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ABSTRACT
Brown trout (Salmo trutta) are ecologically and socioeconomically
important throughout the world. As such, understanding population
dynamics is critical for brown trout management. Brown trout support a
valuable recreational fishery in the Driftless Ecoregion of southeast
Minnesota, where growth (i.e. mean back-calculated length-at-age) varies
among streams but the relative effects of landscape (i.e. watershed level)
and local (i.e. reach-level) factors on growth are unclear. Thus, the
objective of this study was to evaluate effects of drainage area on
individual brown trout growth relative to the effects of local factors (i.e.
thermal regime, riparian land cover, relative abundance) to provide
managers with strategies for increasing growth and the abundance of
large individuals in southeast Minnesota streams. Linear mixed-effects
models with combinations of these factors were compared using
information-theoretic model selection and multimodel inference. Age,
which explained 63% of variation in growth, differed among streams for
age-1 and age-2, but not age-3 brown trout. Model averaging indicated
growth of age-1 and age-2 individuals increased primarily with drainage
area and secondarily with forested riparian area. Brown trout relative
abundance did not affect growth, so it is realistic for managers to sustain
high-quality, high-quantity brown trout populations. Overall, this synthetic
landscape and local study advances brown trout management by
illustrating that systems with large watersheds and forested riparian zones
are suitable for management strategies (e.g. harvest regulations, habitat
restoration) to increase growth and the abundance of large brown trout in
socioeconomically valuable southeast Minnesota streams.
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Introduction

Brown trout (Salmo trutta) are ecologically and socioeconomically important throughout the world
(Budy et al. 2013). Research on individual and population-level growth dynamics of brown trout
has occurred at local, regional, national, and international scales across time spans ranging from
days to decades (Nicola & Almod�ovar 2004; Almod�ovar et al. 2006; Logez & Pont 2011; Dodson
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et al. 2013). In the United States, research on brown trout growth (defined herein as mean
back-calculated length-at-age, MBLAA) has been widely distributed throughout the western, mid-
western, and eastern portions of the country (Wills 2005; Baird et al. 2006; Rasmussen et al. 2011).
In the Driftless Ecoregion of southeast Minnesota, stream-dwelling brown trout support an impor-
tant recreational fishery that provides $1.1 billion in annual economic benefit to local communities
(Trout Unlimited 2008). Large brown trout are highly valued by anglers in this region (Vlaming &
Fulton 2002; Blann 2004), so it is important to understand factors that influence growth so that fish-
eries managers can maintain or improve individual growth and thereby sustain or increase the
abundance of large brown trout in southeast Minnesota streams.

Brown trout presence/absence, population density, and biomass vary with landscape variables
such as surficial geology, catchment area, and land use in southeast Minnesota streams (Blann 2000,
2004; Nerbonne & Vondracek 2001; Zimmerman et al. 2003). In contrast, research on brown trout
growth has focused on effects of local factors such as intraspecific density (negative effect on growth
in one stream; Newman 1993) and prey availability as mediated by temperature (positive effect on
growth in multiple streams; Dieterman et al. 2004). Thus, effects of landscape variables (e.g. drainage
area) on growth and their influence relative to local factors (e.g. thermal regime, riparian land cover,
brown trout relative abundance) are unanswered research questions.

Relative to smaller streams, those with larger drainage area have greater habitat volume (Jonsson
et al. 2001; Parra et al. 2009) and secondary production (Arismendi et al. 2012), conditions that may
increase brown trout growth in southeast Minnesota streams. In addition, groundwater input
decreases stream thermal sensitivity (i.e. relative susceptibility to temperature change) by buffering
cold winter and warm summer temperatures (Nicola & Almod�ovar 2004; Krider et al. 2013), which
may augment growth by increasing prey availability (Dieterman et al. 2004) and foraging efficiency
(Elliott et al. 1995). In southeast Minnesota streams, brown trout biomass increases with forested
riparian area and decreases with cultivated and grassland riparian area (Blann 2000, 2004). The
mechanisms by which forest vegetation promotes brown trout biomass production (e.g. increased
prey availability and woody habitat, decreased temperature due to shading, reduced sediment ero-
sion and nutrient enrichment; Baxter et al. 2005; Vondracek et al. 2005) may also increase growth.

The objective of this study was to evaluate effects of a landscape variable (i.e. drainage area) on
individual brown trout growth relative to the effects of local factors (i.e. thermal regime, riparian land
cover, brown trout relative abundance) to provide managers with new information relevant for
increasing growth and the abundance of large brown trout in socioeconomically valuable southeast
Minnesota streams. We hypothesized that brown trout growth varies among streams in proportion to
drainage area because habitat volume, water temperature, and prey availability generally increase with
watershed size (Jonsson et al. 2001; Arismendi et al. 2012). We predicted that growth is negatively
associated with thermal sensitivity as relatively warm summer and cool winter temperatures in ther-
mally sensitive streams are less favorable for growth than stable temperatures in systems with ground-
water-driven thermal buffering (Elliott et al. 1995; Dieterman et al. 2004). Moreover, we expected that
growth would follow patterns in brown trout biomass and thus increase with forested riparian area
and decrease with cultivated and grassland riparian area (Blann 2000, 2004). Finally, we hypothesized
that growth is not associated with brown trout relative abundance due to exceptionally high produc-
tivity and prey availability in southeast Minnesota streams (Dieterman et al. 2012).

Methods

The study occurred in the Driftless Ecoregion of southeast Minnesota, USA. This region remained
unglaciated during the most recent Wisconsin glaciation and was characterized by numerous val-
leys, wooded slopes, and prairie bluffs punctuated by row-crop (e.g. corn, soybean) agricultural
fields on hilltops and valley bottoms (Vondracek et al. 2005). Dominant land cover types in the
study region were, in descending order, row-crop agriculture, forest, grassland/pasture, and urban
(Blann 2000, 2004).
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Brown trout were collected from 150-m reaches in seven streams in winter 2010�2011 using a
backpack electrofisher (LR 20B, Smith Root, Inc.; http://smith-root.com; Figure 1). Sampling
occurred in groundwater-dominated streams (i.e. groundwater-driven thermal buffering was suffi-
cient to prevent over-winter freezing) during three time periods (November�December 2011,
January�February 2011, and March�April 2011). Sampling spanned an array of habitats (pools, rif-
fles, runs) so that brown trout could be collected across an age range conducive for growth analysis.
In each stream, total length and mass of age 1�3 fish (� 150 individuals) were measured and a ran-
dom subset (52�82 individuals) was selected for growth analyses (Table 1). Four to eight scales
were removed from the left posterior dorsal region of each individual and mounted on microscope
slides with cover slips and PermountTM glue. Mounts were magnified on a microfiche reader, photo-
graphed, and assessed using digital age and growth software (Fish BC 3.0). Ageing and growth anal-
ysis occurred along the longest axis of the highest resolution scale. Age correspondence between two
independent readers was >90%.

Growth (MBLAA) was calculated for each stream using the Fraser�Lee method (Quist et al.
2013):

Li D Si
�½ðLc�aÞ=Sc�C a

where Sc is the scale radius at capture, Lc is the fish length at capture, Si is the scale radius at time i, Li
is the fish length at time i, and a is the intercept of the scale radius�fish length regression equation
(i.e. 10; Ojanguren & Bra~na 2003). Brown trout growth metrics (MBLAA-1, MBLAA-2, and
MBLAA-3 for ages 1, 2, and 3, respectively) were tested for normality and homoscedasticity in pro-
gram R (version 2.13.2; R Development Core Team 2013) and compared among streams using one-
way analysis of variance (ANOVA) with a post hoc Tukey’s Honestly Significant Difference (HSD)
test.

Drainage area for each stream was measured using the United States Geological Survey Stream-
Stats interactive map application (USGS 2015; Table 2). Thermal sensitivity was expressed as the

Figure 1. University of Minnesota researchers B. Vondracek (right) and W. E. French sampling brown trout in the Driftless Ecore-
gion of southeast Minnesota.
Image courtesy of University of Minnesota Conservation Biology Graduate Program.
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slope of air�water temperature regressions developed in a companion study (Krider et al. 2013)
using 1998�2009 air temperatures and 2007�2009 water temperatures (Table 2). Slopes closer to
one indicated higher thermal sensitivity (i.e. lower groundwater input) and a greater effect of air
temperature on water temperature, and vice versa. Two-way ANOVA was used to test whether
air�water temperature regression slopes were more variable among streams than among years and
thus reliable indices of thermal sensitivity. Riparian land cover (% forested, % grassland, % culti-
vated) was measured on both sides of each stream reach using the 2011 National Land Cover Data-
base in ArcMap 10.2 (Table 2). Riparian zone width was defined as 100 m to be consistent with
previous stream research in southeast Minnesota (Vondracek et al. 2005). Forested land cover
included areas where trees were >5 m tall and comprised >20% of total vegetation cover (NLCD
2015). Grassland land cover included areas in which graminoid or herbaceous vegetation comprised
>80% of total vegetation cover. Cultivated land cover encompassed agricultural areas used for pro-
duction of corn and/or soybeans that comprised >20% of total vegetation cover. Brown trout rela-
tive abundance
(i.e. catch per unit effort, individuals per hour; Table 2) in November 2010 was used as a density
index because single-pass electrofishing (rather than multi-pass depletion sampling) was conducted.

Linear mixed-effects models were developed to determine which landscape and/or local factors
explained among-stream variation in brown trout growth. Specifically, random intercept and slope
models (Zurr et al. 2009) were constructed to assess the relative influence of drainage area (Area),
thermal sensitivity (TS), riparian land cover (% forested (For), % grassland (Grass), % cultivated
(Cult)) and brown trout relative abundance (RA) on growth of age classes that exhibited among-
stream variation in MBLAA. Model intercepts were allowed to vary by age and slopes to vary by
stream (including Area as a random effect was analogous to modeling among-stream differences in
growth). For all predictor variables, fitted versus residual plots and qqnorm plots were created in
program R to evaluate assumptions of normality and homoscedasticity, and predictors were ln-

Table 1. Brown trout sampling information (UTM coordinates; elevation (m); number of age-1, age-2, and age-3 individuals) and
growth metrics (mean back-calculated length-at-age-1 (MBLAA-1), age-2 (MBLAA-1), and age-3 (MBLAA-3)) in southeast Minnesota
streams.

Stream UTM Elevation Age-1 Age-2 Age-3 MBLAA-1 MBLAA-2 MBLAA-3

Beaver 577,026, 4,889,127 219.9 52 16 12 126.0 (2.4)d 201.6 (3.2)d 266.3 (2.8)
Forestville 561,631, 4,831,893 324.8 28 13 39 144.8 (3.8)a,b 228.7 (3.7)a,b,c 278.7 (4.3)
Gribben 587,631, 4,839,986 262.8 39 38 4 129.6 (2.6)c,d 203.1 (3.8)d 281 (14.1)
Hay 532,802, 4,925,099 259.0 30 18 4 140 (3.2)a,b,c 215.6 (3.9)c 279 (5.5)
MBW 572,079, 4,876,366 304.1 24 13 20 132.1 (4.3)b,c,d 238.1 (5.2)a,b 284.8 (7.7)
SBW 581,763, 4,880,221 235.9 38 18 26 149.3 (3.5)a 239.5 (3.7)a 289.6 (5.5)
Winnebago 625,126, 4,823,555 239.9 42 31 7 123.4 (3.5)d 220.3 (6.3)b,c 304.5 (7.6)

Note: Different letters (a, b, c, and d) denote significant differences (Tukey’s Honestly Significant Difference test, p < 0.05)
among streams within growth metric categories (e.g. MBLAA-1, MBLAA-2). MBWD Middle Branch Whitewater, SBWD South
Branch Whitewater.

Table 2. Landscape and local factors in southeast Minnesota streams.

Stream Area TS % forested % grassland % cultivated RA

Beaver 29.1 0.44 10 85 5 90
Forestville 41.9 0.21 55 43 2 49
Gribben 20.4 0.25 45 45 10 151
Hay 54.6 0.39 15 35 50 80
Middle Branch Whitewater 78.2 0.52 15 45 40 44
South Branch Whitewater 202.1 0.50 35 50 15 80
Winnebago 61.6 0.34 13 82 5 98

Note: Area D drainage area (km2), TS D thermal sensitivity (air�water temperature regression slope), % forestedD forested
riparian percentage, % grassland D grassland riparian percentage, % cultivated D cultivated riparian percentage, and
RA D brown trout relative abundance (individuals per hour).

4 A. K. CARLSON ET AL.

D
ow

nl
oa

de
d 

by
 [

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
],

 [
A

nd
re

w
 C

ar
ls

on
] 

at
 0

8:
20

 2
5 

A
pr

il 
20

16
 



transformed where appropriate. All models followed the basic form of the global model with associ-
ated assumptions (Zurr et al. 2009):

Growthi D ai C Areai CTSi C RAi C Fori C Grassi C Culti C ð1 C Areai jAgeiÞ C ei (1)

bi DNð0; DbÞ
ei DNð0; DeÞ

b1, …, bn, e1, …, en, independent

where a represents the model intercept and e denotes the model error in each individual stream i.
The first assumption was that the random effects bi were normally distributed with mean 0 and vari-
ance Db. The second assumption was that the errors ei were normally distributed with mean 0 and
variance De. The third assumption was that bi and ei were independent.

A priori models (n D 15; Table 3) were developed as biologically driven working hypotheses
(Chamberlain 1965) regarding effects of landscape and local factors, as well as their interactions, on
brown trout growth (see Introduction). All 15 models represented permutations of �2 of these
hypotheses. Using an information-theoretic approach, models were compared with Akaike’s infor-
mation criterion corrected for small sample size (AICc; Burnham & Anderson 2002) calculated in
program R. Full-model averaging (Lukacs et al. 2009) was performed on models with Di � 2 (i.e.
within two AICc units of the most parsimonious model) to make robust inferences from all infor-
mative models (i.e. multimodel inference; Burnham & Anderson 2002).

Results

Growth varied among streams for age-1 (F7, 544 D 8.66; p < 0.01) and age-2 (F7, 361 D 12.57; p <

0.01), but not age-3 (F6, 109 D 2.06; p D 0.07) brown trout (Table 1). MBLAA-1 was the highest
(149.3 mm) in the South Branch of the Whitewater River (SWW) and the lowest in Winnebago
Creek (123.4 mm, 17.3% smaller) and Beaver Creek (126.0 mm, 15.6% smaller; Table 1). MBLAA-2
was the highest (239.5 mm) in SWW and the lowest in Beaver Creek (201.6 mm, 15.8% smaller)
and Gribben Creek (203.1 mm, 15.2% smaller). Air�water temperature regression slopes were

Table 3. Results of linear mixed-effects modeling to explain variation in brown trout growth among southeast Minnesota streams
as a function of stream drainage area (Area, km2), stream thermal sensitivity (TS, air–water temperature regression slope), % for-
ested riparian area (For), % grassland riparian area (Grass), % cultivated riparian area (Cult) and brown trout relative abundance
(RA, individuals per hour).

Model N K AIC AICc DAICc wi

GrowthD Area C For C RA C (1 C AreajAge) 7 5 10,323.79 10,323.92 0.00 0.46
GrowthD Area C For C Grass C RA C (1 C AreajAge) 7 6 10,325.24 10,325.41 1.49 0.22
GrowthD Area C Grass C RA C (1 C AreajAge) 7 5 10,326.34 10,326.47 2.55 0.13
GrowthD Area C TS C Grass C (1 C AreajAge) 7 5 10327.85 10327.99 4.07 0.06
GrowthD Area � RA C For C (1 C AreajAge) 7 4 10,329.22 10,329.38 5.46 0.03
GrowthD Area C TS C Grass C RA C (1 C AreajAge) 7 6 10,329.40 10,329.57 5.65 0.03
GrowthD Area � RA C For C Grass C (1CAreajAge) 7 5 10,329.84 10,330.05 6.13 0.02
GrowthD Area � RA C Grass C (1 C AreajAge) 7 4 10,330.95 10,331.12 7.20 0.01
GrowthD Area C TS C RA C (1 C AreajAge) 7 5 10,331.53 10,331.66 7.74 0.01
GrowthD Area C TS C For C RA C (1 C AreajAge) 7 6 10,331.78 10331.95 8.03 0.01
GrowthD Area C TS C (1 C AreajAge) 7 4 10,331.92 10,332.03 8.11 0.01
GrowthD Area C TS C For C Grass C (1CAreajAge) 7 6 10,332.02 10,332.19 8.27 0.01
GrowthD Area C TS C For C Grass C RA C (1CAreajAge) 7 7 10,333.01 10,333.22 9.30 0.00
GrowthD Area C TS C For C Grass C CultC RA C (1 C AreajAge) 7 8 10,333.01 10,333.22 9.30 0.00
GrowthD Area C RA C (1 C AreajAge) 7 4 10,337.36 10,337.47 13.55 0.00

Note: N D sample size (number of streams); K D number of parameters (fixed effects plus intercept and error); AIC D Akaike’s
information criterion; AICc D AIC corrected for small sample size; DAICc D difference in AICc between each model and the
most supported model; wi D Akaike weight (relative strength of evidence for each model).
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reliable indices of stream thermal sensitivity as they varied significantly among streams (F6, 22 D
16.43; p < 0.01) but not among years within streams (F1, 22 D 0.01; p D 0.91).

Linear mixed-effects modeling indicated that brown trout age explained the greatest percentage
(63%) of spatial variation in growth. A model including drainage area, forested riparian area, and
brown trout relative abundance was most supported (Akaike weight (wi) D 0.46; Table 3). An alter-
native model including these factors plus grassland riparian area was also supported (Di D 1.49;
wi D 0.22; Table 3). For age-1 and age-2 brown trout, individual models and the model-averaged
estimator included a large growth effect of drainage area (C); small effects of forested riparian area
(C), grassland riparian area (¡), and relative abundance (¡); and no effect of cultivated riparian
area (Table 4). The positive association between drainage area and growth was stronger for age-2
than age-1 brown trout (Table 4).

Discussion

Brown trout growth was most influenced by age, followed by a landscape variable (drainage area)
and a local factor (forested riparian area). Growth declined with age as younger, smaller brown trout
have a greater scope for growth and invest more energy in production of somatic tissue than older,
larger individuals. In addition, growth increased with drainage area, as documented in previous
studies (Jonsson et al. 2001; Lobon-Cervia 2003, 2005; Dieterman et al. 2006; Parra et al. 2009). The
mechanism for this association may relate to spatial heterogeneity in brown trout age and size at
maturity (L’Abe�e-Lund et al. 1989; Olsen & Vollestad 2005). Drainage area influences local factors
(e.g. habitat volume, prey availability) that drive differential opportunity for growth in large or
higher opportunity systems and small or lower opportunity systems. It is likely that brown trout in
smaller streams with lower habitat volume and prey availability matured earlier than individuals in
larger systems that delayed maturation and continued growing amidst high-opportunity conditions.

Results from this study also indicate that forested riparian areas promote small increases in
brown trout growth compared to grassland and cultivated riparian areas in southeast Minnesota
streams. Wooded vegetation provides habitat (woody debris), mediates temperature, stabilizes
stream banks, reduces sedimentation, and delivers inputs of terrestrial invertebrates (Montgomery
1997; Lyons et al. 2000; Blann et al. 2002; Baxter et al. 2005), mechanisms that likely augmented
brown trout growth. In contrast, brown trout relative abundance, grassland and cultivated riparian
area, and thermal sensitivity had minor or nonexistent effects on growth. This supports conclusions
reached by Dieterman et al. (2012), who noted that limestone bedrock geology and agricultural
watersheds promote high productivity in southeast Minnesota streams such that typical brown trout
growth factors like prey availability, intraspecific density, social dominance are less important than
in other regions (Bohlin et al. 2002; Kaspersson & Hojeso 2009). Although thermal sensitivity did
not explain spatial variation in an annual index of growth (MBLAA), previous research indicated
late-winter brown trout condition (relative weight; Neumann et al. 2013) was positively associated

Table 4. Intercepts and coefficients for the two most parsimonious linear mixed-effects models and the model-averaged estimator
to explain variation in brown trout growth among southeast Minnesota streams.

Model wi Age Intercept Area For Grass RA

GrowthD Area C For C RA C (1 C AreajAge) 0.46 1 110.6 6.61 0.23 � ¡0.09
2 162.7 14.77 0.23 � ¡0.09

Global 136.6 10.69 0.23 � ¡0.09
GrowthD Area C For C Grass C RA C (1 C AreajAge) 0.22 1 119.9 6.23 0.16 ¡0.12 ¡0.08

2 172.5 14.26 0.16 ¡0.12 ¡0.08
Global 146.2 10.25 0.16 ¡0.12 ¡0.08

Model-averaged 1 76.9 4.39 0.14 ¡0.03 ¡1.08
2 112.3 9.89 0.14 ¡0.03 ¡0.06

Global 94.6 7.14 0.14 ¡0.03 ¡0.06

Note: wi D Akaike weight (relative strength of evidence for each model).

6 A. K. CARLSON ET AL.

D
ow

nl
oa

de
d 

by
 [

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
],

 [
A

nd
re

w
 C

ar
ls

on
] 

at
 0

8:
20

 2
5 

A
pr

il 
20

16
 



with groundwater input and negatively associated with thermal sensitivity in southeast Minnesota
streams (French 2014; French et al. 2014). Thus, the effect of thermal sensitivity on growth may be
the strongest in cold winter conditions. Fisheries managers can expect brown trout length to
increase primarily with drainage area and secondarily with forested riparian area. Moreover, it is
realistic for managers to sustain high-quality, high-quantity brown trout populations in the socio-
economically valuable southeast Minnesota streams studied herein because growth is not affected
by relative abundance. Thus, management strategies to increase growth and the abundance of large
brown trout (harvest regulations, habitat restoration) should be prioritized in larger, more forested
streams and need not account for density-dependent growth.
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