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a b s t r a c t

Forest clearings in the Amazon are expanding along roads and are enhanced by the associated expansion
of human settlements. The purpose of this research is to analyze the spatial patterns associated with this
development process using fractal geometry and to partition this development process into different
levels by a model-based classification scheme that can be applied to regions globally. A critical region of
tropical forest cover in the tri-national frontier in the center of the southwestern Amazonwas used as the
study area. We utilized box-counting fractal dimensions to describe the spatial patterns of deforestation
at a pixel level from 1986 to 2010 in the study region. The evolving pattern of development, as indicated
by density-sliced fractal dimension, provides a unique and informative view of a deforesting landscape.
The cleared areas have become increasingly compact from 1986 to 2010, where the low fractal di-
mensions typically represent little to no forest clearings and higher fractal dimensions are associated
with more highly developed areas. Such differences are summarized by a classification scheme derived
from a mathematical model that partitions the continuous range of fractal dimensions into five possible
classes ranging from no or minimal development to highly developed. Such graphical representations of
these stages of deforestation in the study region with such spatially explicit pixel-level information
enables us to provide multi-level, local, adaptive, and flexible information to forest conservation groups,
land managers and related programs.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

Human society is undergoing a rapid transformation associated
with development that will eventually produce a post-industrial
era and associated landscapes. Such drastic transitions have
already produced potentially threatening changes in almost every
aspect of our social-ecological systems (Gunderson & Holling,
2002), and abrupt global environmental changes can no longer be
excluded (Scheffer et al., 2009; Scheffer, Carpenter, Foley, Folke, &
Walker, 2001). Among them, land use and land cover changes are
occurring globally and at increasingly unprecedented rates,
impacting almost all major biomes worldwide (Gutman et al.,

2004; Lambin & Geist, 2006). This is especially true of the pro-
cess of large-scale deforestation occurring throughout the Amazon,
which has received considerable attention over the past several
decades (Laurance et al., 2002; Lima et al., 2012; Messina, Walsh,
Mena, & Delamater, 2006; Nepstad et al., 2001).

Deforestation has a strong influence on regional and global cli-
mates (Malhi et al., 2008). For example, the consumption of the
cleared forests (e.g., fuel wood) produces greenhouse gases, such as
carbon dioxide, methane, and nitrous oxide, which play an
important role in exacerbating global warming (Fearnside, 2004).
Deforestation may also signal an impending biodiversity loss or
even a biotic collapse (Nobre, Malagutti, Urbano, de Almeida, &
Giarolla, 2009) caused by the loss of landscape connectivity, both
structural and functional because the persistence of spatially
structured species populations, or meta-populations, is strongly
related to landscape connectivity (Hanski & Ovaskainen, 2003).
However, the process of deforestation serves to increase forest
fragmentation, breaking continuous forests into discrete patches
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and, over time, increasing the level of patch isolation (Sun &
Southworth, 2013a). Thus, a lack of connectivity would reduce
the capacity for species movement. The lack of connectivity could
cause local extinctions of certain species not mitigated by immi-
grant populations from neighboring patches and could interfere
with pollination, seed dispersal, wildlife migration and breeding
(Estreguil & Mouton, 2009).

Forest clearings change spatial patterns of forest landscapes that
are readily apparent to humans, and such spatial patterns can be
analyzed via their composition (the elements present) and
configuration (how these elements are arranged) (Li & Reynolds,
1994; Turner, Gardner, & O'Neill, 2001). Both composition and
configuration are important for a variety of ecological reasons e
species survivability, species dispersal, species migration patterns
e and as such, quantitative methods are required to measure these
two factors, to identify their changes, and to incorporate them into
research on land use land cover change.

Since 1972, large-scale deforestation analyses have become
increasingly more feasible with the use of satellite imagery (Giles&
Burgoyne, 2008). The rapid developments of geo-techniques, such
as remote sensing and geographic information systems (GIS), have
substantially advanced the collection and analysis of forest data.
With assistance from remote sensing and other tools, forest studies
have progressed rapidly, and in turn, forested landscapes have
provided in many cases important testing grounds for the devel-
opment and application of landscape ecology principles, tools and
methods (Perera, Buse, & Crow, 2007), such as the theory of island
biogeography and meta-population. Recently, Kupfer (2012) noted
that the widely used package FRAGSTATS released two decades ago
has revolutionized landscape analyses and entrenched landscape
pattern indices in both the minds and toolboxes of many landscape
ecologists and biogeographers. On the other hand, FRAGSTATS as
well as FRAGSTATS-like metrics suffer limitations, and one major
problem is the mismatch between patterns and processes (Cardille,
Turner, Clayton, Gergel, & Price, 2005), where the true relationship
between them is important for uncovering the controlling mech-
anisms of the systems. Hence, in order to better understand spatial
patterns of developed areas (for simplicity, in this paper, developed
areas refer to the clearance of forests or non-forest areas, whereas
non-developed areas refer to forest areas) during the process of
deforestation, a large collection of techniques and methodologies
has been developed to solve and/or improve this shortcoming and
to facilitate the understanding of deforested landscapes and their
dynamics, such as moving window analysis (e.g., Riitters et al.,
2002; Zurlini, Riitters, Zaccarelli, & Petrosillo, 2007), graph theory
(Baggio, Salau, Janssen, Schoon, & Bodin, 2011; Bunn, Urban, &
Keitt, 2000; Minor & Urban, 2008; Saura & Pascual-Hortal, 2007),
normalized spectral entropy index (Sun & Southworth, 2013b;
Zaccarelli, Li, Petrosillo, & Zurlini, 2012) and morphological
spatial pattern analysis (MSPA) (Vogt et al., 2007). In particular,
MSPA has been widely employed in landscape analyses, such as
scale pattern measurement, landscape connectivity mapping, and
green infrastructure detection (Ostapowicz, Vogt, Riitters, Jacek, &
Christine, 2008; Sun & Southworth, 2013a; Wickham, Riitters,
Wade, & Vogt, 2010).

It is logical to conclude that there is a clear trend to move from
applying simple FRAGSTATS and FRAGSTATS-like landscapemetrics
to landscapes to the use of graphs (Kupfer, 2012), and such
advancement contributes a more functional approach to landscape
quantification and to the understanding of landscape dynamics.
However, most often, forest fragmentation can be envisaged as a
surface growth process (Barabasi & Stanley, 1995), and such com-
plex, irregular patterns cannot be described properly by traditional
Euclidean geometry but can be measured by an alternative tool e
that of fractal geometry.

In this research, wewill adopt a fractal analysis with a fixed-grid
scans strategy (e.g., Iannaccone& Khokha, 1996) to characterize the
spatial patterns of the developed areas in an Amazon landscape
undergoing deforestation and development. Notably, the fixed-grid
scans strategy pixelizes entire landscapes and calculates the fractal
dimension within each pixel. Such pixel-level fractal cartography
conforms to the current trend in landscape ecology described
above. Next, a configuration scheme based on a mathematical
model is proposed to partition the calculated continuous fractal
dimensions into five types that are able to indicate different stages
of development. The specific research questions to be addressed
here are as follows: (1) What are the spatial patterns associated
with the development process?; (2) Can development levels be
classified from this scheme?; and (3) Does the pixel-level fractal
cartography provide more insight into the patterns and processes
debate than a more traditional FRAGSTATS type methodology?

Materials and methods

A deforested landscape in the Amazon: the ‘MAP’ region

We take up the case of the southwestern Amazon, a forested
regionwhere rapid landscape change is occurring. The center of the
southwestern Amazon is a tri-national frontier: Madre de Dios, a
Department of Peru, meets the state of Acre in Brazil and the
department of Pando in Bolivia. Consequently, this frontier is
known as the ‘MAP region’, and it covers an area of approximately
300,000 km2 (Fig. 1). Though it remains 90% forested overall and
contains high levels of biological and social diversity (Myers,
Mittermeier, Mittermeier, da Fonseca, & Kent, 2000), the MAP re-
gion has suffered accelerated changes in its forested landscape
(Southworth et al., 2011) primarily due to the construction of the
Inter-Oceanic Highway (IOH), which connects central Brazil to the
Pacific ports in Peru. In Acre, the paving was completed in 2002,
while the paving in Madre de Dios began in 2005 and was
completed in 2010. In contrast, paving of primary roads in Pando
remains limited. The three states in the MAP region have differing
population sizes and land use patterns, and such differences,
revealed in land cover by satellite data (Perz et al., 2012, 2013),

Fig. 1. Map of the study region with three capital cities and the major road super-
imposed. This region encompasses tri-national frontier regions of the Peruvian state of
Madre de Dios, the Brazilian state of Acre, and the Department of Pando, Bolivia,
termed the ‘MAP’ region. Note: Adapted from “Indicating structural connectivity in
Amazonian rainforests from 1986 to 2010 using morphological image processing
analysis,” by Sun, J. & Southworth, J. (2013a), International Journal of Remote Sensing,
34, 5187e5200. Adapted with permission.
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constitute a useful case to assess the performance of the proposed
pixel-level fractal cartography techniques across landscapes with a
range of patterns and dynamics in order to review their landscape
ecology applications.

Time-series of forest cover maps can reflect the changing tra-
jectories of forest areas and their associated fragmentation patterns
(Tole, 2006). In the MAP region, six forest/non-forest maps were
interpreted from Landsat 4, 5 Thematic Mapper (TM) and Landsat 7
Enhanced Thematic Mapper plus (satellite images for the years
1986, 1991, 1996, 2000, 2005, and 2010 (Paths 1e3, Rows 67e69,
excluding 1/69). Acquired dates are between May and October in
each year, corresponding to the dry season when cloud cover and
aerosols are both low.

For consistency, we performed the same pre-processing for all
images: registration, atmospheric corrections, radiometric calibra-
tion, and geometric correction to the Global Land Cover Facility
Geocover product for 1999/2000. Next, these processed images
were combined into a mosaic and classified into forest class and
non-forest class by a decision tree classification method. Compu-
mine Rule Discover System (RDS), a data-mining tool, was applied
to create decision rules and classify the image mosaics. A tasseled
cap transformation was performed to obtain three bands: bright-
ness, greenness, and wetness, which along with a mid-infrared
vegetation index and a three-by-three convolution variance im-
age, were employed as inputs for each mosaic year. The forest class
includes all dense vegetated covers, which by default, includes
secondary succession as a cover type once a dense canopy is ach-
ieved. The non-forest class includes agriculture, pasture areas,
cleared areas, major roads, urban fabrics, and open shrub, and these
non-forest cover types are defined by the term ‘developed areas’.
Compumine predicts the specified land cover classes using a split-
sample validation. For the MAP region, we used 85% of the training
sample to create the decision tree and 15% to test the model. The
rules (98.0%e99.8% accurate) were then input into the ERDAS
Knowledge Engineer to produce a forest/non-forest map for all
years. The classification accuracy was evaluated using over 350
training samples collected during fieldwork from 2005 to 2006,
with the resulting accuracies of the Kappa coefficient, overall
percent accuracy for forest and non-forest classes, and overall
classification all exceeding 90% for 2005 (refer toMarsik, Stevens,&
Southworth, 2011; Southworth et al., 2011 for more details). We
also compared the 2000 image data with Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) images for
the year 2000 and found an overall accuracy of 96% across our
products. For 2010 data, we used Google Earth to check the results,
and the overall accuracy reached 95% for the MAP region. In addi-
tion, the areas of cloud in any given year were removed from each
date.

Bottom-up plan and fixed-grid scans strategy

The box-counting approach is one of the frequently used tech-
niques to estimate fractal dimension (Mandelbrot, 1977), and a
bottom-up method was adopted to calculate fractal dimension
(Encarnaç~ao, Gaudiano, Santos, Tened!orio, & Pacheco, 2012;
Falconer, 2003) in this research. Specifically, a series of grids are
repeatedly layered within an AOI box, and in each iteration ‘k’, the
minimum Nk squares of side 3k ¼ 2k (pixels, 1 pixel¼ 30 m) needed
to encompass the developed areas were recorded, where
k ¼ ½0;…;m# and the maximum iterations m was set as 5, which is
sufficient to maintain stable results (e.g., Encarnaç~ao et al., 2012).
After m ¼ 5 iterations, the fractal dimension D can be estimated by
a linear regression:

log Nk ¼ $D log 3k þ c (1)

where c is a constant. This bottom-up plan was then implemented
by the fixed-grid scans strategy, which can represent fractal
structures over large, heterogeneous landscapes. Essentially, a
fixed-grid scans strategy pixelizes the entire landscape and then
calculates the fractal dimension of each pixel. One known issue
with this method is deciding what the pixel size (the length of one
side of the pixel) should be because the box-countingmethod relies
on dividing pixels recursively, and therefore, they would not often
be divided exactly. In order to preserve accuracy in the calculations,
as well as to maintain the finest resolution of the final graphic
products as much as possible (Li, Du, & Sun, 2009), 3840 m (128
pixels) as the least common multiple of 3k ¼ 2k, k ¼ [0, …, 5] was
selected as the preferred pixel (grid) size, that is, 3840 m (128
pixels) can be exactly divided by 3k ¼ 2k, k ¼ ½0;…;5# without any
remainder.

Results

Remotely sensed analysis of forest cover change in the MAP region

In the MAP region, though forest cover percentage decreases
from 96.1% in 1986 to 88.4% in 2010, the entire landscape is still
largely forested (Fig. 2, Table 1). The percentage of developed area
increases from 1.5% in 1986 to 9.2% in 2010. Clouds and water
bodies were excluded for all six years and classified as one category
(No Data), which accounts for approximately 2.4% of the total area.
Previous research (Southworth et al., 2011) indicates very limited
areas of regrowth from 1986 to 2010. Therefore, the potential in-
clusion of secondary succession within the forest class is almost
non-existent. The dominant cover type is forest cover and the main
process occurring at all three sites is that of deforestation for
development (roads, homes, agriculture etc.).

Mapping fractality across the MAP region

The cartographic representations of fractal structure across the
MAP region are presented in Fig. 3, and they show that the range of
fractal dimensions are not evenly distributed, denoting a hetero-
geneous landscape. The results (Fig. 3) reveal that developed areas
in the MAP region have been spreading rapidly and have become
increasingly clustered over the time period from 1986 to 2010. Fig. 3
clearly shows the low fractal dimensions (more yellow) (in the web
version), which represent forest or very small forest clearings, and
higher fractal dimensions (more red) (in the web version), which
are associated with more developed areas. The distributions of R-
squared and standard error of the linear regression values of the
calculations both support, with the large R-squared and small
standard error values, the robust regression results and fractal
structures (Appendix S1 in Supplementary material).

It is worth noting that fractal dimensions of 100% forest grids
were arbitrarily set as zero and did not count in any actual calcu-
lation, and the percentage of these grids in the MAP region are
57.9%, 46.2%, 54.3%, 42.2%, 41.2% and 39.6% for the years 1986, 1991,
1996, 2000, 2005, and 2010, respectively, while the percentage of
grids affected by clouds was 23.5%. In contrast, 18.6%, 30.3%, 22.2%,
34.3%, 35.3% and 36.9% of the MAP region for the years 1986, 1991,
1996, 2000, 2005, and 2010, respectively, were used in calculations
relating to the developed land cover class for each of the dates.

Because deforestation changes the spatial patterns of forest
cover across the landscape and species and people respond to this
altered pattern in turn (Malanson, Wang, & Kupfer, 2007), it is
necessary to analyze the fraction of developed areas (composition)
and their associated fractal dimensions (configuration) in combi-
nation and to interpret such relationships over the time period of
the deforestation process.
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Incorporating composition and configuration of developed areas in
the MAP region

For the process of deforestation in the MAP region, the fraction
of developed areas ‘a’ in each grid was plotted as a function of the
associated fractal dimension ‘D’ (Fig. 4). Specifically, the total
developed area ‘A’ in each grid was normalized and represented by
its fraction ‘a’ as a ¼ A=Ac; where Ac is the pixel area (e.g.,
3840 m & 3840m ¼ 14,745,600 m2). Zooming into the bottom-up
calculation process, for iteration number k, where k ¼ ½0;…;m#
and m ¼ 5, the developed area Ak occupied by the Nk boxes with
side 3k is expressed as:

Ak ¼ Nk & 32K (2)

thus, we can replace the Nk in Equation (1) by Ak, and developed
area Akis given as:

log Ak ¼ ð2$ DÞ & log 3k þ c (3)

so that we obtain Ak ¼ Akþ1 & 2D$2, which can be further inferred
as:

A0 ¼ Am & ð2mÞD$2 (4)

where k ¼ ½0;…;m# and m ¼ 5. This relationship is then used to
derive the upper least bound of developed areas as a function of D:

UðDÞ ¼ L2 & ð2mÞD$2 (5)

where L is the box length (L is 128 pixels; it is easy to infer that L2

must be larger than or equal to any Ak, where k ¼ ½0;…;m# and
m ¼ 5). The lower least bound L(D) will be proportional to the
upper least bound U(D), such that:

LðDÞ ¼ a& UðDÞ (6)

Considering a situation in which there is only one pixel of devel-
oped area in a grid, that is, Ak and Nk both equal to 1 in each iter-
ation (independently of k), then the slope of the linear regression in
equation (1) will be equal to zero, that is, D ¼ 0. Thus, it can be
concluded L(0) ¼ 1 and a ¼ ð2m=LÞ2, so that:

LðDÞ ¼ 2md (7)

Both U(D) and L(D) were normalized as u(D) and l(D) by dividing
by L2 and then being superimposed (Fig. 6). Obviously, many cells
with different fractions ‘a’ correspond to the same ‘D’, and vice
versa. For a certain cell i on the least upper bound, that is, ai(Di) ¼
u(Di), any new developed areas will inevitably increase the fractal
dimension D. Conversely, when ai(Di) < u(Di), forest areas can still
be cleared without necessarily increasing the fractal dimension. To
quantitatively assess these differences across the landscape and be
more informative, a configuration scheme based on amathematical
model can now be developed.

Quantitative assessment of configuration

For a given D, we computed the number of possible configura-
tions of developed areas that meet l(D) ) a ) u(D) using all the data
(Fig. 4) as derived from Encarnaç~ao et al. (2012), where a function
U(A, D) is built to compute the number of possible configurations

Fig. 2. Forest/non-forest maps showing clearing dynamics in the MAP region for the years a. 1986, b. 1991, c. 1996, d. 2000, e. 2005, and f. 2010, interpreted from eight Landsat
images (path/row: 1/67, 1/68, 2/67, 2/68, 2/69, 3/67, 3/68, 3/69). Note: Adapted from “Indicating structural connectivity in Amazonian rainforests from 1986 to 2010 using
morphological image processing analysis,” by Sun, J. & Southworth, J. (2013a), International Journal of Remote Sensing, 34, 5187e5200. Adapted with permission.

Table 1
Statistical summary of forest/non-forest dynamics from 1986 to 2010.a

Class 1986 (%) 1991 (%) 1996 (%) 2000 (%) 2005 (%) 2010 (%)

Forest 96.1 94.6 94.4 93.3 91.2 88.4
Non-forest 1.5 3.0 3.2 4.3 6.4 9.2
No data 2.4 2.4 2.4 2.4 2.4 2.4

a 1% represents approximately 1655.9 km2 in the MAP region.
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within each grid characterized by developed areas ‘A’ and fractal
dimension ‘D’. The number of possible configurations is given by:

S ¼ SðDÞ ¼ log
!XUðDÞ

A¼LðDÞUðA;DÞ
"

(8)

where the values of S and S0 ¼ dS/dD determine different regimes
that partition the data into 5 types (Fig. 5) (See Appendix S2 in
Supplementary material). The quantity S can be understood as
‘micro-canonical’ entropy, measuring the number of possible con-
figurations compatible with a given fractal dimension (Encarnaç~ao

et al., 2012). Specifically, these types are type 1, no or trivial clearing
areas; type 2, highly dispersed clearings occurring in a dominantly
forested landscape; type 3, metastatic growth; type 4, rapid growth
and metastatic consolidation; and type 5, clearing consolidation.
Therefore, the deforestation process can be viewed as an evolu-
tionary progression from Type 1 to Type 5.

According to this configuration scheme, different developments
of developed areas across the MAP regionwere represented (Fig. 6)
and summarized (Table 2). Among these 5 types, only Type 1 areas
decreased from 62.6% in 1986 to 46.0% in 2010, and this reduction
indicates that deforestation is taking place rapidly and spreading

Fig. 3. Spatio-temporal fractal analysis of the developed areas in the MAP region for the years a. 1986, b. 1991, c. 1996, d. 2000, e. 2005, and f. 2010. To maintain the data quality and
result accuracy, some grids were removed due to cloud influences.

Fig. 4. Fraction of developed areas in each grid a(D) (plotted as log10 scale) as a function of the associated fractal dimension (D) for the years a. 1986, b. 1991, c. 1996, d. 2000, e.
2005, and f. 2010. All distributions are bounded by the least upper bound u(D) and lower bound l(D).
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extensively. Types 2e5 all experienced increases from 1986 to 2010,
where Types 2, 3, and 4 have slight increases from 8.3%, 2.8%, and
2.3% in 1986 to 13.7%, 5.2%, and 5.1% in 2010. The highly developed
grids, Type 5, increased from 0.4% in 1986 to 6.4% in 2010, and
where such grids were initially located primarily around the three
capital cities, Rio Branco (Acre), Cobija (Bolivia), and Puerto Mal-
donado (Peru), over time have dispersed into connected areas
(Fig. 6). Such graphical representations of these stages of defores-
tation in the MAP region with such spatially explicit pixel-level
information enable us to provide multi-level, local, adaptive, and
flexible information to forest conservation groups, land managers
and related programs.

Discussion

As described, the uneven distribution of forest conversions
among the three states makes the heterogeneity a primary concern

in the analysis, and forest landscapes deal almost exclusively with
large and heterogeneous geographic areas (Perera et al., 2007).
Therefore, we argue forest conservation programs should empha-
size local solutions rather than a global optimization. Compared
with former fractal research that only measures one or several
fractal dimensions (e.g., Feng & Chen, 2010), the algorithm adopted
here provides spatially explicit deforestation information at the
pixel level. In addition, to make the continuous fractal dimensions
more tractable numerically, a model was built to partition the
fractal value range into five categories using a mathematical func-
tion (Encarnaç~ao et al., 2012). The deforestation process can then be
viewed as an evolutionary development, and with such clear
definition, policy makers and conservationists can regulate
different management strategies to address different problems or
predict some potential effects. The five types and their dynamics
illustrated in the final resultant map reflect different development
levels among the three states in the study area, both spatially and

Fig. 5. Types of deforestation stages. S(D) (blue curve) and its changing rate S0(D) (black curve) were plotted with respect to the associated fractal dimension D. Five types were
defined by the mathematical model and characterized in the insert maps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 6. The evolving pattern of development as indicated by density-sliced fractal dimension in the MAP region for the years a. 1986, b. 1991, c. 1996, d. 2000, e. 2005, and f. 2010.
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temporally. Considering these five stages, ranging from no or
minimal development to highly developed, we argue types 2, 3, and
4 should be highlighted in conservation planning, as they represent
transitional areas where the shrunken interior forest and the
expanded cleared area meet. Therefore, conservation programs or
even restoration activities should focus on these unsteady inter-
mediate regions, as they provide a window of opportunity to un-
derstand deforestation processes, dynamics and effects at a clearly
defined level.

The fractal methodology carried out in this paper can be used to
understand deforestation and urbanization, which provides an
alternative perspective to the spatial methods devised to date. We
think the methodology described has great potential to provide
new insights to current conservation and/or urban planning pro-
grams. By creating large fractal pictures of study landscapes, we can
identify environmental hot-spots, cold-spots, and intermediate
regions in order to provide different recommendations to policy-
makers.

On the other hand, though easy to measure, fractal analysis can
cause misunderstandings, such as the differences between mono-
fractal and multi-fractal, self-similar and self-affine. Particularly,
the appreciation of the multi-fractal should be emphasized and
clarified in future research, which may be able to reveal useful in-
formation, such as urban growth. Fractal analysis, as a newly
emerging branch of mathematics, must be undertaken under strict
mathematical derivation and must be cautiously used when
applied to real world problems.

Again, the Amazonian rainforest is undergoing significant land
cover changes, transitioning from forest to urban and agriculture
lands (DeFries, Foley, & Asner, 2004; Laurance et al., 2001). Tar-
geting regional integrations (to improve accessibility), many forms
of infrastructure e particularly transportation e have been heavily
subsidized, such as the IOH, which was introduced to link Atlantic
ports in Brazil and Pacific ports in Peru (Perz et al., 2013). For
example, soybean production in Brazil, which plays a key role in the
country's economic development, has increased dramatically, and
Brazil may overtake the USA as the world's top soybean producer
(Arvor, Dubreuil, Sim~oes,& B!egu!e, 2013; Liu et al., 2013). In order to
compete with USA soybean exports, more roads may be planned in
the future to reduce road transportation cost, as well as to access
remote resources in Brazil. Increased road construction, in turn,
may cause substantial impacts on the environment, such as
increased intensity of agricultural land use and forest loss. Though
not ‘palatable’, road construction could lead people to a better life.
Without government legislation and intensive conservation efforts,
wewould argue that many Amazon forest areas may continue to be
encroached upon until they reach the level of fractal dimension 2.
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