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A B S T R A C T   

Agent-based modeling (ABM) has been widely used in numerous disciplines and practice domains, subject to 
many eulogies and criticisms. This article presents key advances and challenges in agent-based modeling over the 
last two decades and shows that understanding agents’ behaviors is a major priority for various research fields. 
We demonstrate that artificial intelligence and data science will likely generate revolutionary impacts for science 
and technology towards understanding agent decisions and behaviors in complex systems. We propose an 
innovative approach that leverages reinforcement learning and convolutional neural networks to equip agents 
with the intelligence of self-learning their behavior rules directly from data. We call for further developments of 
ABM, especially modeling agent behaviors, in the light of data science and artificial intelligence.   

Although agent-based modeling (ABM; ABMs for agent-based 
models) emerged as early as the 1970s (Schelling, 1971) or even 
earlier (W. Zhang et al., 2021), it has been extensively applied in ecol
ogy, where it is usually referred to as “individual-based modeling” 
(Grimm, 1999), and numerous other disciplines since the 1990s (Vin
cenot, 2018). Subsequently, ABM has exploded in applications (Fig. 1), 

an indication of its usefulness across multiple sciences. Milestones in 
ABM development include the Overview, Design concepts, and Details 
(ODD) protocol for the model documentation (Grimm et al., 2010, 2020) 
and the Pattern-Oriented Modeling (POM) paradigm (Grimm et al., 
2005). ABM received a major institutional endorsement in 2001 when it 
was featured by the U.S. National Academy of Sciences’ Sackler 

Abbreviations: ABM, Agent-base modeling; AI, Artificial intelligence; RL, Reinforcement Learning; GNN, Graph Neural Networks; CNN, Convolutional Neural 
Network. 
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Colloquium and the resultant special issue in the Proceedings of the Na
tional Academy of Sciences (Bonabeau, 2002). Since then, ABM has been 
hailed with both enthusiasm and optimism because of its potential to 
create a “revolution” among the social, ecological, behavioral, and 
complexity sciences. 

Yet, progress has been slower than initially anticipated in several 
critical areas of development and application (Grimm and Berger, 2016; 
Lorscheid et al., 2019), leading to various criticisms of ABM (Couclelis, 
2002; Roughgarden, 2012). This slower progress, likely leading to the 
fade of enthusiasm in ABM, is embedded in the context of a big issue for 
ABM or any process-based modeling effort: the need to balance 1) the 
pattern-informed, top-down approach, which reproduces macro-level 
patterns without adequate explanatory power, such as the well repro
duced flight patterns of hawks without an explanation of the mecha
nistic processes behind the patterns (Conte and Paolucci, 2014); and 2) 
the theory-driven approach, which aims at generating macro-patterns 
from bottom-up processes. ABM developers aim to not only accurately 
predict or replicate the observed patterns in question, but also to un
derstand and explain the mechanisms behind such patterns. 

In this paper, we propose a third approach, based on artificial in
telligence (AI) and data science, to detect, formulate, and test mecha
nistic processes (e.g., structures, rules, parameters) that complement the 
above two traditional approaches. The paper first briefly reviews his
toric advances in modeling human behavior, followed by an overview of 
the challenges of modeling agent/human behavior. Next, we show how 
artificial intelligence and machine learning, in combination with data 
science, can help reveal mechanistic processes and model agent/human 
behavior. In the Appendix, we provide more details about the most 
promising methods in relation to what we propose in this paper. 

1. Background about modeling agent/human behavior in ABM 

Historically, modeling agent/human decision-making and behavior 
in ABM was largely based on economic theories, such as benefit maxi
mization or cost minimization by rational actors, and largely ignored 
other approaches, such as those in psychology and neurology (Groene
veld et al., 2017). Advances in relevant social and cognitive sciences 
have greatly enhanced the capacity of ABM to model agent (human in 
particular) behavior (Filatova et al., 2013; Niamir et al., 2020), gener
ating normative models, cognitive models, and psychologically (espe
cially emotional models) and neurologically inspired models that are 
instrumental for understanding and modeling human behavior (for 
excellent review papers, see (Balke and Gilbert, 2014), (Huber et al., 

2018), and (Bourgais et al., 2018)). 
Along this thread, one prominent example is the Belief-Desire- 

Intentions (BDI) framework. Inspired by logical and psychological 
principles (e.g., Michael Bratman’s theory of human practical reasoning; 
Bratman, 1999), the BDI framework models practical reasoning and 
subsequent action of resource-bounded, rational agents. These agents 
carry 1) beliefs, which are facts agents believe about the environment, 2) 
desires, which involve desired end state or goals to achieve; and 3) in
tentions, which are intended commitments to accomplish the corre
sponding desires (goals). Under this framework, intentions are 
important elements and precursors of planned actions. Considered an 
improvement compared with the BDI framework, the physical, 
emotional, cognitive, and social factors (PECS; Conte & Paolucci, 2014; 
Schmidt, 2002) framework aims to explain or predict human behavior 
from a common deep structure, which has four fundamental elements: 
physical conditions, emotional state, cognitive capabilities, and social 
status. Once a PECS deep structure is constructed and tested as a refer
ence model for real systems or agents, various superficial qualities can 
be imposed on the structure to represent a set of local, heterogenous 
characteristics and better predict the behavior (Schmidt, 2002). 

2. Challenges in modeling agent behavior 

ABM faces several major challenges, detailed in Appendix 1 and 
several assessments (An et al., 2021, a b; Crooks et al., 2008; McDowall 
and Geels, 2017; O’Sullivan et al., 2016). These challenges arise from 
ABM’s greater complexity in comparison to traditional models (Sun 
et al., 2016), which is the price paid for ABM’s superior flexibility and 
capacity to capture the corresponding processes or mechanisms (Fila
tova et al., 2013). ABMs tend to be “data-hungry” and difficult to un
derstand. Common solutions deployed to date include simplifying 
assumptions, theoretical representation of processes, and inverse 
parameterization using sets of observed patterns. Among all challenges 
that ABM faces, we highlight the seriousness of two related problems: 
equifinality and multifinality. ABM suffers from these two problems, 
although we acknowledge that they are not endemic to ABM, but involve 
any mechanistic modeling efforts. 

The equifinality problem may blind the true pathway or mechanistic 
process that generates the observed macro-level pattern or outcome 
because the end state can be reproduced through multiple pathways 
(von Bertalanffy, 1968). For example, the Prisoner’s Dilemma can be 
related to several seemingly plausible mechanisms, including group 
selection (Di Tosto et al., 2007), strong reciprocity (Boyd et al., 2003), 
tit-for-tat retaliation (Axelrod, 1997), and others (Conte and Paolucci, 
2014). While equifinality may be considered a “curse” by way of the 
processes involved in the outcome, it may also be viewed as a “blessing”, 
providing a means to explore alternative explanatory pathways and 
falsification of existing theories. Such exploration is facilitated when 
data at multiple spatial, temporal, or organizational scales are available 
to filter out those theories that cannot explain all patterns simulta
neously (the pattern-oriented modeling framework (Grimm et al., 
2005)). 

A related challenge is the multifinality problem, in which the same 
causes and/or starting conditions give rise to very different trajectories 
or ultimate outcomes. This problem may arise from uncertainties in key 
processes and/or parameters. A related challenge is that verbally 
formulated theories of agent behavior often leave too much room for 
interpretation when it comes to formalize them in an ABM so that 
different implementations of the same theory can lead to different re
sults and conclusions (Muelder and Filatova, 2018). 

To demonstrate ABM’s unmatched potential to provide (alternative) 
pathways or mechanisms for explaining or predicting observed patterns 
as well as the need to handle the equifinality problem, we provide an 
exemplar ABM that aims at understanding the dynamics of firms in the 
U.S. (Axtell, 2001, 2015). The ABM—with absence of many parameters 
and assumptions included in traditional economic models—is sufficient 

Fig. 1. ABM-related papers in comparison with papers related to differ
ential equations. The y axis is the ratio of the number of ABM papers vs. that 
of the differential equation (D.E) papers. For related data collection, see An, 
Grimm, Sullivan, Turner II et al. (2021)b. 
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to endogenously produce the kinds of macro-pattern dynamics in firm 
sizes, ages, growth rates, job tenure, wages, networks, and so on that 
agree with empirical data (Appendix 2). 

This seemingly “successful” ABM, though providing unique, useful 
mechanisms, can still be questioned due to the equifinality problem. To 
break new ground for improving the science and art of modeling agent 
decision and behavior, approaches for systematic ABM development and 
testing, such as the “MoHuB” (Schlüter et al., 2017a) and “POM” 
(Grimm et al., 2005) frameworks, have been suggested. In addition, we 
have developed a set of guidelines for modelers and reviewers and for 
novices (An, Grimm, Sullivan, Turner II et al., 2021b), which include a 
comparison of commonly used ABM toolkits and software packages (An, 
Grimm, Sullivan, Turner II et al., 2021b) given the existence of 85+
platforms or toolkits for ABM (Abar et al., 2017). Also, we promote more 
effective ABM education and communication through several means, 
such as developing and sharing curricula, promoting the reusability of 
ABM modules (e.g., ABM “Lego” or “Mr. Potatohead” pieces), and 
engaging a broader ABM community in collaborative education efforts 
(An, Grimm, Sullivan, Turner II et al., 2021b). 

These and other endeavors, though useful, have their own limita
tions. We therefore propose a new pathway for modeling agent decisions 
and behavior, which is based on artificial intelligence (AI) and data 
science. Over the last decade or so, AI, data science, and their applica
tions for ABM have led to a critical mass of tools, applications, and in
sights so that the potential of this new pathway has become clearly 
visible. This paper focuses on data collection, processing, and methods 
or algorithms that support modelling decisions and behavior, recog
nizing the importance of other important issues such as verification of 
the mechanisms or rules thus derived. 

3. Opportunities from artificial intelligence and machine 
learning 

Traditional artificial intelligence leverages machines to understand 
and mimic human intelligence. Machine learning, an essential element 
of artificial intelligence, can be as simple as standard linear regression 
models. On the other hand, machine learning can leverage more 
advanced models and reveal non-linear, complex processes through, for 
example, neural networks, genetic algorithms, decision trees, naive 
Bayes, and Bayesian networks. For instance, the data-driven agent-based 
crowd model by Tan et al. (2019) adopts a standard differential evolu
tion genetic algorithm to calibrate model parameters (e.g., pedestrian 
speed, turn angle) based on video and virtual reality (VR) experiment 
data. In a study that features a data-driven agent-based model (Taghi
khah et al., 2022), machine learning is leveraged to identify automati
cally the causal relationships and derive decision rules for agents from 
microdata on behavior. Furthermore, machine learning can be 
employed to detect patterns in model output, which may help to eval
uate the robustness of the model. Below we focus on illustrating the 
usefulness of neural networks. 

Inspired by the structure of human and animal brains, neural net
works have emerged as one of the most versatile algorithms in machine 
learning. Neural networks are increasingly employed in consequential 
decision-making processes in many domains such as banking, medicine, 
and criminal justice. By 2030, artificial intelligence could boost the 
global economy by $15.7 trillion, which includes massive decisions 
made by neural networks (West and Allen, 2018). The huge explosion of 
neural networks presents an unparalleled opportunity to augment in
dividual human life, learning, intelligence, and productivity. 

A neural network consists of layers of nodes that are connected by 
links. Here, nodes may be interpreted differently, which may be analo
gous to agents in the context of complex systems, variables, or decision 
points (Abdulkareem et al., 2019), while links could be agent-agent or 
agent-environment relationships (Cranmer et al., 2020; Kipf and Well
ing, 2016). As input data are fed into the machine learning algorithm(s), 
nodes receive messages from parent (sending) nodes and pass messages 

to their child (receiving) nodes, depending on whether some conditions 
are met. With sufficient data and an appropriate model structure, the 
trained models can offer high predictive power, offering significant 
opportunities to calibrate and/or validate ABMs. For instance, modelers 
can assign and implement each agent with its own unique regression 
equation or neural network (H. Zhang et al., 2016). Then the process of 
understanding and envisioning agent behavior entails optimizing the 
regression equations or neural networks for all the agents (see the 
example below). Models trained in this way—the behavior rules of 
agents in particular—are relatively rare for many reasons, such as the 
difficulty of independently training a large number of convolutional 
neural networks. 

Another critical issue concerning neural networks centers on the 
difficulty of interpretation: such models are often like a “black box”, 
offering little or no understanding of the mechanisms governing the 
processes. Below we propose a reinforcement learning (RL) plus con
volutional neural network (CNN) based approach (i.e., RL-CNN 
approach) to equip agents with the intelligence of self-uncovering and 
self-learning behavior mechanisms instead of relying on the modeler to 
“hardcode” (W. Zhang et al., 2021) behavioral rules beforehand. Among 
the three ways machine learning can contribute to ABM analysis (i.e., 
prior to running the ABM, during the running of the ABM, and post 
running the ABM to analyze ABM output (Abdulkareem et al., 2019)), 
the one related to empowering agents to self-learn and formulate 
mechanisms during the running of the ABM is most challenging (e.g., 
computationally intense) and promising. The most common practice is 
that ABM modelers hardcode agents’ behavioral rules prior to running 
ABM (W. Zhang et al., 2021). In a recent multi-agent model integrated 
with reinforcement learning, effective preventive maintenance policies 
(i.e., rules governing agent actions) can be learned directly from data 
without any knowledge about the environment and maintenance stra
tegies, ensuring smooth and efficient production for large-scale 
manufacturing systems (Su et al., 2022). 

Traditional machine learning is powerful in understanding and 
simulating agents decision-making and behavior, but tends to suffer 
from insufficient data and/or data-handling capabilities (Gil and Sel
man, 2019) to identify the correct model structure and parameters and 
therefore appropriately calibrate ABMs (Srikrishnan and Keller, 2021). 
The advent of data science and its methods, tools, and data in
frastructures has powerfully enriched machine learning to derive pro
cesses behind patterns of interest, verifying or rebutting the underlying 
hypothetical mechanisms behind such patterns. Reinforcement learning 
(RL), through a certain set of reward and/or penalty rules, is a promising 
tool in this regard (Su et al., 2022). Specifically, RL can be assigned to 
the agents under investigation. With little or no pre-knowledge about 
such mechanisms, RL-enabled agents can “learn” the best behavioral 
rules from data so that the learned “rules” can maximizes the RL’s 
reward (or minimize the penalty) when dealing with other agents and 
the environment. One successful RL application is the multi-agent 
reinforcement learning (MARL) (Buşoniu et al., 2010), under which a 
computer Go program called AlphaGo is developed and can beat a 
human professional player on a full-sized board (Silver et al., 2016); 
recently a newer version called KataGo can even beat world-class human 
Go players (Edwards, 2022). 

Take an example of theorizing from (or seeking mechanisms of) 
animal behavioral science as shown in Fig. 2. We begin with RL without 
pre-knowledge or hypothesis on the mechanisms (the term mechanism is 
often called policy in the Machine Learning domain). As data (Panel A) 
are used as input to train the RL neural network (a built-in capacity of 
each agent; Panel B), the agent’s RL neural network can then learn and 
establish a set of nodes and links, which can maximize the reward 
function with compliance to the state (for detail about state see Ap
pendix 4). To reveal the thus established, yet hidden nodes and links, a 
regression tree (Panel C) can be used to “translate” them into a set of 
visible decision tree links (arrows in Panel C) and nodes (e.g., C1, C2 … 
d3 in Panel C). In turn, these nodes and links in the decision tree, with 

L. An et al.                                                                                                                                                                                                                                       
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the aid of domain knowledge, can be used and interpreted as meaningful 
and understandable mechanisms (Panel D), helping theorize and un
derstand the processes generating the macro patterns (e.g., data in Panel 
A). Alternatively, the above process may start with Panel D, where we 
have pre-knowledge or hypotheses regarding the mechanisms of interest 
that need to be verified or polished. In this case, the RL process starts 
from both data (Panel A) and such specified mechanisms (Panel D), 
where the dashed arrow indicates the “extra” input to train the RL 
network in Panel B. All the remaining steps remain the same as above. 
The outcome is that the pre-knowledge or hypotheses regarding the 
mechanisms—including parameters and structure—may be partially or 
fully modified according to the nodes and links obtained in the decision 
tree. For instance, the parameter 15 km in Panel D may be changed to be 
20 km, and “Go to lake” to “Stay where it is”. 

The above example takes the data for granted, which may or may not 
reflect the actual conditions. We may leverage a so-called convolutional 
neural network (CNN), a data extraction method (see Appendix 3 for 
detail), to prepare data that are useable in the above RL procedure 
(Fig. 2). In the above example, CNN can be leveraged to identify/detect 
animals based on images from different sources (e.g., GPS collars or 
drone imaging). 

The RL-CNN approach, though promising and exciting, does not 
imply that AI, machine learning, and data science are not unbiased, nor 
does it exhaust the potentials that AI and machine learning can 
contribute to modelling agent behavior. First, we still emphasize the 
importance of domain knowledge and theory that are obtained else
where (Taghikhah et al., 2022). The mechanism specification in Panel D 
of Fig. 2, if employed as a starting point for RL network (Panel B), re
flects this importance. The mechanisms or rules thus derived—for 
example, cause-effects and feedback loops in many instances—should be 
subject to continued examination by domain knowledge and theory. 
Also, as new data become available, the above RL-CNN or other ap
proaches should be continually used to polish or revise existing rules, 
even establish new rules. Therefore, continuous real-time data collection 
is important for not only deriving, but also for validating and renewing, 
such rules. The concept of “Digital Twins” (DT) is based on this idea of 
updating, in regular intervals, the data underlying a realistic model used 
for forecasting. This principle is well-known from weather forecast and 
widely used in industry (Singh et al., 2022), but has also become the 
basis of large initiatives to support decision making regarding climate, 
ocean, and biodiversity, such as the Destination Earth program of the 
European Commission (Nativi et al., 2021). 

While neural networks and RL are among the most flexible and 
powerful tools, there are many other useful AI and machine learning 
algorithms. For instance, it is reported that Bayesian networks (Abdul
kareem et al., 2019) and artificial neural networks (van der Hoog, 2019) 
represent viable alternatives for small training datasets. Such alterna
tives are illustrated here by an example regarding Graph Neural Net
works (GNNs), which have recently emerged to link nodes horizontally 
and improved predictive tasks. In this context, a graph is a structure 
(frequently a mathematical function) that models pairwise relations 
between nodes, in which all nodes (agents) are connected by edges or 
links. In one recent application, GNN was leveraged to derive success
fully the closed-form, symbolic expression of Newton’s law of motion 
based on data from the experiment. Simply put, the machine-mining 
approach can be used to exactly “recover” Newton’s formula F =

G m1m2
r2 without any previous clue or assumption regarding its form. Note 

that F, G, m1, m2, and r represent the force between Particles 1 and 2, the 
gravitational constant, the mass of Particle 1, the mass of Particle 2, and 
the distance between the two particles (Cranmer et al., 2020). This 
success has boosted AI’s potential to recover laws or mechanisms in 
other domains: we present a potential way, as an example, to recover 
mechanisms or behavioral rules in agent-based complex systems (see 
Appendix 5). 

4. Opportunities from new forms of data 

Traditional AI’s capability to nourish ABM rules is also constrained 
because new forms of data, including data in high volumes, are either 
unavailable or too difficult to handle using traditional data processing 
and analytic methods. In applications, machine learning will be much 
more empowered if aided with some non-traditional datasets such as big 
data or qualitative data. Such challenges are effectively addressed with 
recent advances in data science. 

Big data have several unique features that distinguish them from 
traditional data, largely in terms of huge volume, high velocity, wide 
variety, variable veracity, and value. Big data are increasingly nour
ishing quick detection and understanding of processes or patterns in 
many scientific fields (De Mauro et al., 2016). On the other hand, 
qualitative data could provide essential insights into understanding the 
above processes or patterns. Qualitative data take the form of text, im
ages, videos, audio documents, and the like. Yet both big data and 
qualitative data are very different when compared to such traditional 
data as census data and survey data (Marcus, 2018). 

Fig. 2. Illustration of reinforcement learning in deciphering animal behavior rules under various environmental conditions. The node “if distance to water 
<15 km” (within the blue box in Panel D) comes from the multiple nodes and links in the blue area of Panel C. 

L. An et al.                                                                                                                                                                                                                                       
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For example, in an instance of social-sensing analysis of the impacts 
of disasters (C. Zhang et al., 2020), Twitter data are used to reveal the 
dynamic emotions, e.g., disgust, fear, joy, sadness, anger, and surprise, 
in relation to a hurricane outbreak and related rescue activities in 
Houston, TX during August 25–30, 2017. Numeric emotion scores are 
derived from tweets describing certain types of events (e.g., help and 
rescue events) or flood-control infrastructures. These emotion scores, 
expressed as the relative abundance of words related to a certain 
emotion out of all words, can be used to verify or debut related ABM 
rules or outcomes (C. Zhang et al., 2020). Such data can also help in the 
above mechanism retrieval steps. For instance, the emotional scores can 
help at Step #1 (see Appendix 5) by ruling out some unrealistic func
tions, or at Step #3 by casting out unreasonable outcomes (and the 
corresponding functions at Step #1). 

5. Conclusion 

With the advent of the digital industrial revolution, new technologies 
and data forms are exploding in biophysical, human, Anthropocene, and 
many other realms. Among these, artificial intelligence and data science 
(machine learning in particular) should be among the top priority areas 
for future research, which will likely bring in revolutionary impacts on 
the science and technology addressing agent decisions and behaviors in 
complex systems. It must be pointed out that we do not downplay the 
importance of traditional scientific investigations and the related find
ings. On the contrary, the artificial intelligence and data science 
approach should build on and complement such traditional in
vestigations through, for example, experimenting, fieldwork, inductive 
and deductive reasoning, hypothesis testing, and theorization, and vice 
versa. For instance, the data (Fig. 2A) and pre-knowledge/hypotheses 
(Fig. 2D) may come from traditional investigations. 

At the same time, it is worth emphasizing the unique potential of this 
artificial intelligence and data science approach to detecting internal, 
theory-relevant mechanisms. For instance, the links and nodes in the 
decision tree (Fig. 2C), “translated” from the hidden network (Fig. 2B), 
may reveal unique factors, structures (e.g., causal relationships), and 
parameter values (Fig. 2D) that would not be imagined and/or included 
in traditional scientific investigations and will likely be used to stimu
late/formulate new theory development or improve an existing theory. 
We do not intend to say that such factors, structures, and parameters are 
completely free of bias and “right”. Instead, we seek to provide alter
native (related to traditional scientific investigations) thinking and 
modeling choices. Therefore, these innovative approaches will likely 
pave unprecedented ways for not only formulating agent behavior 
mechanisms or rules, but also forming new, more robust theories or 
rebutting existing theories (thus making equifinality less problematic). 
This approach may also be conducive to better understanding “com
monalities and differences between theories” and addressing the “degree 
of formalization” problems (Schlüter et al., 2017b). 

There is abundant literature regarding pathways to “uncover” or 
formulate mechanisms or rules behind agent behavior or decisions, such 
as the Inverse Generative Social Science (Vu et al., 2019) and the Mr. 
Potatohead (Parker et al., 2008) frameworks. Correspondingly, there 
exist a large amount of AI and data science tools, algorithms, or models 
we can leverage; for good reviews in this regard, we refer to W. Zhang 
et al. (2021). In the context of such literature and tools, this paper does 
not seek to provide a comprehensive review of them. Instead, we aim to 
call for more attention and efforts towards uncovering agent decision 
and behavior mechanisms in the light of data science and artificial in
telligence. Towards using and advancing this AI and data science 
approach, barriers may exist for many reasons, such as its demanding 
computational power, difficulties in multi- and inter-disciplinary 
learning, conversing, and understanding, and coding some vague theo
retical frameworks (Muelder and Filatova, 2018). However, we envision 
this approach will be increasingly recognized, used, and advanced in 
many aeras of research and practical applications related to 

understanding agent behavior and decision-making. 
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