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A B S T R A C T

Auxiliary information in the form of species abundance is frequently available as part of data collected for
ecological investigations, yet when modeling distributions of species over large regions, species presence (and
sometimes absence) are typically used. Incorporating abundances into species distribution models may greatly
improve model predictive accuracy in practice. Boosted regression trees (BRT) models have been widely used in
species distribution modeling, however no ecological study has been conducted to date that has assessed the
predictive accuracy of BRT models that incorporates species abundance weights. We compared traditional,
unweighted BRTs with species abundance-weighted BRTs for 55 fluvial fish species native to the Northeastern
U.S. Overall model deviance explained and six diagnostic measures of predictive performance were compared
between traditional BRTs and weighted BRTs. These comparisons indicated that unweighted BRTs performed
better for fluvial fish species considered common, including those with greater numbers of presences and higher
prevalence. Conversely, weighted BRTs were better suited for modeling distributions of species that had fewer
presences, lower prevalence, and higher rarity, indicating the potential of species abundance-weighted dis-
tribution modeling to improve results for species of high conservation importance. Last, we offer insights into the
applicability of using weighted approaches with other commonly used species distribution modeling methods.

1. Introduction

Species distribution models (SDMs), also called ecological (en-
vironmental) niche models, play an important role in quantifying spe-
cies-habitat relationships and predicting species distributions in ecolo-
gical research, conservation, and environmental management
(Guisan and Zimmermann 2000; Robinson et al. 2017). SDMs are used
to predict the probability that a target species is present at a given lo-
cation or to quantify habitat suitability as a function of multiple pre-
dictor variables representing key environmental conditions linked to
species habitat usage and persistence. SDMs have been developed for
many types of organisms residing in terrestrial, freshwater, and marine
environments (Elith and Leathwick, 2009). In early stages of SDM use
and development (prior to 2000), regression-based models (e.g., gen-
eral/generalized linear models) were frequently utilized (Guisan and
Zimmermann, 2000). However, based on improved methodology and
ecological understanding, more complex statistical approaches have
been implemented for SDMs, increasing accuracy of model predictions.
These advances have provided a mechanism for understanding com-
plex, non-linear relationships and interactions among environmental
predictors, providing gains in ecological understanding of species-

environment relationships. In particular, the application of machine
learning techniques in SDMs has increased dramatically over the past
two decades, with boosted regression trees (BRT) models being one of
the most widely used approaches (Elith et al., 2008). BRTs are adept at
handling nonlinearity, selecting predictor variables, accounting for in-
teractions among predictors, and quantifying predictor relative im-
portance, all of which can be difficult to address in regression-based
models. In numerous studies, BRTs have outperformed regression-based
models, such as generalized linear models (GLMs) and generalized ad-
ditive models (GAMs) in analyzing complex species-habitat relation-
ships (Elith et al., 2008; but, see Shabani et al., 2016; Norberg et al.,
2019). Despite the success of BRTs in developing SDMs for a wide
variety of organisms and environments, potential still exists for im-
provements that could further bolster model accuracy for this modeling
method.

Data availability is critical for SDM development, with character-
istics of the data (type, method of collection, spatial extent, etc.) driving
choices in SDM models and approaches. A number of studies have fo-
cused on data deficiency (Warton and Shepherd 2010; Elith et al. 2011;
Fithian and Hastie 2013; Yackulic et al. 2013; Radosavljevic and
Anderson 2014; Renner et al. 2015). For instance, when only presence
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data are available, presence-only approaches can be used to model
species distributions (Merow et al. 2013; Phillips et al. 2017). While
species information may be collected as presence-only or presence-ab-
sence data, auxiliary information in the form of species counts or
abundance is frequently available in ecology. However, this informa-
tion is often reduced to presence-only or presence-absence prior to SDM
development, thus eliminating information that could further elucidate
complex species-habitat relationships in SDMs. In certain cases, varia-
bility in species abundance could be linked to variation in habitat
suitability, with species being more abundant within highly suitable
habitats. For instance, Weber et al. (2017) found a positive relationship
between abundance of species from many taxonomic groups and en-
vironmental suitability. Additional studies used occurrence data or
SDMs to predict abundance distributions (Van Couwenberghe, 2013;
Yañez-Arenas et al., 2014) or have used abundance data to improve the
predictive abilities of SDMs (Howard et al., 2014). However, other
studies found this type of relationship (between abundances and suit-
ability) to be weak or non-existent (Dallas and Hastings, 2018). Col-
lectively, these studies indicate that much still needs to be learned with
respect to abundance-habitat relationships in SDMs, providing a re-
search opportunity to explore the conditions under which abundance-
informed SDMs could improve model predictions.

Modifications to existing SDM modeling methods have often been
implemented in ecology for correcting imbalanced survey data.
Commonly used SDMs can be divided into regression-based models and
machine learning-based models. Logistic regressions are widely used in
species distribution modeling when the response variable is dichot-
omous. However, if the response variable in a logistic regression has
many more absences than presences, the accuracy and precision of
parameters, as well as predictive performance, will be affected (Salas-
Eljatib et al., 2018). For instance, King and Zeng (2001) introduced a
corrective approach to deal with this imbalanced data issue known as
“rare events logistic regression,” while Warton and Shepherd (2010)
used Poisson point process logistic regression models to solve the
“pseudo-absence problem.” Further, Stolar and Nielsen (2015) im-
proved model performance dealing with spatially biased sampling by
adding a weighting term in the logistic regression. Machine learning-
based SDMs (e.g., BRTs, Maxent, random forest, artificial neural net-
works, etc.) are more complex than regression-based models and often
treated as a “black box” with respect to species distribution modeling.
Therefore, modified versions are relatively rare compared to regression-
based models in ecology. However, just like regression-based SDMs,
machine learning-based SDMs can be improved once their “black box”
properties are uncovered. Through the explanation of machine-learning
approaches such as BRT (Elith et al., 2008), these models have become
more tangible to scientists and subsequently more frequently applied in
ecological studies. Modifications to improve model fit and predictive
abilities of these widely used machine learning methods, such as BRTs,
have great potential in improving ecological research.

The goal of this study is to compare the predictive abilities of tra-
ditional, unweighted presence-absence species distribution models with
those that are weighted by species abundance using a common, robust
species distribution modeling method: Boosted Regression Trees. We
develop weighted vs. unweighted species distribution models for 55
fluvial fish species native to the Northeastern U.S. using a standard 10-
fold cross-validation modeling approach. Weighted vs. unweighted
models are compared using model deviance explained to measure
overall model fit, six diagnostic measures of predictive performance,
evaluation of patterns in species presence, prevalence, and rarity, and
predictor variable importance and rankings. We provide re-
commendations on the use of abundance-weighted vs. unweighted
models and offer insights into the applicability of using abundance-
weighted approaches with other commonly used species distribution
modeling methods.

2. Material and methods

Four primary steps were conducted to implement this study: bio-
logical and environmental predictor data preparation, development of
abundance weightings for each species, species distribution modeling
using weighted and unweighted approaches, and comparison of results
among weighted and unweighted models for each species (Figure 2).

2.1. Biological and environmental data

We developed species distribution models for 55 fluvial fish species
native to 22 Northeastern U.S. states (Figure 1; Table A1) to compare
the model performance and predictive capabilities of the weighted and
unweighted BRT approaches. Community-wide fish data collected using
single-pass electrofishing methods spanning 1990–2013 were obtained
from academic institutions and local, state, and federal agencies (see
Daniel et al., 2015) and used in model development. Species presence-
absence data locations were designated as falling within either native or
non-native portions of their overall range based on species-level 8-digit
USGS Hydrologic Unit Code (HUC) maps of native and introduced
status provided by the USGS Nonindigenous Aquatic Species Program.
This step ensured that only presence-absence locations considered na-
tive were used in modeled development and excluded non-native pre-
sences for species outside of their native range which could represent
novel conditions for model predictors and thus affect native species
distribution model development. Fish survey site locations were spa-
tially linked to stream reaches of the National Hydrography Dataset
Plus V1 (NHDPlusV1, USGS 2005), allowing for the use of an existing
suite of 23 natural and anthropogenic landscape variables as predictors
in modeling (Table A2). These include commonly utilized predictors

Fig. 1. Flow chart of the four primary steps used to develop and compare BRT
vs. WBRT models for 55 fish species.
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known to influence the distribution and abundance of fluvial fishes
(Cooper et al., 2019), with natural factors representing catchment area,
climate, elevation, and groundwater contribution to stream flow, and
anthropogenic factors representing urban and agricultural land uses,
dams, roads, nutrient inputs, and mines characterized over multiple
spatial extents including catchments and riparian buffers (Table A2;
Daniel et al., 2015; Cooper et al., 2017).

2.2. Description of the models

2.2.1. Unweighted Boosted Regression Trees (BRT)
Boosted Regression Trees (BRT) combine regression trees and a

powerful boosting technique that iteratively fits tree models using
binary splits of predictor variables (Elith et al., 2008). Boosting is an
ensemble procedure for improving model prediction by reducing model
deviance through linking successive tree models focused on weak
learners, i.e., the residuals from predictors performing poorly in pre-
vious steps. In BRT models, three parameters must be considered:
learning rate, tree complexity, and bag fraction. Learning rate is used to
control the contribution of each individual tree to the overall model.
Tree complexity adjusts the number of nodes in a tree, governing the
interaction complexity in the model (e.g., if tree complexity is 2, up to
two-way interactions can be fit). Finally, bag fraction is the proportion
of training data that is used in each iteration, which controls the sto-
chasticity of boosting. Imbalanced presence/absence data (very rare or
very common species) will often require differing learning rates
(Elith et al., 2008). During preliminary model runs we evaluated dif-
fering combinations of learning rate values, number of trees and bag
fraction values. This process identified that larger learning rates might
result in models for rare species that did not converge, while smaller
learning rate for common species might result in model overfitting. As a
result, we used an initial learning rate of 0.05 for species with > 100
presences and a learning rate 0.01 for species with ≤ 100 presences.
We iteratively reduced the learning rate by half to ensure a minimum of
1000 trees in the final model (Elith et al., 2008) and capped the max-
imum number of trees at 10,000 to avoid overfitting. For all models we
used the default bag fraction of 0.75 and a tree complexity of 5 (i.e., five
nodes in each tree), with models being developed with the ‘dismo’ R
package.

2.2.2. Weighted Boosted Regression Trees (WBRT)
A weighted Boosted Regression Tree (WBRT) model is a modified

BRT that applies a weight (wij) to each species at each sampling site

based on individual species abundance and overall species richness,
differing from a standard BRT where all species presence-absences are
effectively weighted equally. Weighting sites based on numbers of
species supported could account for potential differences in habitat
suitability across sites, as sites with higher individual species abun-
dance may reflect greater overall habitat suitability (Weber et al., 2017)
and result in improved model fit.

In a logistic WBRT, the loss function (residual deviance) of species j
is:
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where nj is the number of sites in the model training data set of species j,
yij is the observed value (0 or 1) of species j at site i, ŷij is the predicted
value of species j at site i, and wij is the weight of species j at site i. For
the WBRT, we set the weight wij equal to 1 for sites with species ab-
sences, while wij is a scaled product (ranging from 1 to 101) of relative
abundance and species richness j at site i with presence of target species
j:
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where uwij is the unscaled weight of species j at site i, which is the
product of the relative abundance of species j and richness at site i,
calculated using the following formulas:
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where RAij is the relative abundance of species j at site i, Aij is the raw
abundance of species j at site i, and m is the species richness at site i.
Here we use relative abundance as it is readily available form of
abundance for fish data that can be calculated simply from community
species count data as opposed to effort-based abundance measures
(commonly referred to as catch per unit effort or CPUE). This is due to
the fact that effort measures (e.g., length, time, area, etc.) are some-
times lacking for fish community data provided by various sources
collected under differing sampling objectives.

In developing this weighting factor, we account for the dual influ-
ences of both relative abundance and species richness. For instance,
using the formula above, a species with a relative abundance of 0.2 at a

Fig. 2. Study area containing 22 states in the Northeastern U.S.
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site with an overall species richness of 10 would have a weight of 2,
however the same species would have a lower weight of 0.4 given a site
species richness of 2 and the same relative abundance (0.2). In effect,
this weighting controls for both site-level species abundance and spe-
cies dominance, resulting in higher weighting for sites with higher
species abundance relative to higher overall species richness and pro-
viding a potential indicator of higher overall site-specific habitat suit-
ability.

BRT and WBRT models were developed using a 10-fold cross vali-
dation with BRT and WBRT being fitted using the same training set with
the optimal number of trees in each model being estimated using 10-
fold cross validation. During this validation process, the dataset was
divided into 10 non-overlapping groups, with each unique group being
withheld as a test dataset while remaining groups were used as a
training dataset for model fitting.

2.3. Model comparison

We compared results between the WBRT and BRT approaches
among the 55 fishes modeled using: 1) overall model deviance ex-
plained as a measure of model fit, 2) six diagnostic metrics evaluating
model predictive performance, 3) comparison of patterns in species
presences, prevalence, and rarity between models, and 4) relative im-
portance of predictors and overall predictor rankings.

2.3.1. Model deviance explained
We used deviance explained based on models developed from the

overall initial dataset to compare model fitting, where cross validation
residual deviance is the mean of the residual deviance from each fold of
the cross validation:

=Deviance explained

total deviance cross validation residual deviance

total deviance

A t-test was used to compare mean deviance explained between the
WBRT and BRT approaches.

2.3.2. Metrics comparing predictive performance
Model comparison is often a crucial aspect of evaluating potential

improvements to an existing method. The measures and methods to
compare the accuracy or performance of SDMs are diverse and con-
troversial (Liu et al. 2011; Leroy et al., 2018). An intuitive measure is
overall accuracy, defined as the proportion of sites predicted to support
a species where a species is actually found. However, it has been re-
peatedly criticized as not being suitable for imbalanced data, which
includes data with many more absences than presences or vice versa
(Fielding and Bell, 1997; Manel et al., 2001). Two alternative measures
are sensitivity (proportion of presences correctly predicted) and speci-
ficity (proportion of absences correctly predicted; Swets, 1988). Both
are calculated from a confusion matrix and are independent of pre-
valence (the proportion of presences in the dataset) (Allouche et al.,
2006).

One of the most commonly used measures to compare SDM per-
formance is the area under the receiver operating characteristic (ROC)
curve, known as AUC, which is developed from a 2-dimensional plot

with sensitivity as the vertical axis and 1-specificity as the horizontal
axis. AUC is a threshold-independent method, avoiding the subjective
selection of threshold values where a single presence/absence cutoff is
chosen to develop a confusion matrix for model evaluation. AUC ranges
between 0 and 1, with an AUC of 0.5 indicating that the prediction
capability of the model is no better than random and values greater
than 0.7 are considered adequate in modeling species distributions
(Swets, 1988). However, AUC has been criticized in several studies for
giving misleading results for imbalanced data (Lobo et al., 2008;
Peterson et al., 2008; Jimenez-Valverde, 2012). Frequently, ecological
sample data are imbalanced, especially over large regions, and there-
fore AUC may not be appropriate to evaluate and/or compare SDMs
alone. An alternative evaluation metric is the area under the precision-
recall (also called sensitivity) curve (AUPRC), which is also a threshold-
independent metric. This metric can evaluate SDMs with imbalanced
data as it is not dependent on model specificity (Davis and Goadrich,
2006; Sofaer et al., 2018). Similarly, AUPRC measures the area under a
2-dimensional curve in which the vertical axis is precision and the
horizontal axis is sensitivity (also called recall) (Sofaer et al., 2019).
AUPRC can range between 0 and 1. However, its minimum value in-
creases with prevalence and there is no established cut-off point for
identifying adequate models with AUPRC, though higher AUPRC in-
dicates a better model prediction.

Cohen's kappa is another commonly used metric to evaluate SDM
performance, however it depends on prevalence and therefore may
result in statistical inaccuracies in estimating SDM accuracy (Allouche,
2006; Delgado and Tibau, 2019). Cohen's kappa is calculated using
three parameters: prevalence, sensitivity, and specificity:

=Kappa P P
P1
e

e

0

where = +P prevalence sensitivity prevalence specificity· (1 )·0 ,= + +P sensitivity specificity prevalence prevalence P2( 1)· ·(1 )e 0

Kappa ranges between −1 and 1 (Cohen, 1960) with higher kappa
values indicating better model predictions. A more appropriate alter-
native is the true skill statistic (TSS), which is equal to the sum of
sensitivity and specificity minus one (Fielding and Bell, 1997). TSS
retains all the advantages of kappa but is also largely immune to pre-
valence of the sample data (Allouche, 2006). In this study, predicted
presences and absences were separated by a threshold value at which
the TSS is maximized (Manel et al., 2001; Hernandez et al., 2006).

Use of a wide variety of diagnostic measures of model accuracy,
such as those described, can provide a means to effectively compare
models developed using alternative approaches including potential
modification of an existing modeling method. Results for BRT and
WBRT models were compared using sensitivity, specificity, AUC,
AUPRC, Cohen's kappa, and TSS to evaluate the models’ predictive
capability (Table 1). Values for these six diagnostic metrics were
compared for each species for the WBRT and BRT modeling approaches
to determine the number of metrics that performed better using WBRT
vs. BRT. For subsequent analyses, we identified species that performed
better using WBRT if ≥ 4 metrics had higher values compared to BRT.

Table 1
Descriptions, ranges, and thresholds for metrics used to evaluate model predictive performance for the WBRT and BRT modeling approaches.
Metric Description Range Threshold Source

Sensitivity Proportion of presences correctly predicted (i.e., recall) 0 ~ 1 Larger value indicates better model Swets (1988)
Specificity Proportion of absences correctly predicted 0 ~ 1 Larger value indicates better model Swets (1988)
AUC Area under the curve of the receiver operating characteristic (ROC) 0 ~ 1 > 0.7 Lusted (1971)

AUPRC Area under the precision-recall curve 0 ~ 1 Larger value indicates better model Raghavan et al. (1989)
Cohen's kappa Measurement of interrater reliability −1 ~ 1 > 0.2 Cohen (1960)
TSS True skill statistic: sensitivity + specificity - 1 −1 ~ 1 Larger value indicates better model Fielding and Bell (1997)
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Conversely, species identified as performing better using BRT had ≥ 4
metrics with higher values compared to WBRT. Results for these two
groups were evaluated using radar plots to identify which metrics
corresponded to differing performance among the two modeling ap-
proaches.

2.3.3. Differences in species presences, prevalence, and rarity
To test whether differences in model performance were related to

species presence, prevalence, and multiple aspects of rarity, empirical
distribution functions were applied. We used this approach to compare
these factors for species performing better using WBRT with distribu-
tions from species better suited to BRT modeling (described above). For
this analysis, we performed a two sample Kolmogorov-Smirnov (KS)
test and plotted results using empirical cumulative density functions.
The KS test is a non-parametric method for comparing two samples to
determine whether they follow the same distribution (Rohlf and Sokal,
1981). The KS test statistic is:=D F x F xsup| ( ) ( )|

x

n n1 2

where Fn1 and Fn2 are the empirical cumulative distribution function of
the first and second sample, respectively. When sample sizes are large
(n1 > 50 and n2 > 50), the critical value is:= +D K n n

n n·
1 2
1 2

where =K
ln

2
2 , and ∝ is the level of sig-

nificance. When the KS test statistic D is greater than the critical value
D∝, these two samples’ distributions are significantly different.

To quantify species rarity, we utilized an Integrated Rarity (IR)
index (Leitao et al., 2016) representing a continuous gradient of species
rarity by combining measures of species range size, habitat usage, and
mean species weights (described in ‘WBRT’ section above). Species
native range areas (km2) obtained from range maps (described above)
were utilized as a measure of overall range size, with species having
smaller ranges being geographically rarer. Range in habitat usage was
derived with the Index of Habitat Specificity (IHS; Pritt and
Frimpong, 2010) which sums the number of unique freshwater habitat
types (e.g., substrate, flow velocity, etc.) attributed to individual
freshwater fish species (Frimpong and Angermeier, 2009). The IHS has
a theoretical maximum value of 25 (i.e., 25 total habitat types assigned)
with species that have lower IHS scores indicating a lower range of
habitat use and potentially greater rarity (Pritt and Frimpong, 2010).
Mean species weights utilized as the weighting factor in WBRT were
used as a measure of species abundance, with species that have lower
mean weights representing those that have lower overall relative
abundance normalized by species richness at occupied sites. The In-
tegrated Rarity (IRi) of species i was calculated by combining species
native range size (SNRi), Index of Habitat Specificity (IHSi), and mean
species weights (MSWi):

= ◊ + ◊ + ◊+ +IR SNR w IHS w MSW w
w w w

( )
i

i SNR i IHS i MSW

SNR IHS MSW

where wSNR, wIHS, and wMSW are the weights of SNRi, IHSi, and MSWi,
respectively. In this study, all three weights in this formula were equal
to 1/3, reflecting equal weighting of these three respective factors.
SNRi, IHSi, and MSWi were standardized to a 0 to 1 scale prior to
calculation of IRi values using the following formula:

=Standardized Index

Index Index

Index Index

min( )

max( ) min( )

i

i i

i i

where min() and max() represent the minimum and maximum values,
respectively. Resulting IR values range from a theoretical minimum of 0
to a theoretical maximum of 1, with lower values for rare species and
higher values from more common species. In general, species con-
sidered rare according to the IR index would have smaller ranges, uti-
lize fewer habitat types, and have lower abundance relative to other
species.

2.3.4. Predictor relative importance and overall predictor rankings
The relative importance of predictor variables was calculated for

each species using WBRT and BRT model results in order to compare
the relative contributions of predictor variables among approaches.
Predictor variable importance is calculated as:

= =RI
M

I T1 ( )i
m

M

i m
1

2

where RIi stands for the relative importance for the ith predictor vari-
able, M is the number of trees, and I T( )i m

2 is the squared relevance of
each predictor weighted by the number of times it was chosen as the
splitting variable in tree m (Hastie et al., 2009). In addition, we as-
signed ranks to predictor variables based on their relative importance,
calculating an overall mean rank across species for each predictor:

= =mean rank
rank
Ni

j
N

ij1

where rankij is the rank of predictor i for species j, and N is the total
number of species (55 in this study). All analyses were conducted in R
(version 3.6.1, R Core Team, Vienna, Austria).

3. Results

3.1. Comparing BRT and WBRT model results

3.1.1. Model deviance explained
Percentage of total deviance explained, used to measure model fit-

ting, was higher for WBRT than BRT for 49 of 55 species (Table A3).
Mean deviance explained for WBRT was 0.4769 (SE 0.0192, Range
0.1924–0.8132) compared to 0.3743 (SE = 0.0137, Range
0.1429–0.6131) for BRT, and was significantly higher based on a paired
t-test (p < 0.01) (Fig. 3A). Differences in deviance explained between
WBRT and BRT models varied over the Integrated Rarity index. In
general, these differences were positive, indicating that WBRTs had
improved model fit compared to BRTs, however when Integrated Rarity
was larger than 0.4 (indicating more common species) differences
among the WBRT and BRT approaches decreased (Fig. 3B).

3.1.2. Metrics comparing predictive performance
For 50 of 55 species, WBRT had a higher metric value (indicating

better predictive performance) than BRT for at least one metric. When
multiple metrics are considered, 13 species have higher values for
WBRT for four or more metrics (Fig. 4A; Table A3), while 24 species
performed better with BRT based on having higher values for four or
more metrics. Generally, kappa and TSS led to the same model pre-
ferences and in particular, results for sensitivity and TSS matched (both
performed better for either WBRT or BRT) for 52 of 55 species. In
contrast, sensitivity and specificity had differing model preferences
being mismatched in 50 of 55 species. AUPRC and AUC had moderate
congruence with only 15 out 55 species mismatched. Among the 13
species for which WBRT performed better, results were mainly driven
by higher metric values for sensitivity (13), Kappa (13), TSS (13), and
AUPRC (12) (Fig. 4B). Only two species showed a higher specificity
value, while eight species had higher AUC values. Similar to WBRT,
results for the 24 species for which BRT performed better included
higher metric values for sensitivity (21), Kappa (24), TSS (24), and AUC
(23) (Fig. 4C) while eight species and 16 species had higher specificity
and AUPRC values, respectively.

3.2. Differences in species presences, prevalence, and rarity

Among the two groups of species performing better in either WBRT
(n=13) or BRT (n=24) (Table 2), the number of presences for species
with better predictions in WBRT was significantly lower than those with
better predictions in BRT (Welch t-test, p < 0.01), with a mean of 785
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(SE = 204, Range 135–1970) for WBRT and mean of 3198 (SE = 765,
Range 76–15,811) for BRT. The empirical cumulative density dis-
tribution of presences for these two groups of species was significantly
different based on a KS test (D = 0.5417, p < 0.01) (Fig. 5A). The
prevalence of the species with better predictions in WBRT, with a mean
of 0.07 (SE = 0.02, Range 0.01–0.19) was also significantly lower than
those with better predictions in BRT (Welch t-test, p < 0.01), with a
mean of 0.19 (SE = 0.03, Range 0.02–0.54). The empirical cumulative
density distribution of WBRT species’ prevalence indicated that it was
significantly different than the distribution of BRT species’ prevalence
based on a KS test (D = 0.4295, p = 0.04) (Fig. 5B). The Integrated
Rarity (IR) for species performing better in WBRT, with a mean of 0.21
(SE = 0.04, Range 0.06–0.46) was significantly lower than the mean of
those that performed better using BRT, with a mean of 0.31 (SE = 0.03,
Range 0.12–0.69) (Welch t-test, p = 0.02). The empirical cumulative
density distribution of WBRT species’ IR was marginally different from
the BRT species’ IR based on a KS test (D= 0.3846, p= 0.08) (Fig. 5C).

3.3. Predictor relative importance and overall predictor rankings

The importance of predictor variables varied primarily by species,
with differences among WBRT and BRT models among species being
minimal as indicated by similar mean relative importance and ranks of
predictors (Table 3). The top predictor was catchment area, accounting
for 23.8% and 18.1% of relative importance for WBRT and BRT, re-
spectively, with mean annual air temperature (9.7 vs. 9.3%) and mean
annual precipitation (7.7% vs. 6.9%) being the next two most important
variables. Overall, the order of predictors according to mean relative
importance and mean rank was identical in WBRT and BRT (Table 3).

4. Discussion

To the best of our knowledge, this is the first study focused on in-
corporating species abundance and richness into species distribution
models (SDMs) in stream ecology. Improving predictive accuracy is a
primary goal in developing new methods for creating species distribu-
tion models (SDMs) (Stevens and Conway, 2020). Given that many of
the species data utilized in SDM development originate from commu-
nity-based abundance sampling efforts, particularly in fisheries re-
search, there is untapped potential in utilizing the inherent abundance
and richness in these datasets in SDMs as opposed to reducing com-
munity abundance data to binary (presence/absence) data prior to

modeling. Previous studies have suggested that species relative abun-
dance and richness at the sampling locations can be a positive indicator
of habitat suitability (Weber et al., 2017). Therefore, incorporating
these measures into a weighting factor applied to boosted regression
trees (BRTs) species distribution models (or other SDM methods more
generally) can improve model predictive accuracy as indicated by the
current study.

4.1. Applying species abundance and richness-based weights to SDMs:
implications for improved modeling of less prevalent and rare species

Our results suggest that neither BRTs nor weighted BRTs (WBRTs)
as a whole were a better choice for all stream fish species modeled in
this study for the Northeastern U.S. However, in general, WBRTs out-
performed unweighted BRTs for stream fish species with fewer pre-
sences, lower prevalence, and higher rarity. These are characteristics
that can be shared by species of conservation importance; thus, this
weighting approach has the potential to improve models for these types
of species. Although species with low prevalence can result in im-
balanced data, causing biased predictions in SDMs as has been in-
dicated in a number of studies (Manel et al., 2001; McPherson and
Jetz, 2007; Santika, 2011), this issue has seldom been discussed in the
context of BRT models. This is perhaps due to the more powerful pre-
dictive ability of BRTs, as issues related to low species prevalence and
imbalanced data are not as apparent as regression-based SDMs. Iden-
tifying candidate species for use of weighting BRTs can be challenging
given that the discrimination and definition of rare species have not
been widely accepted by researchers (Pritt and Frimpong, 2010). The
rarity index utilized in this study that combines species’ abundance
weights, habitat usage, and native range size provides a reasonable
measure of rarity that can be applied to other taxa to identify species
best suited for weighted BRTs. When prevalence data are not available,
the number of presences could be applied to substitute for prevalence as
they are likely to be highly correlated in many cases. For instance, the
number of presences and prevalence were highly correlated (Pearson's
correlation coefficient = 0.85, p< 0.01) in the current study. Based on
the results of this study, WBRTs should be considered for fluvial fish
species with high rarity and low number of presences.

Both species relative abundance and richness were used to calculate
the weight of each observation in this study. Unweighted binary (pre-
sence-absence) species models treat all presences the same when testing
habitat suitability, whether a single individual was observed or many

Fig. 3. Boxplots of deviance explained for the WBRT and BRT model approaches (A) and differences in deviance explained between WBRT and BRT across the
Integrated Rarity index with a smooth fitting line (B) for 55 fluvial fishes.
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(potentially 1000′s of) individuals were observed. A more logical as-
sumption is that species will be more abundant in more suitable habi-
tats (Aguirre-Gutiérrez et al., 2013; VanDerWal et al., 2009). There are,
however, limits to the information that these weightings can provide in
the context of SDMs, as WBRTs may not be ideal for common species as
they are usually widely distributed and have generalist adaptions to
habitats (Pritt and Frimpong, 2010). Given that common species tend to
be widespread and generally of high abundance at locations where they
are found, it is unsurprising that weights for these species add little
value to BRTs. While a limited number of studies have concluded that
habitat suitability and species abundance are unrelated (e.g., Dallas and
Hasting, 2018; Filz et al., 2013; Nielsen et al., 2005), these studies have
focused on different taxa groups (e.g., trees, mammals, insects, and
vascular plants), have not incorporated the effects of species richness,

and/or had much coarser data spatial resolutions than the current
study. Although we incorporated species richness in WBRT models, the
effect of species interactions on SDMs needs to be further studied. While
the current study supports a positive linkage between species abun-
dance and habitat suitability for less prevalent and rare species, this
relationship requires further research to aid in use of species weightings
for other taxa groups beyond fluvial fishes.

In addition to prevalence and rarity, there are other factors that may
affect model performance. For example, fish sampling provides a
snapshot of the relationship between fish communities and their habi-
tats, with fish presence and/or abundance information being influenced
by sampling effort, season, date, time, location, and identification (and/
or counting) errors to differing degrees. Those biases and uncertainties
can vary by species. For instance, rarer species can be more difficult to

Fig. 4. Comparison of six predictive performance metrics (A), sensitivity, specificity, kappa, TSS, AUPRC, and AUC, between WBRT and BRT with blue bars
indicating better performance by WBRT while white bars indicate better performance by BRT. Radar plots of the six performances metrics for 13 species performing
better in WBRT (B) and 24 species performing better for BRT (C), indicating the number of species that performed better based on that metric. See Table A1 for
species names corresponding to reference numbers in (A).
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detect or may have more variability in abundance across sampling lo-
cations (Wenger and Freeman, 2008; Steenweg et al., 2019), which
could result in less model certainty for these species in certain cases. In
addition, fish species have differing physiological tolerances to habitat
conditions or may undergo seasonal migrations. In addition, fish species
have differing physiological tolerances to habitat conditions. As a re-
sult, locations with the highest species’ abundance may not always
correspond to the most suitable habitats. Nevertheless, weighted SDMs
still have a great potential in improving predictive ability of SDMs.

4.2. Use of multiple diagnostic metrics to evaluate alternative models

When applying the BRT or WBRT approaches for other species,
model predictive performance should be evaluated on a species by
species basis. We implemented six metrics to compare the performance
of the BRTs and WBRTs and found differing results in model preference
among metrics. If only one metric was used to measure the performance
of SDMs, biased conclusions in model performance would likely result.
For this reason, model performance should not be measured using one
single diagnostic metric. Further, survey data for many species are
imbalanced (i.e., prevalence is much lower than 0.5), yet some com-
monly used diagnostic metrics are designed for balanced data. AUC, in
particular, weights sensitivity and specificity equally when evaluating
model performance. In ecological surveys, presences are usually more
valuable in exploring habitat suitability than absences, which can be
incorrectly obtained for multiple reasons. For instance, all fish species
may not have been captured due to sampling or gear problems.
Additionally, habitat may be suitable, however individuals from a

particular fish species may have vacated the area at the time when
sampling was conducted due to seasonal or short-term variation in
habitat use based on environmental conditions (e.g., stream flow,
temperature, etc.). Similarly, correctly predicting presences for an SDM
is often of greater importance than correctly predicting absences in
most cases. Therefore, sensitivity and AUPRC are better metrics than
specificity and AUC for imbalanced data in ecology.
Allouche et al. (2006) found that TSS is a better metric of predictive
accuracy than kappa for SDM evaluation as kappa is dependent on
prevalence. However, in the present study, kappa and TSS exhibited
high correlation (Pearson's correlation coefficient = 0.98, p < 0.01).
One possible reason is that the prevalence for 53 of 55 fluvial fish
species is this study is less than 0.5, and it is not possible to test the
performance of kappa or TSS across the whole prevalence range (0–1).
When evaluating the performance of SDMs developed using the BRT
and WBRT approaches, we recommend the use of multiple diagnostic
metrics that best represent a given study's objectives in use of SDM
results.

4.3. Applicability of species weightings with other SDM approaches and
additional weighting factors

This study offers insights into the applicability of using abundance-
weighted approaches with other commonly used species distribution
modeling methods, such as logistic regression (LR) and random forest
(RF). Species abundance information can be added into logistic re-
gression models by similarly adjusting the weights in the likelihood
function. However, compared to BRT models, LR models have

Table 2
Number of presences and prevalence, species native range (SNR), Index of Habitat Specificity (IHS), mean species weight (MSW), and Integrated Rarity (IR) values for
species for species with ≥ 4 higher metric values for either WBRT or BRT. Values for SNR, IHS, MSW, and IR have been rescaled from 0 to 1 (see Methods).
Common name Scientific name Presences Prevalence SNR IHS MSW IR Model

Gravel chub Erimystax x-punctatus 144 0.02 0.07 0.15 0.01 0.08 WBRT
Bluebreast darter Etheostoma camurum 135 0.02 0.04 0.15 0.01 0.07 WBRT
Banded darter Etheostoma zonale 1928 0.17 0.13 0.54 0.08 0.25 WBRT
Banded killifish Fundulus diaphanus 226 0.02 0.19 0.54 0.01 0.25 WBRT
Mooneye Hiodon tergisus 155 0.01 0.17 0.08 0.00 0.08 WBRT
Burbot Lota lota 575 0.06 0.51 0.23 0.02 0.25 WBRT
Shorthead redhorse Moxostoma macrolepidotum 1737 0.14 0.37 0.54 0.08 0.33 WBRT
Greater redhorse Moxostoma valenciennesi 204 0.03 0.07 0.38 0.00 0.15 WBRT
Slender madtom Noturus exilis 676 0.19 0.05 0.15 0.07 0.09 WBRT
Yellow perch Perca flavescens 1970 0.09 0.60 0.62 0.05 0.42 WBRT
Black crappie Pomoxis nigromaculatus 1615 0.08 0.82 0.54 0.01 0.46 WBRT
Atlantic salmon Salmo salar 381 0.09 0.03 0.08 0.07 0.06 WBRT
Sauger Sander canadensis 459 0.04 0.24 0.46 0.01 0.24 WBRT
Rock bass Ambloplites rupestris 5378 0.31 0.43 0.62 0.14 0.39 BRT
Bowfin Amia calva 453 0.04 0.30 0.31 0.01 0.21 BRT
American eel Anguilla rostrata 2040 0.09 0.53 0.31 0.07 0.30 BRT
Central stoneroller Campostoma anomalum 10,801 0.5 0.45 0.46 1.00 0.64 BRT
Highfin carpsucker Carpiodes velifer 254 0.02 0.20 0.15 0.00 0.12 BRT
White sucker Catostomus commersonii 15,811 0.54 0.66 1.00 0.42 0.69 BRT
Redfin pickerel Esox americanus 2980 0.14 0.40 0.08 0.06 0.18 BRT
Northern pike Esox lucius 1452 0.15 0.54 0.54 0.03 0.37 BRT
Northern brook lamprey Ichthyomyzon fossor 128 0.03 0.05 0.31 0.01 0.12 BRT
Brook silverside Labidesthes sicculus 1578 0.09 0.39 0.77 0.03 0.40 BRT
Longnose gar Lepisosteus osseus 977 0.05 0.56 0.08 0.00 0.22 BRT
Redbreast sunfish Lepomis auritus 2194 0.27 0.21 0.46 0.34 0.34 BRT
Pumpkinseed Lepomis gibbosus 3766 0.2 0.43 0.62 0.08 0.38 BRT
Pearl dace Margariscus margarita 76 0.04 0.00 0.46 0.01 0.16 BRT
Smallmouth bass Micropterus dolomieu 4505 0.26 0.66 0.23 0.12 0.34 BRT
Largemouth bass Micropterus salmoides 8158 0.36 1.00 0.46 0.01 0.52 BRT
River redhorse Moxostoma carinatum 257 0.03 0.12 0.23 0.01 0.12 BRT
Hornyhead chub Nocomis biguttatus 2137 0.16 0.18 0.38 0.11 0.23 BRT
Stonecat Noturus flavus 1882 0.1 0.42 0.31 0.01 0.25 BRT
Margined madtom Noturus insignis 900 0.34 0.05 0.69 0.14 0.29 BRT
Brindled madtom Noturus miurus 356 0.03 0.12 0.54 0.00 0.22 BRT
Blackside darter Percina maculata 3168 0.18 0.32 0.38 0.06 0.25 BRT
Brook trout Salvelinus fontinalis 4538 0.38 0.46 0.62 0.30 0.46 BRT
Central mudminnow Umbra limi 2956 0.25 0.19 0.38 0.19 0.25 BRT
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difficulties in dealing with multicollinearity, interactions, non-linearity,
and predictor variable selection. These disadvantages may affect the
application of weighted LR models and therefore model comparison
and validation is needed prior to implementation. RF models use the

Gini index and entropy to grow trees. An abundance index can be added
into the Gini index and entropy function by adjusting case weights of
sample data. However, the performance of weighted RF and its corre-
sponding influence on SDM predictive performance needs further

Fig. 5. Boxplots and empirical cumulative density function (ECDF) curves comparing presences (A), prevalence (B), and rarity index (C) for the species performing
better using the WBRT (n = 13) vs. BRT (n = 24) modeling approaches (see Table 2 for species lists).
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examination. Species’ weightings have the potential to be implemented
in other SDM approaches, however, this practice requires careful con-
sideration of specific characteristics of each modeling approach.
Nonetheless, results of the current study suggest the potential of species
weightings in BRT and other model methods to improve predictive
accuracy in modeling species’ distributions.

Other types of data besides species abundance can be utilized as
weighting factors in SDMs or incorporated into analyses involving
weighted SDMs. Species abundances can vary due to numerous factors,
such as variability in habitat conditions, sampling methods, and sam-
pling intensity. For example, other auxiliary information of target
species, such as biomass, length structure, and age structure at each
location can be a significant indicator of habitat suitability. In certain
cases, species presence/absence and abundance data do not display
similar distribution patterns. Therefore, the predictions of species dis-
tribution ranges based solely on either presence/absence or abundance
data can be inaccurate, with use of combined information critical for
valid results. Mi et al. (2017) propose a priority protection index (PI)
that combines the prediction results of occurrence and abundance
models to guide habitat management. If sampling intensity is known,
the predicted probability of presence can be transformed to expected
abundance. Changes in expected abundance in biological systems can
be used as an early warning indicator for species range contraction or
population declines (Ashcroft et al., 2017). Further exploration in the
use of weightings in SDMs for other modeling approaches and applic-
ability of other weighting factors (e.g., biomass, etc.) is needed to
provide a framework for developing weighted SDMs into useful tools
for policy makers and managers.

4.4. Conclusion

In the present study, we found that WBRT models outperformed
BRT models for fish species with lower prevalence and higher rarity in
the Northeastern U.S., while BRT models performed better for common
species with higher prevalence. Further, use of a single model evalua-
tion metric should be avoided in model comparison in favor of multiple
diagnostic metrics, as certain metrics may be less robust for evaluating
and/or comparing SDMs developed with imbalanced data. The

approach to developing weighted SDMs using species abundance and
richness presented in this study can be applied to other commonly used
SDMs and is not limited solely to BRTs. Since SDMs are inherently
species-specific and data dependent, model evaluation should be ap-
plied for any new species, taxa, or datasets utilizing this approach.

CRediT authorship contribution statement

Hao Yu: Conceptualization, Methodology, Formal analysis, Writing
- original draft. Arthur R. Cooper: Conceptualization, Data curation,
Investigation, Writing - review & editing. Dana M. Infante:
Supervision, Conceptualization, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

This study was funded by the USGS Aquatic GAP program. We thank
Alexa McKerrow and Daniel Wieferich for providing feedback on this
project. We also thank Kyle Herreman and Jared Ross for GIS and da-
tabase assistance. We are grateful to the numerous federal and state
agencies, academic institutions, and non-profit organizations that pro-
vided the fish data facilitating this study (http://assessment.fishhabitat.
org/#578a9a43e4b0c1aacab89763/578a9a47e4b0c1aacab8976a).

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.ecolmodel.2020.109202.

References

Aguirre-Gutiérrez, J., et al., 2013. Fit-for-purpose: species distribution model perfor-
mance depends on evaluation criteria - Dutch Hoverflies as a case study. PLoS One 8
(5), e63708.

Allouche, O., et al., 2006. Assessing the accuracy of species distribution models: pre-
valence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232.

Ashcroft, H.B., et al., 2017. Moving beyond presence and absence when examining
changes in species distributions. Glob. Change Biol. 23, 2929–2940.

Cohen, J.A., 1960. Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 20,
37–46.

Cooper, A.R., et al., 2019. Protected areas lacking for many common fluvial fishes of the
conterminous USA. Divers. Distrib. 25, 1289–1303.

Cooper, A.R., et al., 2017. Assessment of dam effects on streams and fish assemblages of
the conterminous USA. Sci. Total Environ. 586, 879–889.

Dallas, T.A., Hastings, A., 2018. Habitat suitability estimated by niche models is largely
unrelated to species abundance. Glob. Ecol. Biogeogr. 27, 1448–1456.

Daniel, W.M., et al., 2015. Characterizing coal and mineral mines as a regional source of
stress to stream fish assemblages. Ecol. Indic. 50, 50–61.

Delgado, R., Tibau, X.-.A., 2019. Why Cohen's Kappa should be avoided as performance
measure in classification. PLoS One 14 (9), e0222916.

Elith, J., et al., 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77,
802–813.

Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and
prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697.

Elith, J., et al., 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17,
43–57.

Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction
errors in conservation presence/absence models. Envir. Conserv. 24, 38–49.

Filz, K.J., et al., 2013. How fine is fine-scale? Questioning the use of fine-scale bioclimatic
data in species distribution models used for forecasting abundance patterns in but-
terflies. Eur. J. Entomol. 110, 311–317.

Fithian, W., Hastie, T., 2013. Finite-sample equivalence in statistical models for presence-
only data. Ann. Appl. Stat. 7, 1917–1939.

Frimpong, E.A., Angermeier, P.L., 2009. Fish traits: a database of ecological and life-
history traits of freshwater fishes of the United States. Fisheries 34, 487–495.

Guisan, A., Zimmermann, N., 2000. Predictive habitat distribution models in ecology.
Ecol. Model. 135, 147–186.

Hastie, T., et al., 2009. The Elements of Statistical Learning. Springer New York, New
York, NY.

Table 3
Mean and standard error (SE) of predictor variable relative importance and
rank under the WBRT and BRT distribution modeling approaches for 55 fluvial
fishes. See Table A1 for predictor descriptions.

Mean Importance (SE) Mean Rank (SE)
Predictor WBRT BRT WBRT BRT

Catch area 23.8 (2.37) 18.1 (1.61) 2.7 (0.4) 2.6 (0.42)
MAAT 9.7 (1.33) 9.3 (1.11) 5.4 (0.72) 5.2 (0.71)
MAP 7.7 (1.18) 6.9 (0.78) 6.2 (0.52) 5.8 (0.55)
Elevation 6.9 (1.35) 6 (0.81) 6.4 (0.64) 7.1 (0.6)
Gwindex 4.7 (0.49) 5.3 (0.45) 7.3 (0.57) 7.4 (0.53)
DMD 4.6 (0.39) 5 (0.32) 7.9 (0.63) 7.8 (0.71)
SoilPerm 4.5 (0.86) 4.5 (0.63) 9.9 (0.5) 9.4 (0.58)
Wetland 4.1 (0.51) 4.1 (0.34) 10.2 (0.73) 10 (0.72)
ForestNB 3.9 (0.44) 3.9 (0.21) 10.8 (0.7) 10.9 (0.57)
Ag 3.4 (0.39) 3.8 (0.42) 11.2 (0.93) 11.1 (0.6)
Water 3.2 (0.23) 3.5 (0.25) 11.9 (0.64) 11.6 (0.77)
Gradient 2.7 (0.26) 3.4 (0.18) 11.9 (0.81) 12.4 (0.9)
WaterWD 2.6 (0.19) 3.1 (0.23) 12.3 (0.58) 12.7 (0.63)
N_yield 2.6 (0.18) 3.1 (0.18) 12.4 (0.67) 13.1 (0.67)
DM2D 2.3 (0.24) 2.9 (0.22) 14.2 (0.74) 13.6 (0.7)
Urban 2.1 (0.18) 2.6 (0.17) 14.9 (0.61) 15.2 (0.69)
UDOR 1.9 (0.23) 2.5 (0.18) 15.5 (0.56) 15.5 (0.91)
Rx_dens 1.9 (0.14) 2.4 (0.11) 15.5 (0.9) 15.6 (0.66)
P_yield 1.9 (0.16) 2.3 (0.21) 15.6 (0.64) 16 (0.5)
UrbanLB 1.5 (0.2) 2 (0.11) 17.8 (0.76) 17.6 (0.54)
AgLB 1.4 (0.13) 2 (0.13) 18.3 (0.7) 18.1 (0.57)
AllMine_dens 1.3 (0.12) 1.8 (0.17) 19 (0.47) 18.5 (0.77)
UMO 1.3 (0.15) 1.6 (0.17) 19 (0.53) 19.1 (0.71)

H. Yu, et al.

http://assessment.fishhabitat.org/#578a9a43e4b0c1aacab89763/578a9a47e4b0c1aacab8976a
http://assessment.fishhabitat.org/#578a9a43e4b0c1aacab89763/578a9a47e4b0c1aacab8976a
https://doi.org/10.1016/j.ecolmodel.2020.109202
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0001
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0001
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0001
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0002
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0002
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0003
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0003
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0004
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0004
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0005
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0005
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0006
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0006
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0007
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0007
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0008
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0008
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0009
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0009
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0010
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0010
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0011
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0011
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0012
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0012
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0013
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0013
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0014
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0014
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0014
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0015
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0015
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0016
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0016
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0017
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0017
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0018
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0018


Hernandez, P.A., et al., 2006. The effect of sample size and species characteristics on
performance of different species distribution modeling methods. Ecography 29,
773–785.

Howard, C., et al., 2014. Improving species distribution models: the value of data on
abundance. Methods Ecol. Evol. 5, 506–513.

Jiménez-Valverde, A., 2012. Insights into the area under the receiver operating char-
acteristic curve (AUC) as a discrimination measure in species distribution modelling.
Global Ecol. Biogeogr. 21, 498–507.

King, G., Zeng, L., 2001. Logistic regression in rare events data. Polit. Anal. 9, 137–163.
Leitão, R.P., et al., 2016. Rare species contribute disproportionately to the functional

structure of species assemblages. Proce. Biol. Sci. 283, 20160084.
Leroy, B., et al., 2018. Without quality presence-absence data, discrimination metrics

such as TSS can be misleading measures of model performance. J. Biogeogr. 45,
1994–2002.

Liu, C., et al., 2011. Measuring and comparing the accuracy of species distribution models
with presence-absence data. Ecography 34, 232–243.

Lobo, J.M., et al., 2008. AUC: a misleading measure of the performance of predictive
distribution models. Glob. Ecol. Biogeogr. 17, 145–151.

Lusted, L.B., 1971. Signal detectability and medical decision-making. Sci. (New York,
N.Y.) 171, 1217–1219.

McPherson, J.M., Jetz, W., 2007. Effects of species’ ecology on the accuracy of distribu-
tion models. Ecography 30, 135–151.

Manel, S., et al., 2001. Evaluating presence–absence models in ecology: the need to ac-
count for prevalence. J. Appl. Ecol. 38, 921–931.

Merow, C., et al., 2013. A practical guide to MaxEnt for modeling species’ distributions:
what it does, and why inputs and settings matter. Ecography 36, 1058–1069.

Mi, et al., 2017. Combining occurrence and abundance distribution models for the con-
servation of the Great Bustard. PeerJ 5, e4160. https://doi.org/10.7717/peerj.4160.

Nielsen, S.E., et al., 2005. Can models of presence-absence be used to scale abundance?
Two case studies considering extremes in life history. Ecography 28, 197–208.

Norberg, A., et al., 2019. A comprehensive evaluation of predictive performance of 33
species distribution models at species and community levels. Ecol. Monogr. 89 (3),
e01370.

Peterson, A.T., et al., 2008. Rethinking receiver operating characteristic analysis appli-
cations in ecological niche modeling. Ecol. Model. 213, 63–72.

Phillips, S.J., et al., 2017. Opening the black box: an open-source release of Maxent.
Ecography 40, 887–893.

Pritt, J.J., Frimpong, E.A., 2010. Quantitative determination of rarity of freshwater fishes
and implications for imperiled-species designations. Conserv. Biol. J. Soc. Conserv.
Biol. 24, 1249–1258.

Radosavljevic, A., Anderson, R.P., 2014. Making better M axent models of species dis-
tributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643.

Raghavan, V., et al., 1989. A critical investigation of recall and precision as measures of
retrieval system performance. ACM Trans. Inf. Syst. 7, 205–229.

Renner, I.W., et al., 2015. Point process models for presence-only analysis. Methods Ecol.
Evol. 6, 366–379.

Robinson, N.M., et al., 2017. A Systematic Review of Marine-Based Species Distribution
Models (SDMs) with Recommendations for Best Practice. Front. Mar. Sci. 4, 110.

Salas-Eljatib, et al., 2018. A study on the effects of unbalanced data when fitting logistic
regression models in ecology. Ecol. Indic. 85, 502–508.

Santika, T., 2011. Assessing the effect of prevalence on the predictive performance of
species distribution models using simulated data. Glob. Ecol. Biogeogr. 20, 181–192.

Shabani, F., et al., 2016. A comparison of absolute performance of different correlative
and mechanistic species distribution models in an independent area. Ecol. Evol. 6,
5973–5986.

Sofaer, H.R., et al., 2019. The area under the precision‐recall curve as a performance
metric for rare binary events. Methods Ecol. Evol. 10, 565–577.

Steenweg, R., et al., 2019. Species-specific differences in detection and occupancy
probabilities help drive ability to detect trends in occupancy. Ecosphere 10 (4),
e02639. https://doi.org/10.1002/ecs2.2639.

Stevens, B.S., Conway, C.J., 2020. Predictive multi‐scale occupancy models at range‐wide
extents: Effects of habitat and human disturbance on distributions of wetland birds.
Divers. Distrib. 26, 34–48.

Stolar, J., Nielsen, S.E., 2015. Accounting for spatially biased sampling effort in presence-
only species distribution modelling. Divers. Distrib. 21, 595–608.

Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Sci. (New York, N.Y.)
240, 1285–1293.

Van Couwenberghe, R., et al., 2013. Can species distribution models be used to describe
plant abundance patterns? Ecography 36, 665–674.

VanDerWal, J., et al., 2009. Abundance and the environmental niche: environmental
suitability estimated from niche models predicts the upper limit of local abundance.
Am. Nat. 174, 282–291.

Warton, D.I., Shepherd, L.C., 2010. Poisson point process models solve the “pseudo-ab-
sence problem” for presence-only data in ecology. Ann. Appl. Stat. 4, 1383–1402.

Weber, M.M., et al., 2017. Is there a correlation between abundance and environmental
suitability derived from ecological niche modelling? A meta-analysis. Ecography 40,
817–828.

Wenger, S.J., Freeman, M.C., 2008. Estimating species occurrence, abundance, and de-
tection ability using zero-inflated distributions. Ecology 89 (10), 2953–2959.

Yackulic, C.B., et al., 2013. Presence-only modelling using MAXENT: when can we trust
the inferences? Methods Ecol. Evol. 4, 236–243.

Yañez-Arenas, et al., 2014. Predicting species’ abundances from occurrence data: Effects
of sample size and bias. Ecol. Model. 294, 36–41.

H. Yu, et al.

http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0019
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0019
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0019
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0020
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0020
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0021
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0021
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0021
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0023
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0024
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0024
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0025
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0025
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0025
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0026
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0026
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0027
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0027
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0028
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0028
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0029
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0029
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0030
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0030
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0031
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0031
https://doi.org/10.7717/peerj.4160
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0033
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0033
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0034
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0034
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0034
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0035
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0035
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0036
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0036
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0038
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0038
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0038
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0039
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0039
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0040
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0040
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0041
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0041
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0042
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0042
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0043
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0043
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0044
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0044
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0045
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0045
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0045
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0046
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0046
https://doi.org/10.1002/ecs2.2639
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0048
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0048
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0048
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0049
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0049
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0050
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0050
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0051
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0051
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0052
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0052
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0052
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0053
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0053
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0054
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0054
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0054
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0054s
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0054s
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0056
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0056
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0057
http://refhub.elsevier.com/S0304-3800(20)30272-6/sbref0057

	Improving species distribution model predictive accuracy using species abundance: Application with boosted regression trees
	Introduction
	Material and methods
	Biological and environmental data
	Description of the models
	Unweighted Boosted Regression Trees (BRT)
	Weighted Boosted Regression Trees (WBRT)

	Model comparison
	Model deviance explained
	Metrics comparing predictive performance
	Differences in species presences, prevalence, and rarity
	Predictor relative importance and overall predictor rankings


	Results
	Comparing BRT and WBRT model results
	Model deviance explained
	Metrics comparing predictive performance

	Differences in species presences, prevalence, and rarity
	Predictor relative importance and overall predictor rankings

	Discussion
	Applying species abundance and richness-based weights to SDMs: implications for improved modeling of less prevalent and rare species
	Use of multiple diagnostic metrics to evaluate alternative models
	Applicability of species weightings with other SDM approaches and additional weighting factors
	Conclusion

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	References


