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Abstract 1 

Conservation policies are emerging in many places around the world, many of 2 

which involve payment for ecosystem services (PES) schemes.  PES schemes provide 3 

economic incentives for forgoing land uses that reduce the provision of ecosystem 4 

services.  The efficiency of such schemes depends not only on the ecosystem services 5 

provided by an area but also on the willingness of local people to forgo their land use 6 

activities.  Targeting land for enrollment in PES schemes on the basis of the potential 7 

provision of ecosystem services and on the willingness to forgo certain economic 8 

activities, may therefore improve the efficiency of these schemes. The objective of this 9 

study was to develop a targeting approach, based on three surrogates derived from 10 

remotely sensed and ancillary data, for identifying land to be enrolled in one of the 11 

largest PES schemes in the world: China‟s Grain-to-Green Program (GTGP).  The GTGP 12 

encourages farmers to return steep hillside cropland to forest by providing cash, grain and 13 

tree seedlings.  The three surrogates used in the targeting approach were slope index, 14 

cropland probability, and GTGP enrollment probability.  Combining these surrogates 15 

through Bernoulli trials allows targeting areas under cropland, with low opportunity costs 16 

for farmers and with potentially high soil erosion and landslide susceptibility.  Results of 17 

applying the targeting approach in a case study area (Baoxing County, Sichuan province, 18 

China) show that around half of the land currently enrolled is placed in areas with gentle 19 

slopes and tend to be located distant from forest areas.  This reduces the potential benefits 20 

obtained from the GTGP.  Targeting land using the proposed approach may double the 21 

benefits obtained from the program under the same budget, thus improving its efficiency. 22 

The approach may be applied to the entire GTGP implementation area in China and with 23 

proper modifications it may also be applicable to similar PES programs around the world.   24 
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1. Introduction 25 

The exponential growth of human population and its activities is threatening 26 

many ecosystems worldwide (Leakey and Lewin, 1995).  This has prompted the 27 

development of a multitude of conservation policies and actions (Liu and Raven, 2010).  28 

However, one of the greatest challenges is that many conservation actions affect the 29 

livelihood systems of numerous people.  Therefore, programs of payment for ecosystem 30 

services (PES) have emerged in many places around the world (Ferraro and Kiss, 2002).  31 

These programs provide incentives (usually as economic compensations in the form of 32 

land purchases, leases or easements) for forgoing economic activities that reduce the 33 

provision of ecosystem services (Ferraro, 2001; James et al., 1999).   34 

As conservation resources are limited globally (James et al., 1999), it is important 35 

to improve the efficiency of conservation investments in PES programs.  This requires 36 

targeting the land that provides crucial ecosystem services, while also fully compensating 37 

for the forgone economic activities of the local people managing such land (i.e., 38 

opportunity costs).  In developing countries, many people managing land that provides 39 

crucial ecosystem services tend to be economically and politically marginal.  Thus, the 40 

success and long-term sustainability of PES programs also depend on their contribution 41 

to poverty alleviation (Gauvin et al., 2010; Uchida et al., 2007).   As a consequence, the 42 

economic incentives provided through PES programs need to reach the poorest people, 43 

while also fully compensating for their forgone economic activities.  Targeting land 44 

parcels for inclusion in PES programs is thus needed for increasing the overall efficiency 45 

of these programs (Babcock et al., 1997).  However, due mainly to the lack of 46 

information on the suitability of different land parcels to be enrolled in PES programs, 47 
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targeting has rarely been used (Chen et al., 2010), particularly in developing nations such 48 

as China.   49 

China is not only the most populated nation on earth, but also has exhibited the 50 

fastest economic growth over the last three decades, has shown drastic environmental 51 

degradation during the same time period (Liu and Diamond, 2008), and has a government 52 

with a demonstrated ability to enact wide-ranging policies with relative rapidity.  For 53 

instance, the Grain-to-Green Program (GTGP; also referred to as the Sloping Land 54 

Conversion Program) is one of the largest forest restoration PES programs in the world 55 

(Liu et al., 2008; Uchida et al., 2005).  Providing cash, grain and tree seedlings, this 56 

program encourages farmers to return steep hillside cropland to forest in order to reduce 57 

soil erosion and landslide susceptibility.   By the end of 2005 more than 90 billion Yuan 58 

(1 USD ~ 8.2 Yuan in 2005) had been invested in the GTGP and by 2006 the net forest 59 

cover had increased ca. 2% within the areas of GTGP implementation (Liu et al., 2008).  60 

Despite the large areas of cropland involved, it has been shown that the effect of the 61 

program on China‟s grain production, food prices or food imports is small (Xu et al., 62 

2006).  While these reports suggest that the program has been successful, some studies 63 

indicate that there is room for improvement, since many enrolled areas are not necessarily 64 

located in steep slopes (Uchida et al., 2005; Xu et al., 2004).   In addition, while the 65 

program has achieved moderate success in poverty alleviation since it has been 66 

implemented mostly in fairly poor areas of China (Uchida et al., 2007), many farmers 67 

complained that they were not consulted prior to their enrollment in the program, and that 68 

the actual payment received did not always compensate their opportunity costs (Xu et al., 69 
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2004).  The program therefore needs to account for opportunity costs (Uchida et al., 70 

2005) to reduce the likelihood of farmers reconverting the land back to cultivation.   71 

Targeting land parcels for enrollment in the GTGP should then be based not only 72 

on the identification of cropland in the steepest slopes (i.e., exhibiting higher soil erosion 73 

and landslide susceptibility) but also in areas with the lowest opportunity costs for 74 

farmers, so that more land can be enrolled with the same GTGP budget.  However, 75 

knowledge of the opportunity cost is very difficult to acquire, particularly when the costs 76 

to obtain ecosystems services are heterogeneous across the landscape (Babcock et al., 77 

1996, 1997; Chan et al., 2006; Osborn et al., 1993).  In addition, due to a lack of a robust 78 

land market in China, it is impractical to obtain a true value of opportunity cost for each 79 

parcel to be enrolled, and assigning opportunity costs based on grouping farmers using 80 

some pre-defined criteria can be highly inaccurate (Adams et al., 2010).   However, 81 

opportunity costs can be correlated with the geographic location and the biophysical 82 

features of each parcel (Alix-Garcia et al., 2008; Cooper and Osborn, 1998; Ferraro, 83 

2003; Khanna et al., 2003), although this correlation has seldom included information on 84 

land holders (Chen et al., 2010).   85 

The overall objective of this article is to describe a targeting approach developed 86 

for identifying land parcels to be enrolled in PES programs.  This approach overcomes 87 

the dearth of information on individual land parcels, because it is based on the use of 88 

three surrogates derived from readily available spatial data layers acquired by space-89 

borne remote sensors, together with ancillary data.  The surrogates are: a slope index 90 

(surrogate of soil erosion and landslide susceptibility), cropland probability (surrogate of 91 

the likelihood of a land parcel to be under cultivation) and the probability of enrollment 92 
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in the PES program (surrogate of farmers‟ opportunity costs).  While these surrogates do 93 

not provide a complete picture of all the environmental benefits of a PES program, their 94 

combination through the targeting approach can be used to enhance the benefits obtained 95 

under the same budget.  This improves the overall efficiency of the PES program.   96 

Specific objectives of the study are to: (1) evaluate the efficiency of currently enrolled 97 

GTGP parcels in Baoxing County, China; and (2) propose the location of additional land 98 

parcels to be included in the program. 99 

 100 

2. Study area 101 

With a total area of ca. 3,114 km
2
, Baoxing County is located at the center of the 102 

UNESCO World Heritage Sichuan Giant Panda Sanctuary, in Sichuan Province, 103 

Southwestern China (Fig. 1).  This Sanctuary was established in August, 2006 (Li, 2010) 104 

mainly to promote the conservation of the habitat of giant pandas (Ailuropoda 105 

melanoleuca), which are recognized as a „national treasure‟ of China and a symbol for 106 

global biodiversity conservation efforts (Loucks et al., 2001; Viña et al., 2010).  The 107 

Sanctuary is home to more than 30% of the wild population of giant pandas (a total of 108 

approximately 1,600 individuals) (State Forestry Administration, 2006) and comprises 109 

the largest remaining contiguous area of giant panda habitat in the world (Li, 2010).   110 

In addition to the giant pandas, Baoxing county has a diverse flora and fauna, 111 

owing to its strong elevational gradient (Fig. 1).  Natural vegetation is dominated by 112 

evergreen and deciduous broadleaf forests at lower elevations (ca. 1,500 m) and 113 

subalpine coniferous forests at higher elevations (ca. 2,700 m).  The dense understory of 114 

these forests is dominated by bamboo species (e.g., Bashania faberi),  which are the 115 
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staple food of giant pandas (State Forestry Administration, 2006).  Baoxing County was 116 

the first place where the giant panda was discovered scientifically (Hu, 2001), but the 117 

county also supports many other endangered wildlife species (e.g., Neofelis nebulosa, 118 

Budorcas taxicolor, Rhinopithecus roxellana, Panthera pardus) that are listed as first-119 

class national protected animals of China (Hu, 2001).   In fact, the county is within one of 120 

the world‟s hottest biodiversity hotspots, the Southwest China hotspot (Mittermeier et al., 121 

2004; Myers et al., 2000).  By 2008 Baoxing County had ca. 58,700 people, distributed in 122 

ca. 16,000 households.  Among them ca. 82% depend on agricultural activities for their 123 

subsistence (Statistics Bureau of Baoxing County, 2007).  124 

 125 

3. Materials and methods 126 

3.1. Currently enrolled GTGP parcels 127 

We obtained a dataset with the geographic locations of more than 28,000 cropland 128 

parcels (belonging to ca. 11,600 households) enrolled in the GTGP between 2001 and 129 

2004.  Information on the year of enrollment and the size of each parcel was also 130 

obtained.  Ranging in size from less than 0.01 ha to 2 ha, these parcels account for ca. 131 

3,000 ha of cropland and correspond to ca. 98% of all land parcels enrolled in the GTGP 132 

in Baoxing County.  Each GTGP parcel was planted with up to three tree species, for a 133 

total of 48 tree species planted in all parcels combined.  However, Cunninghamia 134 

lanceolata (Lamb.) Hook. (38% of the parcels), Magnolia officinalis Rehder & Wilson 135 

(20% of the parcels), Ligustrum lucidum W.T.Aiton (4.7% of the parcels), Cryptomeria 136 

japonica (L.f.) D.Don (4.4% of the parcels), Eucommia ulmoides Oliv. (4.1% of the 137 
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parcels) and Alnus cremastogyne Burkill (4% of the parcels) were the tree species used 138 

more often. 139 

 140 

3.2. Surrogates for GTGP targeting 141 

Slope Index. Since the main purpose of the GTGP is to reduce soil erosion and 142 

landslide susceptibility, land with steep slopes (i.e., ≥ 25°) should receive higher priority 143 

for enrollment in the GTGP (Uchida et al., 2007).  However, this criterion has not been 144 

completely enforced as a significant amount of parcels enrolled in the program have 145 

lower slopes than the 25° threshold (Gauvin et al., 2010).  Therefore targeting land with 146 

high slopes is necessary to improve the benefits obtained from the program. 147 

To identify the land with the highest slopes we calculated a slope index as: 148 
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Where slopei is the slope of land parcel i, and slopemin and slopemax are the 150 

minimum and maximum slopes among all land parcels in the study area, respectively.  151 

This index gives more weight to parcels with steeper slopes, thus assumes that a higher 152 

benefit could be obtained when cropland located at higher slopes is enrolled in the GTGP 153 

(Chen et al., 2010).  A synoptic dataset of slopes in the study area was obtained from a 154 

digital elevation model (DEM) acquired at a spatial resolution of 90 m/pixel by the 155 

Shuttle Radar Topography Mission (SRTM) (Berry et al., 2007).  The spatial resolution 156 

of these data was increased to 10 m/pixel through the use of the cubic convolution 157 

resampling method (Jensen, 1996).  The vertical (i.e., elevational) accuracy of these 158 

resampled SRTM-DEM data was tested using elevation data collected with a 159 
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differentially corrected Global Positioning System (GPS) receiver (i.e., with a sub-meter 160 

horizontal accuracy) in 216 locations throughout the Sichuan Giant Panda Sanctuary.  161 

Within the elevational range assessed in the field (ca. 1200-3500 m), the resampled 162 

SRTM-DEM data provided an elevational accuracy of 34.7 m (Fig. 2).  While resampling 163 

the SRTM-DEM data to 10 m/pixel does not improve its elevation accuracy, nor the 164 

accuracy of the slope derived from these data, the accuracy obtained seems to be 165 

sufficient for developing the slope index used in the study. 166 

Cropland probability. This surrogate evaluates if a particular area is under 167 

cultivation.  We developed a procedure for estimating the probability of an area to be 168 

cropland, using a fuzzy classification algorithm based on the principle of maximum 169 

entropy (Jaynes, 1957). The algorithm was applied to remotely sensed multi-spectral data 170 

using the software MaxENT (Phillips et al., 2006).  The multi-spectral data consisted of 171 

two Landsat Thematic Mapper (TM) images (28.5 m/pixel) acquired during the winter 172 

(December 9, 1999) and summer (June 13, 2001) seasons.  The use of these two images 173 

acquired in different seasons provides valuable information on cropland phenology 174 

which, in addition to the multi-spectral information, is suitable for accurately separating 175 

cropland from other land cover types.   176 

To calibrate and validate the maximum entropy classification procedure, we 177 

selected (from the parcels described in section 3.1 above) 9,738 parcels that were 178 

enrolled in the GTGP between 2003 and 2004.  These parcels were selected since they 179 

were considered to have been cropland at the time of Landsat TM imagery acquisition 180 

(between 1999 and 2001).  Two-thirds of these cropland parcels were randomly chosen 181 

for calibration, while the rest were used for validating the output cropland probability 182 
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map. To reduce the dependence on a single random partition into calibration and 183 

validation, we generated 20 different random partitions to be used in 20 different 184 

cropland classifications that were averaged.  Although the area of many of the 185 

calibration/validation parcels is smaller than the area comprised by a Landsat TM pixel, if 186 

at least one parcel fell within a Landsat TM pixel, the entire pixel was considered under 187 

cropland. This constitutes an approximation since not necessarily 100% of a Landsat TM 188 

pixel is under cropland, however it is a common procedure in many pixel-based imagery 189 

classification methods (Lu and Weng, 2007).  Using the cubic convolution method 190 

(Jensen, 1996), we then resampled the resolution of the output cropland probability maps 191 

to 10 m/pixel, so that each cropland parcel occupied at least one pixel. 192 

The 20 output cropland probability maps were validated by means of a receiver 193 

operating characteristic (ROC) curve (Hanley and Mcneil, 1982). The ROC curve is a 194 

plot of the sensitivity values (i.e., true positive fraction) vs. their equivalent 1-specificity 195 

values (i.e., false positive fraction) for all possible probability thresholds. The area under 196 

the ROC curve (AUC) is a measure of model accuracy, with AUC values ranging from 0 197 

to 1, where a score of 1 indicates perfect classification, a score of 0.5 implies a 198 

classification that is not better than random, and values lower than 0.5 imply a worse than 199 

random classification. Due to a lack of reliable and representative field data (i.e., 200 

obtained concurrently with the Landsat TM imagery) under land cover types different 201 

from cropland, we calculated the ROC curve using the validation parcels together with 202 

10,000 randomly selected locations to calculate 20 AUC values, respectively, which were 203 

averaged.  It is important to note that the AUC values calculated in this way tend to be 204 

underestimated because some of the 10,000 random locations used as non-cropland in the 205 
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validation may fall in cropland areas, thus artificially increasing the commission error 206 

(Phillips et al., 2006; Wiley et al., 2003).   207 

Probability of enrollment in the GTGP. The costs of enrolling a cropland parcel in 208 

the GTGP program, related to the forgone economic benefits from cropping it, constitute 209 

the opportunity cost for farmers.  For a parcel to be successfully enrolled in the GTGP, its 210 

opportunity cost should be lower than the compensation obtained from the GTGP.  As 211 

farmers obtain different economic benefits from cropping different parcels, not all 212 

cropland parcels have the same probability to be enrolled in the GTGP.  We developed a 213 

procedure for estimating the probability of a parcel to be enrolled in the GTGP, based on 214 

household information and on biophysical characteristics of the GTGP parcels.  In this 215 

procedure, we assumed that if a parcel was enrolled the opportunity cost of enrollment 216 

was less than the GTGP payment, otherwise it was larger (Chen et al., 2010).   The 217 

GTGP payment used was 3,450 Yuan/ha, which corresponds to the average payment 218 

given to farmers in the upper reaches of the Yangtze River basin (Liu et al., 2008), which 219 

includes the study area.  While no household survey data were available for Baoxing 220 

county, we used a survey of 304 randomly selected households located in Wolong Nature 221 

Reserve (Chen et al., 2009a; Chen et al., 2009b; Chen et al., 2010).  Details of this survey 222 

are given in the references cited. Although these data were not acquired in Baoxing 223 

county they are still suitable as the Wolong Nature Reserve is located immediately to the 224 

north of Baoxing County and within the Giant Panda Sanctuary (Fig. 1).  Therefore, the 225 

two areas share similar topography, climate and ecosystems, and the GTGP was 226 

concurrently implemented in both areas during the early 2000s.  In addition, culture, 227 

livelihoods and economic activities of the people in Baoxing are very similar to those in 228 
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Wolong, with agriculture being the main income source [e.g., similar to Baoxing, ca. 229 

84% of the people in Wolong depend on agricultural activities for their subsistence 230 

(Statistics Bureau of Wenchuan County, 2007)].  The survey inquired about household‟s 231 

plans for their GTGP parcels when the annual GTGP payments cease (after 8 years).  For 232 

those respondents that planned to re-convert their GTGP plots to cropland, stated choice 233 

methods (Louviere et al., 2000) were used to elicit whether they would re-enroll their 234 

parcels in GTGP under various payment levels (i.e., 1500, 3000, 3750 and 4500 235 

Yuan/ha).   236 

A logistic regression model was performed using GTGP parcel enrollment as the 237 

dependent variable (binary), and the different payment levels, distance of each parcel to 238 

roads, and topographic characteristics of the parcels, including elevation, aspect and the 239 

compound topographic index (CTI), as predictor variables.  Elevation, aspect [converted 240 

into relative soil moisture classes, which in temperate mountain regions are related to 241 

differences in solar illumination with changes in aspect (Parker, 1982)] and the CTI [a 242 

measure of soil water accumulation potential (Gessler et al., 1995)] were all derived from 243 

the SRTM-DEM. 244 

Similar to the probability of cropland, the output GTGP enrollment probability 245 

map (obtained by applying the coefficients estimated by the logistic regression to 246 

synoptic data in Baoxing) was validated by means of a receiver operating characteristic 247 

(ROC) curve (Hanley and Mcneil, 1982).  For this, we used a random sample of 3800 248 

points located in areas with a high probability of cropland that were not enrolled in the 249 

GTGP, against a sample of 3200 points located in areas enrolled in the GTGP.  This 250 

procedure, however, assumes that the un-enrolled cropland has higher opportunity cost 251 
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than the enrolled cropland, which may not be the case for many cropland areas.  252 

Nevertheless it provides a way of assessing if the model for obtaining the probability of 253 

enrollment performs better than random. 254 

 255 

3.3. Targeting approach 256 

Our targeting approach for identifying the cropland parcels most suitable to be 257 

enrolled in the GTGP (i.e., those with potentially high soil erosion and landslide 258 

susceptibility, and low opportunity costs for farmers), consists of four steps.  First, we 259 

identified the areas suitable to be targeted for enrollment in the GTGP based on the 260 

probability to be cropland through a Bernoulli trial.  For this, we selected the areas that 261 

had higher probability than a uniform random number ranging from 0 to 1.  This included 262 

all the land currently enrolled in the GTGP as well as all other cropland currently not 263 

included in the GTGP.  Second, among the areas selected in the first step, we identified 264 

the areas suitable to be targeted using a second Bernoulli trial in which we compared the 265 

probability of enrollment, obtained from the logistic regression model using the current 266 

GTGP payment level (i.e., 3,450 Yuan per ha), against a uniform random number ranging 267 

from 0 to 1.  In other words, to determine if the opportunity cost of enrollment is higher 268 

or lower than the current payment level. This way, some of the selected cropland can be 269 

enrolled under the current payment level, but some cannot because of high opportunity 270 

cost.  Third, among the identified cropland areas that can be enrolled in the GTGP under 271 

the current payment level, we then sorted them from high to low according to their slope 272 

index values, choosing areas with higher values first until all the GTGP budget for 273 

Baoxing county was exhausted.  Because land parcels are selected with a stochastic 274 
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process, the first three steps were performed 1000 times and the areas were ranked 275 

depending on the number of times (i.e., from 1000 to 0) they were selected by the 276 

targeting approach. Fourth, the areas with the highest ranking were gradually chosen until 277 

the total area of Baoxing County enrolled in the GTGP (ca. 3000 ha) was obtained.  This 278 

constitutes the land area of Baoxing County that should have been enrolled by the GTGP 279 

with the highest priority.  280 

 281 

3.4. Comparison between observed and targeted land parcels 282 

Once the optimum areas for GTGP enrollment were obtained through the 283 

targeting approach, we compared them with the areas actually enrolled between 2001 and 284 

2004 in terms of slope, elevation, distance to roads, distance to forests [with forest cover 285 

obtained using an unsupervised classification applied to Landsat TM data acquired on 286 

September 18, 2007 (Viña et al., 2011)] and probability of enrollment.  In addition, to 287 

compare the total amount of overall regional benefits (i.e., potential reduction in soil 288 

erosion and landslide susceptibility once the land enrolled in the GTGP is converted to 289 

forest) obtained between the observed GTGP parcels and the GTGP parcels identified 290 

through the targeting approach, we calculated an Overall Benefit Index (OB) as the slope 291 

index multiplied by the area and integrated for all parcels, following the equation: 292 
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Finally, since forests restored through the GTGP could potentially become habitat 294 

for wildlife species we investigated the potential degree of forest fragmentation once the 295 

GTGP areas are completely converted into forest.  The degree of fragmentation was 296 
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assessed through the patch density calculated using FRAGSTATS (McGarigal et al., 297 

2002), and compared it between the observed and the targeted GTGP areas. 298 

 299 

4. Results 300 

Maps of the three surrogates used for targeting the GTGP parcels in Baoxing 301 

County are shown in Fig. 3.  These maps represent the spatial configuration of the values 302 

of the surrogates used in the targeting approach.  While the maps showing the probability 303 

of cropland and the probability of enrollment in the GTGP exhibit similar spatial 304 

configurations in their values (e.g., both tend to have higher values at lower elevations), 305 

the spatial configuration of the slope index values are different and unrelated with 306 

elevation (Fig. 3).    307 

The map of the probability of cropland corresponds to the average of 20 model 308 

runs using 20 different partitions into calibration and validation.  The average AUC value 309 

obtained was 0.96, with a standard deviation of 0.002 (Fig. 4).  Considering that errors of 310 

commission are overestimated in this AUC value, this average cropland probability map 311 

(Fig. 3) constitutes an accurate depiction of the probability of an area to be under 312 

cultivation.   313 

The logistic regression that was used to predict the probability of enrollment is 314 

presented in Table 1. Among the predictors used only the payment level, the elevation 315 

and the CTI had a significant effect (Table 1) on probability of enrollment, with payment 316 

level exhibiting a positive coefficient, while elevation and CTI exhibited a negative 317 

coefficient.  This means that the higher the payment, the higher the probability of 318 

enrollment, while higher values of elevation and of soil water accumulation potential 319 
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(i.e., CTI) are related with lower probabilities of enrollment.  As with the cropland 320 

probability map, the map of the probability of enrollment (Fig. 3) was validated using a 321 

ROC curve, and an AUC of 0.68 was obtained (Fig. 4).  While low, as compared to the 322 

average AUC obtained for the probability of cropland, it is significantly higher (p < 323 

0.001) than 0.5 (i.e., random prediction), thus it constitutes a fair surrogate, particularly if 324 

we consider the difficulty in obtaining a meaningful depiction of the true opportunity cost 325 

for farmers to enroll their cropland in the GTGP. 326 

Through the targeting approach we obtained a map of the distribution of the 327 

optimal location of GTGP parcels (Fig. 5).  Through the comparison of targeted vs. 328 

observed parcels enrolled in the GTGP we found that the overall regional benefit (as 329 

quantified by the OB; eq. 2) that may be obtained by the targeted parcels (OB = 20,931.5) 330 

more than doubles the OB of the observed parcels (OB = 9,106.2).  In addition, we found 331 

dissimilar histogram distributions between the targeted and the observed parcels (Figs. 6 332 

and 7).  On one hand, the targeted parcels had a higher median value of slope than the 333 

observed parcels (Fig. 6A), reflecting the specific effect of targeting for higher slopes.  334 

Also, while the surrogate of the probability of enrollment was inversely related with 335 

elevation, the targeted parcels exhibited a higher median elevation (Fig. 6B) than the 336 

observed parcels, reflecting that the optimal selection is based on the combined effect of 337 

probability of cropland, probability of enrollment and slope, and not on a single 338 

surrogate.  With respect to distance to roads, the targeted parcels exhibited a median 339 

value that more than doubled the median value of the observed GTGP parcels (Fig. 7A), 340 

with ca. 14.7% of the targeted parcels located farther away from roads than any observed 341 

GTGP parcel.  Opposite to this pattern was the proximity to forest, with the observed 342 
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GTGP parcels exhibiting an almost twice as large median distance to the nearest forest 343 

edge as the targeted parcels (Fig. 7B).  Finally, no difference in the probability of 344 

enrollment between targeted and observed parcels was obtained (Fig. 7C), denoting that 345 

both targeted and observed parcels may have similar opportunity costs, and thus farmers 346 

are equally prone to enroll them in the GTGP.   347 

 348 

5. Discussion 349 

The targeting approach developed in this study is suitable for two main reasons.  350 

First, it allows establishing the optimal location of GTGP parcels based on the original 351 

intended purpose of increasing soil retention and reducing soil erosion and landslide 352 

susceptibility, as well as placing them in areas under cropland and with a higher 353 

probability for enrollment (i.e., where payment level is above the opportunity cost for 354 

farmers).  This is of importance at a time when the contracts of many GTGP parcels are 355 

maturing, as they have been running for 8 years, and therefore decisions to re-enroll 356 

them, as well as procedures for determining which new parcels to enroll, are needed.   357 

Second, the approach can be used to evaluate the efficiency of current 358 

conservation investments in the GTGP.  On the one hand, as has been reported for other 359 

GTGP areas (Gauvin et al., 2010), many parcels (ca. 39% in Baoxing county) enrolled in 360 

the GTGP program are below the 25° slope threshold, while most of the targeted parcels 361 

were above this threshold.  Considering that more than 3,000 ha of cropland in Baoxing 362 

County not enrolled in the GTGP are located in areas with slopes higher than 25°, this 363 

suggests that the efficiency of the current GTGP program implementation can be 364 

substantially improved through our targeting approach.  On the other hand, many enrolled 365 
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parcels are located at lower elevations, but perhaps more important, they are located more 366 

distant from forest areas than the parcels targeted by the approach.  In fact, comparing the 367 

patch density that could be obtained (once the forest is established in the GTGP parcels) 368 

between the observed and the targeted parcels, we found that while the total forest area is 369 

similar, the latter will exhibit less patch density (i.e., less fragmentation) than the former 370 

(Table 2).   Thus, once the trees planted become established and the current GTGP 371 

parcels are completely converted from cropland to forest, their usefulness as habitat for 372 

wildlife is comparatively lower than if the parcels enrolled were targeted due to their 373 

higher degree of fragmentation.  Therefore, successfully converted GTGP parcels into 374 

forest will be used less likely by wildlife species under the current parcel distribution than 375 

if they would have been targeted.  While habitat for wildlife species was not necessarily 376 

an intended goal during the establishment of the GTGP, such an outcome is welcomed, 377 

particularly if the newly formed forest areas become habitat for endangered species such 378 

as the giant panda (Liu et al., 2008).   379 

Finally, it was found that the observed GTGP parcels tended to be located more 380 

often in the proximity of roads, while the targeting approach allowed reaching parcels 381 

that are located further away from roads.  While at higher hierarchical levels (e.g., 382 

countries) road development is correlated with economic development (Queiroz and 383 

Gautam, 1992), at local levels this relationship is less clear.  However, due to a higher 384 

access to public amenities (e.g., schools, hospitals) as well as to commercial and 385 

industrial enterprises it is hypothesized that the proximity to a road constitutes a proxy of 386 

economic development, even at household levels.  Using household survey data obtained 387 

from a random sample of 165 households in Wolong Nature Reserve (Fig. 1) before [i.e., 388 
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1998; (An et al., 2001)] and after (i.e., 2007; Liu, W., unpublished data) the 389 

implementation of GTGP, we tested this hypothesis by comparing the distance to the 390 

nearest road between households above and below the international absolute poverty 391 

threshold [US$1.25 per capita per day; (Gillie, 1996; Ravallion et al., 2008)].  To ensure 392 

the comparability of income data during 1998 and 2007, we defined three household 393 

income categories (i.e., agricultural income, non-agricultural income and government 394 

subsidies), which covered all income sources in these 165 households. Agricultural 395 

income included crop cultivation, animal husbandry and traditional Chinese medicinal 396 

herb collection. Non-agricultural income mainly consisted of wage labor (both permanent 397 

and temporary) and income from businesses (e.g., tourism activities).  Government 398 

subsidies included (but were not limited) to those from the GTGP.  Results from this 399 

analysis showed that poor (i.e., below the international poverty threshold) households are 400 

located significantly more distant from roads than richer (i.e., above the international 401 

poverty threshold) households (Fig. 8).  This result was more pronounced in 2007 than in 402 

1998, which could be explained by the striking economic development experienced by 403 

China during the last decade (Liu, 2010).  Therefore, we hypothesize that by reaching 404 

parcels further away from roads, the targeting approach developed in this study may 405 

allow to reach poorer people, and thus may help the GTGP to fulfill the dual goal of 406 

poverty alleviation (Gauvin et al., 2010). 407 

 408 

6. Conclusions 409 

The pace of current environmental degradation worldwide is acerbating the need 410 

for conservation actions, particularly the implementation of PES programs (Ferraro, 411 
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2008; Jack et al., 2008).  Therefore, it is becoming increasingly important to improve the 412 

efficiency of investments in PES programs.  In this study we developed an approach for 413 

targeting land to be enrolled in one of the biggest PES program in the world.  However, 414 

this approach does not account for the cost of operation of the program (i.e., transaction 415 

cost).  For instance, parcels located further from roads may increase the transaction costs 416 

of the program, as managers will be required to travel farther distances to check for 417 

program compliance.  Therefore, some of these transaction costs may be partly 418 

responsible for the differences in the distribution of targeted and observed parcels, as well 419 

as for the relatively high proportion of GTGP parcels below the 25° slope threshold.  420 

Another reason that may explain these differences is that the GTGP program also aims at 421 

“…seriously degraded lands, as well as ecologically important but agriculturally less-422 

productive lands…” (State Council of the People's Republic of China, 2002), which are 423 

not necessarily located in areas with slopes higher than 25°.  For these reasons, the 424 

targeting approach constitutes an approximation. Thus, policy makers will need to weigh 425 

in the transaction costs and other considerations for further selecting the most suitable 426 

land parcels to be included in PES programs. 427 

The targeting approach described is general enough to be applicable across broad 428 

geographic regions.  Therefore, while it was tested in a single county, it can be applied to 429 

the entire GTGP implementation area across China.  With proper modifications, it may 430 

also be applicable to similar PES programs around the world.  431 

 432 

433 
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Table 1. Maximum likelihood estimates of the coefficients of the predictor variables 

obtained in the logistic regression model to predict the probability of parcel enrollment in 

the GTGP (i.e., a surrogate of opportunity cost). 

 

Parameter Unit Coefficient 
Standard 

Error 

   z-

value 
P-value  

Intercept Unitless 5.3806 1.2268 4.39 <.0001 

Payment level Yuan/ha 0.00043 0.00006 6.78 <.0001 

Distance to road km -2.92e-06 0.00047 -0.01 0.995 

Elevation m -0.00167 0.00052 -3.23 0.001 

Aspect
*
 Unitless 0.00121 0.02442 0.05 0.961 

CTI
**

 Unitless -0.10054 0.04885 -2.06 0.040 
*
Converted into soil moisture classes (Parker, 1982) 

**
CTI – Compound Topographic Index 
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Table 2. Patch density of forest in Baoxing considering the GTGP (observed and 

targeted) parcels alone or together with the entire forest cover in Baoxing county during 

2007.  Patch density was calculated on the map shown in Fig. 4, using the software 

FRAGSTATS (McGarigal et al., 2002). 

 

  
Patch Density 

(Patches/ha) 

Observed GTGP parcels alone 4.41 

Targeted GTGP parcels alone 0.88 

Baoxing forest cover with no GTGP parcels 1.68 

Baoxing forest cover with Observed GTGP parcels 1.93 

Baoxing forest cover with Targeted GTGP parcels 1.74 
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Figure Legends 

 

Figure 1.  Baoxing County is located at the center of the UNESCO Giant Panda 

Sanctuary in Sichuan Province, China.  The elevation and location of main roads are also 

shown. 

 

Figure 2. Relationship between elevations obtained from a digital elevation model 

(DEM) acquired by the Shuttle Radar Topography Mission (SRTM) vs. their respective 

elevations obtained in the field.   The Root Mean Squared Error (RMSE) was obtained 

using the 1-to-1 relationship (i.e., dotted line), while the R
2
 was obtained from the linear 

regression (i.e., continuous line). 

 

Figure 3. Maps of the spatial configuration of surrogate values in Baoxing County, China 

developed for targeting the optimal location of GTGP parcels. Colors correspond to the 

range of values in the three surrogates (i.e., cropland probability, probability of 

enrollment in the GTGP, and slope index). 

 

Figure 4.  Results of the validation of the maps of the probability of cropland and the 

probability of GTGP enrollment, depicted in Fig. 3.  The values of the areas under the 

ROC curve (AUC) for each map are also shown.  The 45-degree line represents an AUC 

= 0.5 (i.e., random prediction). 
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Figure 5. Location of the targeted and enrolled GTGP parcels comprising the total area 

(ca. 3000 ha) enrolled in Baoxing County.  Overlapping parcels account for around ca. 

9.3 % of the enrolled parcels. The area of forest was obtained using an unsupervised 

classification applied to Landsat TM data acquired on September 18, 2007.  Details on 

this forest classification are given in Viña et al. (2011). 

  

Figure 6. Frequency distribution of (A) slopes, and (B) elevations of the observed and 

targeted GTGP parcels. 

 

Figure 7. Frequency distribution of (A) distances to main roads, (B) distances to forest, 

and (C) probabilities of GTGP enrollment, of the observed and targeted GTGP parcels. 

 

Figure 8. Average distance to the main road among households with incomes above and 

below the international poverty line (i.e., US$1.25 per capita per day) in Wolong Nature 

Reserve (located immediately to the north of Baoxing County; Fig. 1) during 1998 and 

2007.  Error bars correspond to 1 SEM.  
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