively, 
address these issues by providing a clear guide on how the data-
base was created and could be evaluated (Table 1; Appendices S1–
S8), explaining how each data field applies to the management of 
our case study species (Table 2), and by incorporating model un-
certainty and restoration features within the database (Figure 2). 
Interpretation support was especially paramount, as understanding 
each assessment's purpose, assumptions and raw outputs could be 
incredibly time-consuming. We demonstrate these simplifications 
in r (Appendices S5 and S6) and encourage future studies to follow 
suit. Appendix S8 demonstrates how the iSDMdb could be queried 
and further analysed. As the iSDMdb was created using flexible, 
open-source tools, additional assessments can be appended to it 
over time as other data become available and priorities or concerns 
shift (e.g. prey availability).

The most successful conservation outcomes from research build 
trust, collaborate, embrace different perspectives and diversify 
communication with stakeholders (Gerber et al., 2020). Our iSDMdb 
inherently requires engagement with rangers and decision-makers 
through multiple steps in the database-building process. Efforts 
should also be made to prepare results in multiple, accessible for-
mats, and researchers should be aware of end-users' varying levels 
of experience in using such formats. Here, we presented the iSDMdb 
to our end-users as GIS shapefiles, spreadsheets, printed maps and 
an interactive map, along with an interpretation guide. A variety of 
formats allows for a range in exploration, from a general overview 
(Figures 3–6) to a more detailed analysis (Appendix S8).

There are limitations to the simplifications used to construct the 
final database. The first is converting SDM predictions into polygons 
of predicted sites. These polygons were created by identifying con-
tiguous suitable pixels to meet the minimum area sizes. If species' 
movement does not require habitat contiguity, other ways of creat-
ing polygons can be used, such as a moving window analysis within a 
given dispersal distance (e.g. range module in Frans et al., 2018b). The 
boundaries, sizes and existence of these sites for ≥35 females de-
pended on SDM threshold choice. As an exploratory study, we chose 
a conservative threshold, allowing us to identify more sites. Where 
the management intention is to specifically allocate resources or ef-
forts to all identified sites, stricter or multiple thresholds should be 
used (Liu et al., 2005, 2013). These polygons should also be validated 
with the best available information, local knowledge or ground-
truthing with experts on species' behaviours. For the human impact 
areas, we used thresholds based on expert opinion; when possible, 
statistical thresholds are preferred, especially if statistical or simu-
lation models of human interactions are implemented (e.g. Arenas-
Castro & Sillero, 2021).

Some information from the other assessments was also lost 
when integrated into the predicted site polygons. The multi-state 
SDM, MESS, MOD, limiting factors, CV, MCDA and distance fea-
tures were all raster analyses, having gradients of values at every 
pixel. These assessments for each site thus had ranges of values that 
we summarised as means, minima, maxima and/or modes. To our ad-
vantage, however, this format ensured the iSDMdb's accessibility to 
all end-users. The simplifications allow for end-users to easily view 
results at the national scale (Figures 4 and 5), and, when accompa-
nied with a guide (Table  2), easy interpretation without requiring 
that end-users have technical understandings of SDMs, MCDAs or 
any of the other methods. For sites where further raster evaluations 
are needed (especially in determining the spatial extent of limiting 
factors within sites, or ground-truthing), raw outputs can be made 
available to end-users by appending them to the HTML version of 
the iSDMdb.

While we listed some limitations in the iSDMdb's simple for-
mat, from the practical conservation and management perspective, 
these same limitations become strengths, as they bring SDM out-
comes closer to real-life applications. Continuous SDM predictions—
especially at large, national scales and fine resolutions—can be 
difficult to interpret, and choices in how continuous values are 
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visualised (e.g. value breaks, colour schemes) can mislead an end-
user (Brewer & Pickle, 2002; Crameri et al., 2020). Thus, a simplified 
format, along with an interpretive guide and direct engagement with 
species experts, rangers, and decision-makers, enhances the data-
base's ultimate utility.

4.2 | The iSDMdb's place among other decision-
support tools

While similar to other spatial, integrative conservation decision-
support tools (e.g. Marxan, Zonation), the iSDMdb differs in mul-
tiple ways. First, previous studies emphasise advantages in using 
SDMs for delineating conservation prioritisation areas (Di Febbraro 
et al., 2018; Domisch et al., 2019). Many decision-support tools and 
integrative modelling processes use custom algorithms that may 
or may not use species occurrence data to determine important 
sites, and others require that conservation units be defined prior 
to assessment (Domisch et al., 2019; Regos et al., 2021; Williams & 
Hooten,  2016). The iSDMdb, however, centres conservation units 
on the species of interest's occurrences and ecological niche (also 
see Johnson & Gillingham, 2005). It can be used with any SDM al-
gorithm, allowing for robust model selection procedures and other 
tests to take place prior to input. Ensemble models can also be used.

Second, as an extended assessment of habitat suitability, the 
iSDMdb is easily customisable. Our example case resulted in 34 data 
fields, but more data fields can be added in future studies. For ex-
ample, the iSDMdb can bring attention to multiple kinds of uncer-
tainty. Here, we used CV, MESS and MOD, but other SDMs such as 
generalised linear models or Bayesian hierarchical models (e.g. occu-
pancy models, spatial abundance models; Kéry & Royle, 2018) can 
report uncertainties such as confidence or credible intervals, sample 
bias grids, detection probability or other extrapolation assessment 
methods (Conn et al., 2015) into the iSDMdb (Burgman et al., 2005; 
Elith & Leathwick, 2009; Nicholson & Possingham, 2007). Minimum 
and maximum probabilities across multiple SDM iterations can also 
be integrated. If an ensemble SDM is used, areas of disagreement 
among SDMs can be highlighted.

Finally, combined SDM/expert-opinion methods are available (e.g. 
Anadón et al., 2010; Bélisle et al., 2018; Luizza et al., 2016); however, 
such existing frameworks are designed for scenarios where habitat 
features of concern exist within the model training area (where the 
species is currently present). Here, we demonstrated a way for the 
iSDMdb to help when features in a model prediction area vastly differ 
from or are non-existent in a model training area, which can apply 
to the circumstances of many range-shifting or -expanding species.

4.3 | The case of the NZSL and recommendations 
for management

As the NZSL recolonises the mainland, there are many concerns 
decision-makers must address. Among them, predicting sites where 

the NZSL could recolonise seems simple, given the robust amount of 
existing habitat suitability modelling methodologies. However, tradi-
tional SDMs need to be supplemented to make them more practical 
because anthropogenic variables are absent from current breeding 
colonies but will impede NZSLs in their predicted range (e.g. roads, 
fences, residential areas), and because non-native habitat variables 
are absent from current breeding colonies but are potentially benefi-
cial in the predicted range due to the unavailability of native habitat 
in some areas (e.g. pine forests).

Providing end-users with only the resulting mapped sites from 
the SDM step would have been insufficient for informing this spe-
cies' conservation. End-users were concerned about model uncer-
tainty, whether the SDM gives guidance for habitat restoration 
priorities, and human impacts that could not be modelled in the 
SDM. Incorporating such features showed that the actual availabil-
ity of almost 90% (n = 358) of the predicted sites was conditional on 
these additional iSDMdb features.

There were many predicted sites on North Island (Figure 4), de-
spite this number being lowered by human impacts (Figure 5). Current 
management efforts focus on known, newly existing pupping sites on 
South Island and Stewart Island (Department of Conservation, 2017). 
Including North Island provides information for future measures that 
have not yet been considered (e.g. reintroductions).

The MESS evaluation indicates little to no risk of extrapolation in 
SDM predictions for the current areas of focus in South Island and 
Stewart Island; most predicted sites were similar to the model training 
area (Table 3). Across behavioural states, distance from grasslands was 
the most limiting variable for most South Island sites. Yet, the impor-
tance of grass or sward for S2 may be unique to Sandy Bay, and per-
haps not worth emphasis for restoration. Site limitations for S1 and S3 
should thus be the focus of restoration activities. Management should 
especially focus on areas where sand distance and slope are the most 
limiting variables, as invasive plants (e.g. marram grass Ammophila are-
naria) are altering sand dunes across New Zealand (Hilton, 2006).

Another utility of our results lies in community engagement 
and outreach. While we found many predicted sites throughout 
the mainland, the true availability of most sites relies on the NZSL's 
reception by surrounding communities. Fencing from grazed grass-
lands could limit females' inland movement into forests, and females' 
damage of fences to gain access could cause conflicts with landown-
ers. Privately-owned coastal pine forest plantations are currently an 
important habitat on the mainland because there is very little rem-
nant coastal native forest. When these plantations are cut, they will 
be unavailable for any establishing NZSLs during S3. Rangers and 
decision-makers should therefore engage with landowners about 
the NZSL as it recolonises, and a focus on restoring native coastal 
forests at key sites should be investigated.

5  | CONCLUSIONS

As species' ranges change, management-oriented studies and re-
sults are needed to aid conservation practitioners in biodiversity 
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protection and recovery efforts. Using habitat suitability models 
such as SDMs can be challenging when landscapes have natural or 
unnatural features that vastly differ from their current range. As a 
result, SDM realism becomes questionable. We demonstrate how 
additional assessments consolidated into an iSDMdb can account for 
such issues in predicted ranges. In such cases, including stakehold-
ers, rangers and decision-makers is invaluable for identifying and 
integrating components that traditional SDMs may omit and for pro-
viding that information in a practical, accessible manner.
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