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A B S T R A C T   

Humanity is facing many grand challenges at unprecedented rates, nearly everywhere, and at all levels. Yet 
virtually all these challenges can be traced back to the decision and behavior of autonomous agents that 
constitute the complex systems under such challenges. Agent-based modeling has been developed and employed 
to address such challenges for a few decades with great achievements and caveats. This article reviews the 
advances of ABM in social, ecological, and socio-ecological systems, compare ABM with other traditional, 
equation-based models, provide guidelines for ABM novice, modelers, and reviewers, and point out the chal-
lenges and impending tasks that need to be addressed for the ABM community. We further point out great op-
portunities arising from new forms of data, data science and artificial intelligence, showing that agent behavioral 
rules can be derived through data mining and machine learning. Towards the end, we call for a new science of 
Agent-based Complex Systems (ACS) that can pave an effective way to tackle the grand challenges.   

1. Agent-based complex systems 

Agent-based complex systems (ACS), largely equivalent to complex 
adaptive systems, often include heterogeneous subsystems, autonomous 
entities, nonlinear relationships, and multiple interactions among them 
(Arthur, 1999; Axelrod and Cohen, 1999; Crawford et al., 2005; Levin 
et al., 2013). Individual actors make decisions and interact with one 
another or with their local and/or remote environment, giving rise to or 
shaping emergent outcomes which in turn affect the agents’ behaviors 
and interactions (Coleman, 1987; Railsback and Grimm, 2012). Such 
systems may bear complexity features such as path-dependence, 

contingency, self-organization, and emergence not analytically tractable 
from system components and their attributes alone (Bankes, 2002; 
Manson, 2001; National Research Council, 2014). 

A large amount of efforts have been invested in exploring complex 
systems (Axelrod and Cohen, 1999; Grimm et al., 2005; Helbing et al., 
2015; Levin et al., 2013, 2012; Manson, 2001) and the corresponding 
methods and tools (Cardinot et al., 2019; Kravari and Bassiliades, 2015; 
Railsback et al., 2006) from scientists of various backgrounds. In 
biology, cell simulation has included thousands of genes and millions of 
molecules (Karr et al., 2012). In chemistry, complex molecules have 
been investigated digitally in terms of their structure and properties 
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before they are manufactured in the lab (Lewars, 2011). In climate 
science, the whole Earth models couple atmospheric and ocean circu-
lation dynamics to study global warming at ever-finer spatiotemporal 
resolution (Lau and Ploshay, 2013). Particularly worth of mention is the 
contribution from physics, which—traditionally using the language of 
mathematics—focuses on theory and empirics (e.g., experiment results). 
Later on, physicists started to define and leverage complex systems 
theory as they were engaged in explaining deterministic chaos, quantum 
entanglement, protein folding, spin glasses, etc. The system behavior 
crucially depends on its details such as interactions between constituent 
parts, which lead to collective behavior and define the macro-state 
(Perc, 2017). The macro-state would in turn affect the states of con-
stituents and interactions, making them co-evolve over time. All such 
observations and explorations, especially those in statistical physics and 
quantum mechanics, have substantially nurtured the growth of complex 
systems theory. For detail on the contribution of physics in complexity 
science, we refer to a review article (Holovatch et al., 2017). Also studies 
of complex adaptive systems have benefited from—and are instrumental 
to—efforts in understanding global macroeconomic network, stock 
market, political parties, social insect colonies, immune system, and 
internet connections (An et al., 2020; Axelrod and Cohen, 1999; Cum-
ming, 2008). 

In this context, more progress on ACS theory development is needed 
in social, ecological (Grimm and Berger, 2016), and social-ecological 
sciences (An et al., 2020, 2014a), Taking social-ecological (or 
human-environment) research as an example: ACS models are lagging 
behind in this field and have in particular not yet developed a productive 
culture of model analysis and testing (Schulze et al., 2017). In social and 
ecological systems, more efforts and achievements have been obtained 
(see Sections 3.1 and 3.2), yet they are fragmented, less communicated 
to other disciplines, and/or not distilled into complex systems science 
level. The development of a culture of system representation and 
exploration (including model analysis and testing) may enable scientists 
to develop ACS models and principles, distill commonalities from 
locale-specifics, test and generalize site-independent hypotheses, and 
ultimately formalize theories applicable to the ACS under investigation. 
This context leads to our efforts in this synthesis paper regarding 
modeling ACS. 

2. History of agent-based modeling 

Agent based models (ABMs; for agent-based modeling we use the 
acronym ABM throughout the paper) adopt a realist, typically objec-
tivist, ontology, where observable actions are modeled with a detailed 
representation of agents that live in complex environments (Grimm and 
Railsback, 2005; Stillman et al., 2015). In ecology, ABMs are often called 
individual-based models. The ABM approach focuses on the uniqueness 
of individuals and interactions among them or between these in-
dividuals and the associated environment(s). ABMs are used whenever 
one or more of the following aspects of real ACS is considered essential 
for answering a certain question:  

• agents are different in some variables and such differences are 
essential for agent behavior and/or systems dynamics;  

• agents interact locally (in space or networks);  
• agents live in time-varying and heterogeneous environment(s);  
• agents adapt their behavior to the current (and sometimes projected 

future) state of themselves and their environment in their pursuit of a 
certain objective. 

These aspects, particularly agents’ flexible and diverse behavioral 
responses observed in human society or nature, are not easily found in 
simplified models (Evans et al., 2013). Hence ABM allows for studying a 
wider range of behavioral phenomena or processes and addressing many 
empirical and theoretical problems (Arthur, 1999; Axelrod and Cohen, 
1999; Lindkvist and Norberg, 2014; Manson, 2001), which are 

axiomatically complex. Technologically, agent-based modeling has 
emerged and prospered with the advent of increasingly available 
computing power, new forms of data, and capability of data handling 
and storage. Given complexities in ACS, it has been suggested that the 
ABM approach be employed to understand, harness, and improve 
(rather than fully control) ACS’ structure and function, taking innova-
tive actions to steer the system of interest in beneficial directions 
(Axelrod and Cohen, 1999). 

The use of agent-based models for empirical study and scientific 
inquiry has increased rapidly among various scientific communities over 
the last two decades. The number of authors and new authors who 
develop or use ABMs has been steadily increasing at an exponential rate 
since the mid-1990s (Fig. 1), spanning research fields including ecology, 
epidemiology, land system science, sociology, and archaeology (Fig. 2; 
see also the paper by Vincent, 2018). Further advances in ABM have led 
to the founding of the Journal of Artificial Societies and Social Simula-
tion in 1998 and several scientific associations in both Europe and the 
US in the 2000s. As a climax of ABM popularity, a PNAS special issue 
was published in 2002 as an aftermath of the National Academy of 
Sciences Sackler Colloquium, where ABMs were greeted with enthu-
siasm because of the potential “revolution” it may bring up in scientific 
inquiry (Bankes, 2002). 

This hype faded with time as “scientists sometimes tend to rush to a 
new approach that promises to solve previously intractable problems, 
and then revert to familiar techniques as the unanticipated difficulties of 
the new approach are uncovered” (Grimm and Railsback, 2005, p. xi). 

Fig. 1. Number of authors and new authors over time (data as of 17 February 
2020). Blue and red represent authors and new authors who develop and use 
ABM over time, respectively. For data collection see An et al., 2021). 

Fig. 2. ABM publications by scientific branch (data as of 17 February 2020. For 
data collection see An et al., 2021). The term “formal science” represents dis-
ciplines concerned with formal systems, such as logic, mathematics, statistics, 
theoretical computer science, information theory, game theory, systems theory, 
decision theory, and portions of linguistics (http://en.wikipedia.org/wiki/ 
Formal_science; last accessed February 12, 2021). 
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Progress in agent-based modeling has been slower than initially antici-
pated (Bonabeau, 2002; Huston et al., 1988) in critical areas such as 
ABM validation and identifying outcomes that differ from or are better 
than those from other types of models (An et al., 2014a; Grimm et al., 
2005; Grimm and Berger, 2016; Grimm and Railsback, 2005; Rindfuss 
et al., 2008; Thiele and Grimm, 2015). Interestingly, such questions are 
not always asked of other model types. Subsequent progress with 
advancing ABM methodology has been slow, reflecting the fact that any 
tool for tackling complex systems comprised of agents in different con-
texts has to cope with complexity inherent in such systems. These 
challenges can explain—at least partially—frustration with the 
approach and even general doubts about its usefulness (e.g., Couclelis, 
2002; Roughgarden, 2012). 

With the recent appearance of new forms of data (e.g., micro-level or 
individual-level data from different sources such as citizen sensors, 
smart meters, and remote sensing) and the unprecedented ability to 
better understand the system(s) under investigation, the popularity of 
ABMs as a modeling tool continues increasing (Fig. 1). ABMs are useful 
for integrating a variety of data and models from multiple disciplines, 
for addressing problems across spatial, temporal, and organizational 
scales, and for various mind experiments, hypothesis testing, or scenario 
explorations (An et al., 2014a, 2005; Borrill and Tesfatsion, 2011, 2011; 
Gimblett, 2002; Grimm, 1999). ABMs are also increasingly being used to 
facilitate cooperation in inter– or transdisciplinary settings where they 
support communication and understanding across disciplines and 
knowledge systems of scientists and non-scientists, for example via 
participatory modeling (Ramanath and Gilbert, 2004; Voinov and 
Bousquet, 2010). 

3. ABMs in ecological, social, and social-ecological systems 

3.1. ABM in ecological systems 

In ecology, the use of ABMs (often referred to as individual-based 
models or IBMs) started about 10 years earlier than in other disci-
plines (DeAngelis and Gross, 1992; Huston et al., 1988; Liu, 1993). 
Initially ABMs were used to take into account heterogenous individuals 
and interactions between them at the local, not global, scale. Increas-
ingly, ecological ABMs are also representing adaptive behavior. In 
ecological ABMs, organisms are simulated as agents that move, fight or 
flee, browse or feed, reproduce, or form and maintain territories based 
on some internal state of each organism and its (often imperfect) 
knowledge of the environment with some goals such as optimal fitness 
(DeAngelis and Diaz, 2019). In an increasing proportion of these models, 
individual organisms make “decisions” to achieve some goal that in-
creases fitness, such as growth or survival. These models have focused 
on the importance of many individual-level behavioral differences such 
as “bold” vs. “conservative” behavior in fish, various responses to 
intra-and inter-specific competition, and tradeoffs between growth, 
mortality, and early and late reproduction. All such differences affect 
community dynamics, making ABM highly useful to account for details 
in individual behavioral traits in addition to age, sex, body mass, and so 
on as well as feedback effects (DeAngelis and Diaz, 2019). 

Ecologists contributed to the maturation of agent-based modeling 
through developing a standard format for model formulation and 
communication named the Overview, Design concepts, Details (ODD) 
protocol (Grimm et al., 2006; Polhill, 2010; Polhill et al., 2008). Other 
contributions from ecologists include testing a general strategy for 
achieving structural realism via verification and validation (e.g., 
through “pattern-oriented modelling” (Grimm et al., 2005; Grimm and 
Railsback, 2012a), the increasing use of “first principles” (e.g., energy 
budgets, physiology, objective seeking, heuristic decision algorithms) to 
represent agents’ behaviors (Martin et al., 2013; Railsback and Harvey, 
2013, 2002; Scheiter et al., 2013), and the establishment of sensitivity 
analysis as a required element of model analysis (Ligmann-Zielinska 
et al., 2020). Furthermore, ecologists have developed a general 

framework for designing and documenting model evaluation, which is 
particularly important for models developed for decision or policy 
support (Augusiak et al., 2014; Grimm et al., 2020a, 2014; Schmolke 
et al., 2010). 

Ecology is also pioneering the modeling of adaptive decision making. 
There are situations that traditional models—mostly those aiming to 
optimize certain long-term goals—cannot handle well. For instance, 
agents respond via heuristics or rules of thumb of decision-making to 
handle immediate reactions to changes in their environment (e.g., food 
and perceived risk). Another good example is the “emotion system” of 
Giske et al.’s fish model (Giske et al., 2013), which integrates informa-
tion, motivation, and physiological states in order to determine emo-
tions, which in turn form the basis for "decisions" and subsequent 
behavioral outcomes. ABMs are especially suitable for answering 
ecological and evolutionary questions because they allow incorporating 
intra-specific variation, learning, and adaptation relatively easily, 
whereas inclusion of all of them in other model types was rarely, if ever, 
done. Akin to social systems (see below), ABM in ecology has moved 
towards convergence to some cognitive models, including the Fuzzy 
Cognitive Maps, social hierarchies (e.g., within primate troops (Cheney, 
and Seyfarth, 1992)) and neurobiological mechanisms, leading to the 
merger of population biology and behavioral ecology and the growing 
importance of neurophysiology as predicted by Wilson (1975). 

3.2. ABM in social systems 

In social systems, the importance of individual actions has also long 
been recognized as a critical driver of relevant processes (Ostrom, 2009; 
O’Sullivan et al., 2012, p. 113; Turner et al., 2003). The individuals in 
these systems, often embedded in various networks, are heterogeneous: 
depending on the objective of a certain project, agents could be entities 
at varying levels. For instance, cities are comprised of individual het-
erogeneous actors that are interconnected at multiple levels, which is 
analogous to organisms embedded in relevant hierarchical structures or 
networks (Batty, 2013). These heterogenous agents continuously 
interact with one another and with their environment. This emphasis on 
networks of individuals as a vital driver of social systems (Will et al., 
2020) aligns well with broader changes in how cities (and other systems) 
are beginning to be viewed (Batty, 2013) .1 Instead of distilling cities 
into homogeneous units whereby it was virtually impossible to say 
anything meaningful about the inner workings or micro dynamics 
(Batty, 2008), cities are now being viewed as dynamic organisms that 
are a product of networks, comprised of individual heterogeneous actors 
that are interconnected at multiple levels (Batty, 2013). The relation-
ships between these actors are often non-linear, changing both spatially 
and temporally. When viewing a city in this way, the emphasis is on 
modeling, capturing, and replicating new emergent properties in a 
complex system comprised of individual components that evolve and 
interact. 

Instead of a holistic approach to simulating social systems such as 
cities, aggregate mathematical approaches such as spatial interaction 
models (Batty, 1976) are still commonly used. Whilst the behavioral 

1 The United Nations predicts that by 2050 around 66% of the world’s pop-
ulation will be living in urban areas. This expansion in urban populations will 
create significant challenges in creating sustainable and healthy cities with 
critical challenges needing to be met in improving water and transportation 
infrastructure, air pollution and waste management as well as provision of 
adequate housing, energy, health care, education and employment. This is just 
one example of the complex and multi-layered societal, economic and envi-
ronmental challenges that governments and policymakers need innovative so-
lutions to. While many models have been developed to address the impacts of 
future transport, housing or healthcare initiatives, most uses are purely 
empirical: they lack any consideration of the individuals and their actions and 
interactions that drive many of the processes behind these challenges. 
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foundations of these models are well understood (random utility, 
discrete choice models, etc.), more can be done to draw out the sub-
tleties and detail of individual behavior and emergent social processes, 
especially in the context of increasing empirical evidence. In this 
context, mobile phone and social media data could give unprecedented 
insights into individual behavior, mobility, and their networks. Without 
an understanding of how these social processes play in shaping or 
affecting social systems dynamics, it is virtually impossible to verify any 
predictive simulation outcomes, i.e., to know whether the forecasts of 
how a social system will react to a specific impulse in the future are 
robust. 

Despite new individual level data sets in abundance, considering and 
recognizing the importance of each individual, including the processes 
representing individual decisions and interactions as well as patterns 
that emerge from such processes, has been largely absent from many 
modeling efforts. ABMs can play an important role, representing both 
the individual and social processes when studying social systems and 
their emergence (Axelrod and Tesfatsion, 2006; Bae and Koo, 2008; 
Crabtree et al., 2017; Crawford et al., 2005; Crooks and Hailegiorgis, 
2014; Makowsky and Rubin, 2013; Malleson et al., 2010). This is 
partially because ABM has the ability to embody the characteristics and 
behaviors of individual entities (e.g., humans, households), but can also 
capture system-wide emergent processes. ABMs bear the capabilities to 
model learning and adapting processes (An, 2012; Cumming, 2008; 
Milner-Gulland, 2012), and are thus able to explain or project 
macro-level features such as nonlinearity and thresholds, 
self-organization, uncertainty, unpredictability, surprising outcomes, 
legacy effects, time lags, and resilience (An, 2012; Levin et al., 2013, 
2012; Liu et al., 2007). Consequently, social systems manifest features 
prevalent in many ACS (Liu et al., 2007). 

Ecological modeling is not burdened with one of the major chal-
lenges in agent-based modeling as in social systems: representing human 
behavior (An, 2012; Groeneveld et al., 2017; Heckbert et al., 2010; 
Levin et al., 2013; Schlüter et al., 2017; Schulze et al., 2017; Verburg 
et al., 2016). Whilst agent-based modeling can adopt innovations from 
ecological modeling, which is already happening to some degree (Vin-
cenot 2018), modeling human decisions and behavior remains a big 
challenge. Building on traditional simple optimization algorithms, 
progress has been made in cognitive frameworks for modeling human 
behavior, and examples include the beliefs, desires, and intentions (BDI) 
and the physical, emotional, cognitive, and social factors frameworks 
(PECS) (Conte and Paolucci, 2014; Schmidt, 2002). In the BDI frame-
work, agents are endowed with a set of beliefs about their environment 
and about themselves, desires (expressed as computational states that are 
to be maintained), and intentions (computational states that the agents 
aim to achieve). Modeling human decisions and behaviors is becoming 
an area of increased research activity. For other approaches to modeling 
human decisions in ABM—such as microeconomic models, space 
theory-based models, and institution-based models—we refer to An and 
others (An, 2012; Groeneveld et al., 2017; Schill et al., 2019; Schlüter 
et al., 2017). 

To date, agent-based models have proven successful as a tool for 
integrating knowledge across stakeholders to solve management issues, 
to understand co-evolution and emergent phenomena, and to address 
adaptive management issues called for by sustainability science. Ex-
amples are abundant, such as those in land use and land cover change 
(Groeneveld et al., 2017; Parker et al., 2003) and in common pool 
resource research (Poteete et al., 2010; Schulze et al., 2017; Seidl, 2015; 
Voinov and Bousquet, 2010). 

3.3. ABMs in social-ecological systems 

Social-ecological systems (SES) (Ostrom, 2009; Turner et al., 2003) 
also manifest the following features prevalent in many “pure” social or 
ecological systems according to Liu et al. (Liu et al., 2007) and others 
(Irwin and Geoghegan, 2001; Lindkvist et al., 2017; Malanson et al., 

2006; Zvoleff and An, 2014): heterogeneity, reciprocal effects and 
feedback loops, nonlinearity and thresholds, surprising outcomes 
(observable as a result of human-nature couplings), legacy effects and 
time lags, and resilience (Levin et al., 2012; Liu et al., 2007). Synonyms 
of social-ecological systems include (complex) human-environment 
systems (An et al., 2020, 2005; National Research Council, 2014), 
coupled human and natural systems (CHANS) (Liu et al., 2007), and 
social-environmental systems (Schlüter et al., 2012a). Such systems are 
by nature complex adaptive systems, bearing properties of 
self-organization, uncertainty, unpredictability, and non-linear dy-
namics (Levin et al., 2012). The actors in these systems are heteroge-
neous, continuously interacting with one another and with their 
environment, learning and adapting (An, 2012; Cumming, 2008; Mil-
ner-Gulland, 2012). Computational models are exemplary tools for un-
derstanding social-ecological systems as complex adaptive systems, with 
the aim to increase our understanding of interactions, adaptive 
decision-making, co-evolution, and emergent phenomena (Schlüter 
et al., 2012b). 

However, many challenges and possibilities remain in social- 
ecological sciences. To advance our understanding of social-ecological 
systems, more models need to explicitly be designed to focus on the 
feedbacks among actors and between actors and their environments. As 
with social systems, another challenge hinges upon modeling human 
decision-making and behavior. The methodological frontiers to address 
these needs include using patterns (or stylized facts) to validate model 
output and to guide parameter settings; using mixed methods ap-
proaches by including surveys, interviews, participatory modeling, and 
laboratory experiments to improve the representation of social- 
ecological systems and human behavior (Grimm et al., 2005; Heck-
bert et al., 2010; Schulze et al., 2017); and incorporating qualitative 
data. Finally, more transdisciplinary and interdisciplinary collabora-
tions are key to increase the quality of models that address 
social-ecological systems because of the inherent interdisciplinary na-
ture of research in these systems (Schulze et al., 2017). 

A common real-world application of ABM in socio-ecological studies 
is to inform policy. To advance the use of ABMs for decision and man-
agement support, communication of model development, analysis, 
documentation, and presentation need substantial improvement to-
wards more systematic and transparent ways (Heckbert et al., 2010; 
Müller et al., 2013; Schulze et al., 2017). ABMs have a potentially 
important role in normative institutional and policy “design” for 
social-ecological systems. Once researchers have empirically compelling 
representations of human behaviors in ABMs, one can test the extent to 
which a new proposed policy or design might result in adverse unin-
tended consequences. For example, agent-based computational plat-
forms for the exploration of new market designs for electric power 
systems are highly complex systems that involve intricate interactions 
among human, physical, and environmental agents. Traditional disci-
plinary boundaries (social sciences, engineering, physical sciences, etc.) 
are a major detriment for such “transdisciplinary” ABM application 
areas. 

4. Traditional methods and models in ACS science 

Different model types represent different tools, traditions, and basic 
assumptions about how systems under investigation work. Ideally, the 
perspectives represented by different model types are related to one 
another (Vincenot et al., 2016, 2011). Below we briefly review differ-
ences and complementarity between ABM and other kinds of models. 

4.1. Weaknesses of non-ABM approaches in ACS 

Traditional mathematical or analytic models are often based on a few 
simple equations or rules, including differential equations, dynamic 
state variable models, ideal free distribution models, game theory 
models, systems dynamics models, and statistical methods. To explain 
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the complexity of ACS, such traditional mathematical or analytic models 
have shown a variety of strengths and weaknesses. Statistical models 
and system dynamics models are powerful in characterizing systems at 
an aggregate level, while lacking the ability to represent heterogeneous 
actors that interact with one another. Equation based and game theo-
retic models (Polasky et al., 2011) and system dynamics models are 
useful for representing feedbacks between systems, and for explaining 
macro-level characteristics, but lack the ability to represent the 
micro-level processes and interactions (Heckbert et al., 2010). Addi-
tionally, these methods cannot represent adaptive decision-making and 
the co-evolutionary aspect of ACS (except for Bayesian networks and 
evolutionary models), where a decision of one agent at one site or point 
in time may influence other agents’ decisions, system events, and system 
level outcomes at different locations or later times. Thus, these non-ABM 
approaches fail in capturing the essence of ACS (Folke et al., 2010), 
which is problematic for improving governance and management stra-
tegies for increasing the sustainability of social-ecological systems. 

In situations where interactions among agents are contingent on 
experience, and agents adapt to that experience, traditional equation- 
based models are often limited—if not impossible—for deriving the 
dynamic consequences. Traditional mathematical modeling approaches 
miss the capacity to handle some immediate (proximate) complexities 
that agents encounter, making it difficult to handle variation in in-
dividuals and their decision-making. In complex situations where agents 
have no experience, ABM scientists employ a range of useful techniques 
such as genetic algorithms and artificial neural networks, enabling 
agents to respond quickly and adequately (DeAngelis and Diaz, 2019). In 
such instances, agent-based modeling often offers the only practical 
method of analysis. 

4.2. Complementarity and fuzzy boundaries with non-ABM models 

Our exclusive focus on ABMs does not imply that we downplay, 
ignore, or even deny the important role of other types of models, in 
particular mathematical and statistical models. On the contrary, many 
ABMs (one type of mechanistic models) incorporate such types of 
models. ABMs do not replace but complement traditional mathematical 
or analytic models and they share many challenges in areas such as in-
verse parameterization, analysis of model robustness, coupling with 
traditional process-based models, and sensitivity and uncertainty 
analysis. 

Moreover, the boundaries between ABM and traditional models are 
becoming porous: The majority of mathematical models are no longer 
solved analytically but numerically, which means that they are simu-
lation models as much as ABMs. Consequently, many of the issues with 
ABMs reported here may also apply to mathematical modeling. Seppelt 
and Richter, for example, report on the solution of systems dynamics 
models: “We can show that solutions (a) differ if different development 
tools are chosen but the same numerical procedure is selected; (b) 
depend on undocumented implementation details; (c) vary even for the 
same tool but for different versions; and (d) are generated but with no 
notifications on numerical problems even if these could be identified” 
(Seppelt and Richter, 2005). 

As discussed in the paper by Tesfatsion (2017), most agent-based 
models are not simply the computational implementation of a model 
or set of models previously developed in equation or whatever form. 
Rather, agent-based modeling often proceeds from agent taxonomy and 
flow diagrams, to pseudo code, and finally to software programs that can 
be compiled and run. In this case the software programs are the models. 
In principle, any ABM software program can decompose to—or equiv-
alently be represented in abstract form as—a system of discrete-time or 
discrete-event difference equations, starting from user-specified initial 
conditions (Tesfatsion, 2017). However, these analytical representations 
become increasingly complex as the number of agents and rules defining 
their behavior increase. 

4.3. Robustness analysis 

“Robustness analysis” refers to building a set of similar, yet distinct, 
models of the same phenomenon, examining whether these models may 
lead to similar results despite their different assumptions, parameters, 
and/or even model structures (Levins, 1966). Robustness analysis was 
formulated for simple mathematical models but has recently been 
generalized for ABM (Grimm and Berger, 2016): different simpler ver-
sions of an ABM are created in the attempt to systematically break the 
models and thereby identify key mechanisms and limitations to expla-
nations provided by an ABM. 

Robustness analysis will help establish a new culture of communi-
cating models: instead of only making sure that the model is realistic 
because it reproduces observations, we also need to demonstrate when 
and why the proposed mechanisms break down. The purpose of 
robustness analysis and related analyses is not only to obtain essential 
insights into the chosen study sites, but also about explicitly finding out 
what essential spatial, temporal, or organizational scales, what key 
processes/patterns, what feedback loops, heterogeneity, or tipping 
points/thresholds and so on may give rise to various aspects of 
complexity, including but not limited to emergence/surprising out-
comes, resilience, and path dependence. 

4.4. Coupling of ABM with other process-based models 

Coupling ABM with traditional process-based models is an emerging 
research frontier in ACS research especially in earth system modeling 
and water resources system analysis. Among a set of major challenges 
highlighted in this domain (e.g., coupling ABM with other models, 
agents’ decision rules, and spatial scale issues), how to fully address 
human behavior and its effect on the natural environment (such as 
irrigation, streamflow regulation and groundwater pumping) and 
dynamically capture the feedback of natural processes influencing 
human behaviors (such as climate change mitigation) to form a “tight” 
or “two-way coupling” (between ABM and process-based models) is a 
major challenge. 

4.5. Handling uncertainty 

As the agent-based modeling method matures, there are opportu-
nities to begin to adapt useful methods from longer-established fields in 
order to improve the rigor of agent-based modeling. This is especially 
true with respect to how agent-based models deal with uncertainty. 
There are several reasons why uncertainty can make its way into model 
results. It might be a result of noise in the input data that are used to 
parameterize the model or because the model rules themselves are 
poorly specified (the model is not adequately representing the system 
that it is designed to represent). Other fields, particularly the environ-
mental sciences such as meteorology and hydrology, have decades of 
experience in developing methods to quantify and manage uncertainty. 

One of these is ensemble modeling. An ‘ensemble’ is a group of 
models that are run simultaneously (Murphy et al., 2004). The models 
are probabilistic, so naturally begin to diverge during the course of a 
simulation. By analysing the range of outcomes across an ensemble of 
models, it is possible to begin to better understand how uncertain the 
outputs are. Where most models are broadly in agreement in their re-
sults, there is less uncertainty compared to the situation where the 
models diverge substantially. One way to prevent a simulation from 
diverging from reality would be to occasionally incorporate more 
up-to-date data and adjust the model accordingly. There are a range of 
techniques that come under the banner of data assimilation that are 
designed for exactly this purpose. However, they have largely evolved 
from fields such as meteorology (i.e., to incorporate up-to-date envi-
ronmental data into weather forecasts), and it is not clear whether they 
are appropriate for use in agent-based modeling. Some have begun to 
explore this area (Clay et al., 2020; Long and Hu, 2017; Malleson et al., 
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2020; Rai and Hu, 2013, 2013; Ward et al., 2016) but only with the 
simplest agent-based models. 

The marriage of data assimilation methods and agent-based models 
could be transformative for the ways that some systems are modelled. 
Consider the following example regarding the benefits of data assimi-
lation approaches adapted from Swarup and Mortveit (2020). 
Agent-based modeling is an ideal tool to model disease spread, but 
typically models are restricted to hypothetical scenarios. However, with 
the abundance of new data that are available in near real-time, a high 
spatiotemporal resolution agent-based model of a national or global 
disease spread could be executed in real time, using data assimilation 
techniques to incorporate the most up-to-date disease surveillance data. 
The model could not only be used to make short-term predictions to 
highlight the emergence of potential new clusters, or as a virtual labo-
ratory to test potential mitigation policies, but could also be used to 
highlight areas where its predictions are the least certain and would 
hence benefit from additional local data collection. 

5. Challenges in agent-based modeling 

The increasing recognition and application of ABMs in a wide range 
of disciplines should not warrant overlooking or downplaying the 
challenges that the ABM community needs to address in order to 
establish itself as a rigorous tool for advancing ACS science. These 
challenges, if not addressed with the highest priority in ABM research, 
can lead to ad hoc design of models which are nontransparent and un-
testable and, in turn, useless or even harmful for theory development 
and application in the long run. 

Specifically, challenges abound in many aspects such as: (1) basic 
difficulties in model development, communication, understanding, 
verification, and validation; (2) difficulties regarding coherence because 
of the substantial variation in platforms, programming languages, model 
details and sophistication, and modeler’s preferences, (3) difficulties in 
computational efficiency as most ABMs are developed on personal 
computers (but see these two papers (Tang et al., 2011; Tang and Ben-
nett, 2011) for exceptions); (4) inadequate model/module transparency 
and reusability, which partially contributes to the challenge of verifying, 
validating, and analyzing model outcomes, including model sensitivity; 
and (5) difficulties in generalizing findings and scaling them across 
scales (An, 2012; An et al., 2005; Heppenstall et al., 2016; O’Sullivan 
and Manson, 2015; Parker et al., 2003). 

We acknowledge that these challenges limit the usefulness of ABMs 
in scientific inquiry and empirical problem-solving domains. Nonethe-
less, it is worth pointing out that the basic principles of modeling, 
starting with a question and trying to find the right set of key processes 
of a system’s internal organization, apply to any kind of mechanistic 
modeling. Consequently, the challenges to be mentioned below 
regarding communication, understanding, verification, validation, and 
so on are general and not specific for ABMs. 

5.1. Integrated human-environment ABMs 

The connections between human and environmental systems were 
assumed to be decomposable into a set of simple, unidirectional re-
lationships, which has hindered understanding of these systems (An 
et al., 2014a). Many complexity features, e.g., those observed in several 
empirical social-ecological systems (Section 3.3), call for coupling of 
human and nature systems. In this context, researchers have proposed 
the coupled human and natural systems (CHANS) framework building 
on complex systems theory (Liu et al., 2007) (Section 3.3). However, 
there still exist many unanswered questions when people work under 
this framework: How do we customize the complexity of the represen-
tation of ecological and human processes to the intended purpose of the 
model (exploratory or theoretical/participatory/ descriptive or predic-
tive)? How do the relative temporal scales of the ecological and human 
processes in the target system influence the representation of ecological 

processes (static/simple state transitions /dynamic), or influence the 
nature (e.g., tightness) of the coupling between ecological and human 
components of the model? 

Building on a fundamental philosophy of methodological individu-
alism, ABM has a unique ontology that represents key real-world actors 
as heterogeneous individual agents carrying attributes and actions 
(including interactions with other agents and/or their environment). 
This ontology allows a bottom-up style examination of many emergent 
outcomes that are prevalent in human-environment systems. ABMs are 
therefore very useful in modeling social-ecological (human-environ-
mental) systems, given the complexity (nonlinearity and heterogeneity 
in particular) qualities that exist in these systems. For instance, ABMs 
should provide unique insights when modelers tackle issues around 
harmonizing social and environmental data that are subject to various 
spatial and temporal scales (extents/resolutions) or incorporate low- 
level processes and interactions within and between both dimensions 
of the CHANS system. Furthermore, ABMs provide a platform to perform 
policy or mind experiments or visualize outcomes under certain policy 
interventions. 

5.2. Modeling human behavior 

One hotspot research area is modeling human decision-making in 
ACS, especially decisions regarding their interaction with the environ-
ment. Here we refer to conceiving decision making at an individual 
level, rather than embedding it in social, institutional, and spatial con-
texts (O’Sullivan et al., 2012). Representing adaptive behavior is chal-
lenging in ABMs in general, including the behavior of cells in tissues, 
bacteria, plants, or animals because it has to be based on first principles, 
such as energy budgets (Martin et al., 2013), fitness seeking (Railsback 
and Harvey, 2002), photosynthesis (Scheiter et al., 2013), or stoichi-
ometry (Sinsabaugh et al., 2013). Representing human behavior, how-
ever, adds further complexity because of social interactions in 
increasingly complex networks, anticipation of the behavior of others 
(which is addressed for simple settings in game theory), and memory, 
learning, and emotions, which all can lead to different decision “algo-
rithms” in different contexts. 

Current practice in representing human behavior is limited (Schlüter 
et al., 2017) and dominated by simple optimization algorithms. More-
over, there is no culture of rigorous theory development, which would 
require that alternative representations be implemented and tested for 
their ability to reproduce multiple patterns observed in real social sys-
tems. The key feature of this “pattern-oriented theory development” 
(Grimm and Railsback, 2012a; Railsback and Grimm, 2012) is that we 
would not strive to find a “perfect” representation of behavior of single 
individuals in simplified settings (such as in behavioral ecology and 
economics), but to select representations which are good enough to 
reproduce patterns observed at both the agent’s and system’s levels. 
Such tested representations should be referred to as “theories” of 
behavior and could constitute re-useable building blocks for represent-
ing human behavior in general. It is also expected, though, that different 
theories are needed in different contexts, so there might be no unique 
representation of human behavior. For example, during a panic in a 
theater, it is sufficient to represent humans as “Brownian agents”, while 
in other contexts, we might need to include emotions and employ 
complex approaches such as neural networks and genetic algorithms to 
predict how agents respond to certain situations (Eliassen et al., 2016, 
2009; Giske et al., 2014; Lindkvist and Norberg, 2014). 

One of the hallmarks of ABM is its ability to capture and model 
human behavior; ironically, this is also one of the areas in which ABM 
has been heavily criticized (Heppenstall et al., 2016). Following the 
typology set out by Kennedy (2012), there are two broad ways to classify 
behavior: through mathematical or cognitive approaches. The mathe-
matical approach centers on the custom coding of behaviors within the 
simulation, for example using random number generators to select a 
predefined possible choice (e.g., to buy or sell (Pumain and Sanders, 
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2013)). To understand human behavior in a more nuanced way–and to 
take account of factors such as individual preferences, local knowledge, 
and environment–developments of key things such as threshold-based 
rules are very important. These allow events to trigger a specific agent 
behavior for example, moving to a new location within a neighborhood 
(Crooks, 2010). These approaches have great utility when the behavior 
is both well understood and documented. 

A second contrasting approach to simulating human behavior uses 
conceptual cognitive frameworks. Here, more abstract concepts such as 
beliefs, desires, and intentions (BDI) (Rao and Georgeff, 1991) or 
physical, emotional, cognitive, and social factors (PECS) (Schmidt, 
2002) are embedded within individual agents. Both the BDI and PECS 
frameworks have been successfully applied to modeling human behavior 
within social sciences. For instance, for modeling the drivers of criminal 
behavior in an a-spatial model that uses the BDI framework, see Bran-
tingham et al. (2005); for a geographically explicit model that represents 
behavior through the PECS framework, see Malleson et al. (2013) 

Second, representing agents’ decision-making processes in human- 
environment studies remains another major challenge. Here it is 
important to correct a major misconception still being expressed by 
some commentators uninformed about the powerful capabilities of 
modern software: namely, the misconception that ABM representations 
of human decision-makers must necessarily be “stupid”. To the contrary, 
the constraints on agent decision making implied by ABMs are con-
straints inherent in every real-world social system. The decision-making 
representation methods used by ABM agents can range from simple 
behavioral rules to decentralized optimization to sophisticated antici-
patory learning algorithms for the approximate achievement of inter-
temporal objectives. 

A framework for mapping and comparing human decision making in 
models of socio-ecological systems, dubbed MoHub (Modeling Human 
Behavior), has recently been published (Schlüter et al., 2017) with the 
aim to facilitate choices of how to model human decision making. This is 
important because of the strong impact assumptions on human behavior 
may have for model outcomes and its final impact on e.g., policy 
recommendations. 

5.3. ABM transparency and reusability 

Lack of transparency and reusability in ABM code has been 
mentioned as one of the bottleneck problems for the ABM community 
(An et al., 2014a; Evans et al., 2013; National Research Council, 2014; 
Parker et al., 2003). Part of this problem stems from a lack of central 
development within ABM. ABM has a somewhat fragmented develop-
ment with advances being made in different disciplines, for example 
validation approaches in ecology (Grimm et al., 2005), and handing of 
space in geography (Heppenstall et al., 2016). Without adequate 
transparency and reusability, it is not only very difficult to verify and 
validate ABMs, but a large amount of resources are wasted, such as 
modules and programming libraries that have been developed and 
tested by ABM experts and could have been reused. In human dynamics 
research, the lack of open source software packages has become a major 
impediment to the promotion of ABM. The availability and widespread 
use of source codes will play a critical role in the adoption of new per-
spectives and ideas enhancing ABM. More toolkits are needed to inter-
face the open source revolution and ABM, seeking cross-fertilization 
between these two fast-growing communities. 

There are, though, initiatives to tackle the challenge of documenting 
and presenting agent-based models. Fortunately, the development of 
presentation protocols for ABM is now an active area of research. Grimm 
et al. developed the Overview, Design concepts, Details (ODD) protocol 
as a standard format for describing ABMs in ecology and beyond 
(Grimm et al., 2020b, 2010, 2006). It provides a fixed structure and 
terminology, making model descriptions start with an overview of the 
model’s purpose, entities, state variables, scales, and processes and their 
scheduling, followed by listing how important design concepts for 

ABMs, such as emergence or interactions, have been considered. Finally, 
details on initialization, input data, and all process representations 
(submodels) are given. The purpose of ODD is to facilitate reading and 
understanding, to provide exactly the same kind of information always 
in the same sections, and to provide all details that are needed for 
re-implementing the model. 

The use of the ODD has improved transparency in ABM, but limita-
tions remain because verbal model description will always include 
ambiguities (Grimm et al., 2020b). Moreover, for specific classes of 
models, a more refined structure might be useful. This is in particular the 
case for modeling human behavior. Therefore Müller et al. suggested 
ODD + D, adding elements that facilitate selecting and documenting 
important features in models of human decision making (Müller et al., 
2013). Some scholars have criticism for applying ODD to ABMs in all 
situations, but suggest development of multiple standardized presenta-
tion protocols, which should be tailored to the purpose and development 
of a modeling effort. 

Reusability is fostered by archives of existing models which include 
not only the program code but also instructions for use and transparent 
model descriptions, preferably using the ODD protocol. The Model Li-
brary of CoMSES.net has become a useful platform where modelers can 
seek building blocks to incorporate in their own models; it even provides 
a database with all agent- and individual-based models published so far. 
NetLogo (Wilensky, 1999), specifically designed for ABMs and increas-
ingly used for implementing ABMs, is easy to learn (Railsback and 
Grimm, 2012; Wilensky and Rand, 2015) and computationally less 
limited than generally believed (Railsback et al., 2017). Another route to 
reuse of models is model re-implementation. Instead of starting each 
modeling project from scratch, Thiele and Grimm suggest to scan 
existing models and try and re-implement the most suitable one (Thiele 
and Grimm, 2015). Even if the final model only includes a few elements 
of the re-implemented model, starting from an existing model saves a 
considerable amount of time for model formulation, which then can be 
invested in model analysis and improvement. Re-implementation also 
fosters theory development, because researchers can try and break 
models to identify elements and processes that are essential for the 
model to produce realistic results. Computational modeling in general 
needs to go beyond showing that a model looks right by showing where 
and when they go wrong (Grimm and Berger, 2016; Thiele and Grimm, 
2015). 

5.4. ABM verification and validation 

Verification and validation of ABMs has been a problem besetting 
ABM modelers and users for many years (An et al., 2014b, 2005; Man-
son, 2002; National Research Council, 2014; Parker et al., 2003). Many 
issues arise from this difficulty (Couclelis, 2002), although this problem 
is not confined to ABM—it also besets other domains of modeling. For 
instance, the global climate research community is struggling with the 
credibility of different General Circulation Models when they cannot 
reproduce the historical climate. Without robust model validation and a 
joint understanding of what model validation and verification is, the 
reliability of ABM cannot be established, limiting its usefulness and 
application in various contexts (An et al., 2014b; Brown et al., 2008). 

Augusiak et al. reviewed terminology regarding the term “valida-
tion” and came to the conclusion that this term cannot be used for any 
practical purpose anymore, because it is impossible to boil down its 
wildly varying definitions and interpretations to a single one (Augusiak 
et al., 2014). As a solution, they suggest the artificial term “evaludation” 
(a merger of “evaluation” and “validation”), which covers all elements of 
iterative model development: model purpose, conceptual model, data 
evaluation, software verification, model output verification and 
corroboration, and model analysis. They then point out that the general 
notion of “validation” often is too narrow, requiring that, as in physics, a 
model makes predictions of features that were not used for model cali-
bration, i.e., independent, or secondary, predictions. It is thus important 
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to distinguish between model verification, which shows that the model 
reproduces calibration patterns, and model “corroboration”, which is 
about independent predictions. Documenting how all these elements 
were addressed during model development is facilitated by using the 
standard documentation format TRACE (Grimm et al., 2014). 

Empirical validation of ABMs is a highly active research area. As 
discussed in Tesfatsion’s paper (Tesfatsion, 2017), ABM permits 
model-builders with scientific objectives to strive for the simultaneous 
achievement of four distinct aspects of empirical validation, i.e., 1) input 
validation: Are the exogenous inputs for the model empirically mean-
ingful and appropriate for the purpose at hand? 2) process validation: 
How well do the physical, biological, institutional, and social processes 
represented within the model reflect real-world aspects important for 
the purpose at hand? Are all process specifications consistent with 
essential scaffolding constraints, such as physical laws, stock-flow re-
lationships, and accounting identities? 3) descriptive output validation: 
How well are model-generated outputs able to capture the salient fea-
tures of the sample data used for model identification? And 4) predictive 
output validation: How well are model-generated outputs able to forecast 
distributions, or distribution moments, for sample data withheld from 
model identification or for data acquired at a later time or a different 
place? 

This pursuit of comprehensive empirical validation will of course be 
tempered in practice by data limitations. Even in an era of big data and 
data advances, data availability and quality remain important concerns. 
Computational limitations such as round-off error, truncation error, and 
error propagation also remain a concern. Fortunately, advances in 
computer technology and numerical approximation procedures are 
rapidly reducing these limitations. 

5.5. Big data and high-performance ABM 

This potential of ABM’s capacity to leverage big data is improved by 
the increasing availability of big data such as high-resolution remote 
sensing imagery, social media data, and large, detailed human socio-
economic datasets (Wang et al., 2013; Ye and He, 2016). Big data are 
characterized by their characteristics in terms of volume (size of data), 
velocity (update frequency), variety (types of data), veracity (quality of 
data), and value (importance). Currently ABMs are largely based on data 
from relatively small or local scales, limiting the usefulness of ABM in 
large (spatial extent) and high-resolution contexts—for a small set of 
exceptions that use parallel computing, see the work by Tang and as-
sociates (Tang et al., 2011; Tang and Bennett, 2011). 

While there is a growing use of agent-based models for a variety of 
applications, there are several key challenges that need to be overcome. 
These range across the spectrum from theory to practice and from hy-
pothesis to application (Crooks, 2010). However, the greatest challenge 
to ABM is akin to many other modelling methodologies, in that the re-
alism that an ABM can bring to a simulation is highly dependent on the 
quality of the data that it uses (i.e., veracity for big data). Agents require 
accurate individual-level behavioural data if they are to produce simu-
lation results that can be used for policy. Without rigorous calibration 
(fine tuning the model) and validation (testing the model on unknown 
data) of the ABM, any outputs are essentially meaningless. A typical 
ABM can include hundreds to millions of heterogeneous agents each 
operating their own individual rule sets–calibrating and validating these 
models with stochasticity therefore requires a huge amount of individual 
level data and leads to massive intermediate or output data (e.g., based 
on considerable Monte Carlo runs). In other words, even if the spatial 
extent of an ABM is not large, the modelling steps (from verification, 
calibration, validation, to experimentation) can easily pose a big 
data-driven challenge. 

Fortunately, “big data” can potentially provide the level of detail 
required. The term “big data” is somewhat misleading, which refers to 
both traditional large data sets, for example national censuses, as well as 
new digital information generated from social media, high resolution 

satellite imagery, gene sequencing data, and the like. With the prolif-
eration of social media, information generated and disseminated from 
these outlets has become an important part of our everyday lives. Our 
ways of examining social-spatial interactions are increasingly trans-
formed by the development of more powerful computing technologies, 
emerging big and open data sources, and new perspectives on social- 
spatial processes (Shaw et al., 2016). Social media, such as Twitter, 
capture data about individual behavior and movements that have pre-
viously been absent from modelling efforts (e.g., considering the ve-
racity issue). As more social media data are increasingly available, 
agent-based modelling has been used to predict human behavior like 
posting, forwarding or replying to a message with regard to topics and 
sentiments (Ye and Lee, 2016). Despite the obvious potential of “big 
data”, there are considerable issues to overcome such as bias, noise, 
generalization and in some cases, the ethics of whether researchers 
should be using this kind of data (Heppenstall et al., 2016). 

To resolve the big data and computing challenges facing ABMs, high- 
performance computing enabled by state-of-the-art cyberinfrastructure 
represents a unique solution. A series of ABMs based on high- 
performance computing have been reported in the literature (Tang 
et al., 2011; Tang and Bennett, 2011; Tang and Jia, 2014). 
High-performance ABMs often focus on large spatiotemporal extents 
and/or fine resolutions (Tang and Jia, 2014). Large-scale ABMs rely on 
two typical parallelisms, message-passing and shared memory (Wilkin-
son and Allen, 2004), which allow for dividing (e.g., via spatial domain 
decomposition (Ding and Densham, 1996; Wang and Armstrong, 2003)) 
a model into smaller sub-models that can be deployed to 
high-performance computing resources for parallel computing (Tang 
and Wang, 2009). Message-passing, shared-memory, or the combination 
of both enables the inter-processor communication for data or infor-
mation required by neighbouring sub-models (Gong et al., 2013; Shook 
et al., 2013). This high-performance computing solution is not only 
suitable for ABMs with large spatiotemporal extent and fine resolutions, 
but also can facilitate the use of small-scale ABMs in need of huge 
computational support. These small-scale ABMs often require a signifi-
cant number of Monte Carlo repetitions through alternative modelling 
phases, including calibration, verification, validation, sensitivity and 
uncertainty analysis, and experimentation for scenario analysis. These 
massive Monte Carlo runs, while independent of each other, can be 
deployed to, and thus accelerated by, high-performance computing re-
sources (Tang and Bennett, 2010). 

5.6. Spatially explicit ABMs 

There are many modeling issues that apply to, but are not limited to, 
spatially-explicit models, e.g., the effects of random number generators; 
the way to handle boundary conditions; the effects of spatial structure 
and model type on ABM evaluation (e.g., via sensitivity analysis); the 
effects of spatial resolution, extent, and data on model calibration and 
validation; and the possibility and benefits of employing alternative 
spatial representation (in comparison to the traditional Cartesian 
space)—e.g., adoption of relative space in ABM (An et al., 2015). 
Informed decisions on these issues may be conducive to developing 
more robust ABMs. We refer readers with interest in this domain to 
Manson et al. (2020). 

Finally, the above challenges are also affected by the spatial scale 
issue of ABM setup. ABMs are often developed with an implicit 
assumption that agents interact with each other within a system. How-
ever, agents across distant systems around the world have rarely been 
taken into consideration even though they are increasingly interacting. 
To understand and manage such complex distant interactions, an inte-
grated framework of telecoupling has been developed (Liu et al., 2013) 
(http://telecoupling.org). Telecoupling is defined as socioeconomic and 
environmental interactions between multiple social-ecological systems 
over distances. As an umbrella concept, it encompasses many processes, 
such as migration, trade, tourism, species invasion, environmental 
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flows, foreign direct investment, and disease spread. Telecouplings have 
profound implications for global sustainability and human well-being as 
they can transform the structure, function, pattern, process, and dy-
namics of social-ecological systems across local-to-global scales. Thus, it 
is necessary to develop a new set of ABMs–Telecoupled Agent-based 
Models (Liu et al., 2014). 

6. Opportunities from artificial intelligence and data science 

The challenges summarized in Section 5 not only limit the usefulness 
of ABMs in scientific inquiry and empirical problem-solving domains, 
but also hamper our understanding of ACS structure and processes. 
Fortunately, the advances in artificial intelligence, unique new forms of 
data, and data science will substantially help address these challenges. 

6.1. Opportunities from artificial intelligence 

Starting in the l950s, modern artificial intelligence (AI) has aimed to 
emulate the ‘natural’ intelligence seen in human or animal behavior 
under a critical assumption that, to a large degree, machines can be 
made to simulate human intelligence. Typically, this means being able 
to demonstrate cognitive functions usually displayed by humans such as 
goal-oriented behavior, learning, reasoning, knowledge representation, 
planning, language processing, and problem solving (such as the ability 
to move and manipulate objects by, e.g., robots). 

AI is also an academic discipline for its own right, albeit one that is 
highly fragmented. AI leverages both traditional (e.g., statistical 
methods, mathematical optimization, economics) and non-traditional 
methods (e.g., artificial neural networks, computational intelligence) 
to understand and simulate human intelligence. Sub-disciplines of AI 
range from those associated with the use and development of statistical 
techniques such as regression to recognize patterns in data, to the cre-
ation of human-like intelligent robots that are able to perceive their 
environment and learn to conduct particular tasks (e.g., recognizing an 
object and interacting with it). 

Considering the goals and methods of AI, AI appears a natural so-
lution for the ABM challenges described above. Although the ability to 
create truly ‘intelligent’ agents is obviously extremely relevant to ABM, 
most agent-based models do not actually require agents with such a high 
degree of intelligence. The contribution of AI to ABM is most keenly felt 
by developments that are more commonly used in data science such as 
machine learning: regression, neural networks, reinforcement learning, 
etc. 

However, progress has been slower than expected, with data limi-
tations being one of the most fundamental reasons. As most AI methods 
that could be employed to build ‘intelligent’ agents require large 
amounts of (often individual level) data, and such sources were not 
readily available in the past. Alongside the methodological de-
velopments that are emerging under the banner of AI, there has been 
another transformative change that has fostered the success of AI-related 
developments and is directly relevant to ABM: the emergence of big 
data. 

6.2. Opportunities from big data 

The advent of big data may provide a solution for using AI to nourish 
ABMs. The usefulness of big data should be highlighted in understanding 
agent-based complex systems. As noted, we have increasing amounts of 
individual level data, but a challenge remains in how to link disparate 
data sets and extract useful information and insights offered by these 
data. It is not only burdensome in obtaining, storing, cleaning, or mining 
such new forms of data, but there are also ethical problems with sources 
such as GPS telemetry, social media, and remote sensing, when we aim 
at revealing detailed information about individual actions or local pro-
cesses. Furthermore, it may be more challenging to resolve biases from 
big data than from carefully crafted traditional data. The majority of 

published applications use more traditional data types, which is most 
likely due to the fact that modelers are more comfortable with manip-
ulating traditional sources of data (e.g., census data, various sample data 
(Robinson et al., 2007)) rather than mining new forms of data, or 
consider these new sources of data as too noisy, biased, or inaccurate. 

Despite these challenges, big data may provide us with new avenues 
with which to explore how people perceive, use, and react to events in 
the spaces around them, and the potential to incorporate these obser-
vations into our models in near real time. Moreover, many of these 
sources of data allow us to examine connections between people, or-
ganizations, and space, thus offering a new perspective with which to 
construct artificial worlds, build environmental layers, and derive be-
haviors that motivate agents to make certain choices and take certain 
actions. 

Such data (micro-data mostly) driven models, including ABMs, may 
suffer from a serious drawback: they are heavily data-driven or data- 
centered with little consideration of theory. As a result, it is almost 
impossible to reproduce model results or to interpret them. For instance, 
Othman et al. created an ABM of the rail network in Singapore, which 
used only train ticket purchasing data as its input (Othman et al., 2015). 
There is an implicit assumption that models built using new forms of 
micro-data will capture the essential processes that are taking place in 
these systems. However, ABMs that represent dynamical processes as 
snapshots in time can be misleading (Hassan et al., 2008). This leads to 
another weakness of many micro-data driven models: without actually 
knowing much about the important processes that need to be captured, 
it is an almost impossible task to build models that are representative of 
the “real” world and generate meaningful results. Yet modern data sci-
ence, especially combined with artificial intelligence, may help sub-
stantially address this challenge. 

6.3. Opportunities from qualitative data 

Another prominent issue is the lack of using qualitative data, 
particularly ethnographic data (such as text, images, videos, and audio 
documents) in ABM (Agar, 2005); for exceptions see the work by 
Lindkvist et al. and Schulze et al. (Lindkvist et al., 2017; Schulze et al., 
2017). This trend matches the basic idea of “pattern-oriented modelling” 
(Grimm et al., 2005; Grimm and Railsback, 2012b; Railsback and 
Grimm, 2019) where a combination of several qualitative (or “weak”) 
patterns, which a model is supposed to reproduce, can be as effective or 
even more so than using a single, highly detailed pattern to reject un-
suitable submodels and parameter combinations. A typically weak, but 
still quantifiable, pattern refers to a situation in which certain varia-
bles—for example population size, average wealth, average and higher 
moments of age, or time needed to recover from a disturbance even-
t—stay within certain intervals. 

An emerging literature has noted that ethnography can be system-
atically used to inform both functions of social processes and decision 
making rules within ABMs, provide insight into selecting outcome var-
iables for analysis, increase ABM quality and empirical accu-
racy—especially in representing human decision making and social 
systems (Tubaro and Casilli, 2010). For instance, the Modelling Agent 
systems based on Institutional Analysis framework (MAIA) has been 
used for participatory ABM development with ethnographic data 
(Ghorbani et al., 2015). Although Yang and Gilbert developed guidelines 
for ethnographically informed ABMs, there remains a need to more 
broadly apply and refine both the MAIA framework and modeling 
guidelines (Yang and Gilbert, 2008). 

Increasing the use of qualitative data is challenging as few re-
searchers are competent in both ABM building and qualitative ethno-
graphic data collection and analysis (Tubaro and Casilli, 2010). 
Addressing this challenge requires either training new interdisciplinary 
ABM researchers or increasing collaboration among quantitatively and 
qualitatively trained researchers. Further, qualitative data are often seen 
as “lacking rigor” and there is a need to bridge the cultural gap between 
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quantitative and qualitative researchers. Regardless, agent-based mod-
elers and qualitative researchers share the overlapping goal to under-
stand mechanisms and processes in social systems (Yang and Gilbert, 
2008), making increased collaboration a compelling means to 
strengthen ABMs’ representation of the system(s) and social processes. 

Methodological challenges arise in areas such as translating quali-
tative data to quantitative model parameters and model generalization 
from inherently context-specific ethnographic data. When extracting 
patterns and identifying thresholds or multipliers from qualitative data 
such as field notes from participant observation, there will inevitably be 
instances of “unjustifiable, ‘magic’ constraints in the code” (Yang and 
Gilbert, 2008, p. 7). Further, there will be places where the code must be 
made more precise or concrete than the context of the qualitative data 
would allow. When faced with the challenge of defining parameters 
based on qualitative data, the most important consideration is not the 
specific numbers, but on whether the numbers can reproduce or repre-
sent the patterns identified in the qualitative data. Then, as with any 
ABM, the impact of parameter variations should be addressed via 
sensitivity analysis and discussed in the context of the ethnographic 
case, or ideally, cases (Yang and Gilbert, 2008). 

6.4. Opportunities from data science 

The field of data science refers to the use of scientific methods, 
programming tools, and appropriate data infrastructures to derive 
insight from data that can lead to a better understanding of some un-
derlying phenomena. Successful data science methods or techniques are 
emerging in many areas of research or empirical applications. For 
example, convolutional neural networks (CNNs) have demonstrated 
success in classifying or segmenting hyperspectral satellite imagery (Ma 
et al., 2019) and detecting targets from aerial vehicle imagery (Vidal-
Mata et al., 2020). Recurrent neural networks (RNNs) have been a 
popular option for time series forecasting, with vast applications ranging 
from modeling COVID-19 transmission (Chimmula and Zhang, 2020) to 
upcoming earthquake prediction. Graph neural networks (GNNs) 
recently emerged to model predictive tasks defined over a graph or a 
network (Kipf and Welling, 2016) such as to capture the complex spatial 
patterns underlying graph-structured geospatial data (Zhu and Liu, 
2018), or to model the information propagation or event prediction in a 
social network (Fan et al., 2019). 

Many above data science techniques, with essential contribution 
from artificial intelligence, data analytics, and high-performance 
computing, can be extremely valuable as a means of deriving insight 

from data to inform the basic structure of a model (i.e., to provide 
empirical support for underlying theories), as well as to calibrate and/or 
validate agent-based models. Crooks and Wise demonstrate how 
crowdsourced spatial data can be used to better understand the real- 
world situation after a humanitarian crisis and use that new informa-
tion to inform an agent-based model to support relief efforts (Crooks and 
Wise, 2013). Similarly, Crols and Malleson use real-time footfall data, 
coupled with an agent-based model, to estimate the demographics of 
visitors to a town center (Crols and Malleson, 2019). Even deep gener-
ative models have been introduced to synthesize high-fidelity data 
samples with realistic representations of the underlying spatial corre-
lation structure for GIS applications (Klemmer et al., 2019). Below we 
briefly review two kinds of machine learning. 

Machine learning via regression: In addition to providing a means to 
generate data that can be used to calibrate and validate agent-based 
models, big data and associated data science techniques can also be 
used to improve the behavior of agents. One of the most well-known 
data science techniques is machine learning (ML). As a subfield of 
artificial intelligence, ML refers to a suite of algorithms that have a 
generic structure but can be parameterized to detect relationships in 
data through a process of “training”. Specifically, ML extracts patterns 
and learns accurate predictive models, from (often) massive data, 
without being explicitly programmed—put another way, ML learns a 
predictive function from data. Training involves feeding data to the al-
gorithm so that it can estimate the parameter values that best allow it to 
distinguish between different patterns in the data. ‘Supervised’ ML al-
gorithms are provided with data that have already been labeled, so the 
aim of the training process is to identify which input values lead to a 
given output. Probably the most widely used supervised machine 
learning technique is linear regression. A regression equation typically 
has the form: 

y = α + β1x1 + … + βnxn + ϵ  

where y is the dependent variable to be predicted and x1... xn are the 
independent variables. The model is trained with data so that the pa-
rameters α and βs (s = 1, 2⋯ n) can be estimated. In that way the generic 
model structure can be parameterized to detect relationships in vastly 
different data sets. Regression equations are commonly used to better 
understand a particular phenomenon–e.g., to provide empirical support 
for a given theory–and use this information to inform an agent-based 
model, but they can also be used directly to control the behavior of 
the agents. For example, Zhang et al. present an agent-based model of 

Fig. 3. Structure of neural network.  
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solar panel adoption that includes agents whose behavioral choices, 
rather than being programmed directly, are determined through the 
application of a regression model (Zhang et al., 2016). 

Machine learning via neural networks: In recent years, more advanced 
machine learning techniques have evolved to model non-linear patterns 
that cannot be represented by standard regression techniques. Of these, 
neural networks have emerged as one of the most versatile algorithms. A 
neural network consists of layers of nodes that are connected by links 
(Fig. 3). As input data are fed into the algorithm, nodes receive messages 
from parent (i.e., message sending) nodes and ‘fire’ messages to their 
child (message receiving) nodes depending on whether the messages 
that they receive as input are greater or lesser than some threshold. Like 
a regression equation, these thresholds are parameters that need to be 
optimized. A process called ‘back-casting’ allows the neural network to 
estimate optimal values for these parameters from training data. 

Neural networks were inspired by the structure of the brains of an-
imals, so are of obvious interest to agent-based modelers. It is feasible 
that rather than attempting to define decision rules for agents by hand, 
each agent could be implemented with their own neural network in a 
similar way to Zhang et al.’s agents who had their own regression 
equations (Zhang et al., 2016). Then the process of calibrating the model 
would involve optimizing the neural networks for all the agents. How-
ever, the uses of neural networks to control the behavior of agents 
directly are relatively rare. This could be because the process of cali-
brating a model could be extremely difficult: a single neural network 
typically requires very large volumes of training data, so a model that 
consists of large numbers of independent neural networks (one per 
agent) would be very challenging indeed. Or perhaps they are not seen 
as attractive because it is very difficult to interpret why a neural network 
makes its predictions. 

A GNN typically learns node representations by recursively aggre-
gating information from their neighborhood nodes. Classical GNN tasks 
include graph classification, e.g., molecular structure classification 
(Ying et al., 2018), node classification (e.g., publication classification in 
an article network (Karimi et al., 2019; Kipf and Welling, 2016), link 
prediction (e.g., predicting integrations in a social networks (Zhang and 
Chen, 2018)), and collaborative filtering (e.g., recommendation systems 
like Amazon or Netflix (Wang et al., 2019)). Most population-level in-
teractions come naturally in the form of graphs and can be modeled as 
graph edges. For example, in geospatial data, spatial objects can be 
represented as nodes and their topological/attribute relationships are 
represented as links, making GNNs the natural model choice. Further-
more, GNNs can be cascaded with other models such as CNNs, for joint 
information extraction on the individual level (though CNNs or so), and 
interaction modeling on the population level (through a GNN). 
Furthermore, GNNs can be cascaded with other models such as CNNs, 
for joint information extraction on the individual level (though CNNs or 
so), and interaction modeling on the population level (through a GNN). 

A concrete example of using GNNs to derive behavioral rules of 
networked entities can be found in a recent application in the autono-
mous flocking of multi-agent robot swarms. The authors consider a 
decentralized network of moving robot agents: each agent is viewed as a 
node in a dynamic graph with two agents within a communication range 
connected by an edge, and changes in this one graph are determined by 
both GNN and RNN. A GNN is applied on top of the graph for aggre-
gating and forecasting the population-level behavior patterns. Further, 
each individual agent (node) can perceive the visual environment and 
extract features by its own convolutional neural network (CNN), which 
processes each drone’s visual input like “eyes”. Note that each node or 
agent has its own CNN. The resulting model is then a CNN-GNN stack 
and can be trained from end to end. 

Similar ideas can be potentially extended to handling any dynamic 
network with semantically rich nodes, such as forecasting COVID-19 
transmission by exploiting the multimedia information from a social 
network, where people are the nodes, and person-person contacts are 
the links that change over time. This would enable modelers to use a 

unique RNN for each agent and model each person’s (nodes) health 
status over time. An RNN can be a naïve baseline itself, without 
considering population influences, while a GNN can be used to model 
the population-level interactions (edges) that change over time too. 

6.5. Agents learn and form behavior 

One area where neural networks are offering a promising route 
forward is through allowing agents to learn about their environment for 
themselves. A valuable feature of an agent-based model is that the 
behavior of agents can tell us something about the underlying system, 
but we lose this advantage if the agents themselves are black boxes and 
we cannot understand why agents make decisions as they do. 

We can better understand why agents make their decisions through 
methods such as reinforcement learning, where positive behaviors are 
“learned” through repeated exposure to an environment through 
building and refining deep neural networks. Such networks may capture 
uncertainty and incomplete knowledge representations. With large- 
scale individual tracking data, it may be possible to teach agents how 
to navigate spaces as if they were humans. These ‘learning’ agents may 
both better reflect the actual behaviors of humans and model their 
behavior under changing conditions. Progress is rapidly being made 
elsewhere (Banino et al., 2018), but integration into geographical 
modelling remains a challenge (but see, e.g., work by Abdulkareem et al. 
(Abdulkareem et al., 2019) using Bayesian Networks to help simulate 
complex decision-making with regards to potential cholera infection). 

Agent behavioral learning can also happen with the aid of big data. 
For instance, with time series data of particles’ mass, charge, and 
geographic positioning information data, GNN can be trained to derive 
closed-form, symbolic expressions of Newtonian force laws and Hamil-
tonians (Cranmer et al., 2020). The authors begin with a starting graph 
(say with n1 particles and n2 edges describing their relationships). The 
authors use 1) an edge model to represent links/edges among all n1 
particles—here is the key of their work: there are many potential 
equations (they aim to find them by GNN; they are expressed as 
inductive biases), which represent potential math functions of Newto-
nian force laws. Here the goal is to use GNN to select function type and 
fine-tune the value of all parameters in the corresponding function (say 
one of the functions is named f1). Then, the authors use 2) a node model, 
in which each node (particle) receives all the messages from all the rest 
(n1–1) of the particles with the magnitude of each message (i.e., amount 
of gravity) calculated from the candidate function (say f1). The authors 
use 3) a global model to aggregate and update the status of all messages 
and nodes over time. 

Below is the selection process: Once a GNN-based function (e.g., f1, 
plus number of parameters as part of complexity) is used, the authors 
calculate the status of all particles and compare them to the observed 
data of these particles (i.e., the time series of particle data or spatial 
panel data mentioned at the start of this text). A certain measure 
(normalized mean square error or NMSE) is used to choose among the 
different alternative functions (plus parameter values) with model 
complexity (number of parameters and operators) in control. The au-
thors use the Occam’s razor rule to choose the final function (or sym-
bolic regression outcome): when the NMSE is large, the same, or close, 
one with the least amount of complexity is the winner. Finally, the au-
thors found that the symbolic closed-form model derived from ML is 
what Newtonian force laws express. 

7. Significance 

This article aims to air critical state-of-the-art ABM issues and pro-
vide a venue to seek resolutions. First, we bring several compelling ABM 
problems and challenges to the forefront at the right timing with insight 
from key community leaders and practitioners. At a time in which the 
use of ABMs is exploding, but maintains a series of unresolved chal-
lenges, this paper has used input from around 100 exceptional scientists 
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with very diverse backgrounds (http://complexities.org/ABM17/), to 
depict the state-of-the-art about ABMs, providing inspirations and di-
rections for many related fields. To break new ground, we have devel-
oped a set of guidelines for modelers and reviewers and for novices (See 
supplementary information). At the same time, we provide a comparison 
of commonly used ABM toolkits and software packages given the exis-
tence of 85 + platforms or toolkits for ABM, and recommendations for 
ABM/ACS education (See supplementary information). Furthermore, we 
provide a review of the use of ABM in coping with COVID-19 challenges. 

This article is not only a pile of papers, facts, strengths, and chal-
lenges related to ABM, but also aims to provide new insights into the 
field of modeling ACS, point out impending tasks, and envision long 
term directions of ACS studies. In the short term, we show the huge 
opportunities provided by data science and artificial intelligence (Sec-
tion 6). In the long run, we call for an AI-informed ACS science, which 
warrants a transdisciplinary approach. Under the transdisciplinary 
approach, all relevant disciplines are fused more seamlessly to detect 
and express mechanisms that have generated macro-level outcomes 
(Fig. 4). Historically, science benefited from the so-called multidisci-
plinary approach (Fig. S4A), which features a concurrent, parallel 
investigation of the same phenomena or subject from many relevant 
disciplinary perspectives or an integration of them (Conte and Paolucci, 
2014). An advance in scientific inquiry is to invest in interdisciplinary 
efforts, which aim to interweave knowledge, theory, and methods from 
many relevant disciplines, performing multilevel and modular modeling 
(Fig. S4B). Under transdisciplinary efforts, artificial intelligence, data 
science, and domain knowledge will be interweaved to generate path-
ways or mechanisms that are more meaningful, effective, and less 
error-prone in understanding and envisioning ACS (Fig. S4C). 

With a clearer picture of ABM strengths, weaknesses, available re-
sources, and impending tasks and future directions, more potential users 
or developers, and even commercial companies, will be attracted to 
engage more with the ABM community, allocating necessary resources 
to the science, technology, and application of ABM, enhancing ABM 
software and capabilities. 
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