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a  b  s  t  r  a  c  t

Regeneration  of  trees  in  canopy  gaps  created  by  timber  harvest  is vital  for  the  sustainability  of  many
managed  forests.  In northern  hardwood  forests  of  the  Great  Lakes  region  of  North  America,  regener-
ation  density  and  composition  are  highly  variable  because  of  multiple  drivers  that  include  browsing
by  herbivores,  seed  availability,  and  physical  characteristics  of forest  gaps  and  stands.  The  long-term
consequences  of  variability  in  regeneration  for economic  productivity  and  wildlife  habitat  are  uncer-
tain.  To  better  understand  and  evaluate  drivers  and  long-term  consequences  of  regeneration  variability,
simulation  models  that  combine  statistical  models  of  regeneration  with  established  forest  growth  and
yield models  are  useful.  We  present  the  structure,  parameterization,  testing  and  use  of  a  stochastic,
regression-based  compositional  forest  gap  regeneration  model  developed  with  the  express  purpose  of
being integrated  with  the  US  Forest  Service  forest  growth  and  yield  model  ‘Forest  Vegetation  Simula-
tor’ (FVS)  to  form  an  integrated  simulation  model.  The  innovative  structure  of  our  regeneration  model
represents  only  those  trees  regenerating  in gaps  with  the  best  chance  of  subsequently  growing  into  the
canopy  (i.e.,  the  tallest).  Using  a multi-model  inference  (MMI)  approach  and  field  data  collected  from  the
Upper Peninsula  of  Michigan  we find  that  ‘habitat  type’  (a proxy  for soil  moisture  and  nutrients),  deer

density,  canopy  openness  and basal  area  of  mature  ironwood  (Ostrya  virginiana)  in  the  vicinity  of  a  gap
drive regeneration  abundance  and composition.  The  best model  from  our MMI  approach  indicates  that
where deer  densities  are  high,  ironwood  appears  to  gain  a  competitive  advantage  over  sugar  maple  (Acer
saccharum)  and  that  habitat  type is an important  predictor  of overall  regeneration  success.  Using  sensi-
tivity analyses  we  show  that  this  regeneration  model  is sufficiently  robust  for  use  with  FVS  to  simulate

 time
forest  dynamics  over  long

. Introduction

In forests managed by uneven-aged selection silviculture, juve-
ile shade-tolerant trees are expected to regenerate naturally
eneath forest-canopy gaps created by periodic harvesting of single
o small groups of trees (Arbogast, 1957; Nyland, 1998). However,
n uneven-aged managed northern hardwood forests in the Great
akes region of North America regeneration abundance and compo-
ition is highly variable (e.g., Matonis et al., 2011). Environmental
rivers of this variation include browsing by herbivores (Horsley
t al., 2003; Long et al., 2007), seed availability (Ribbens et al., 1994;

arrett and Graber, 1995), physical characteristics of forest gaps
nd stands (Kern, 2011), competition between seedlings and other
egetation (Randall, 2007; Matonis et al., 2011), and interactions

∗ Corresponding author. Tel.: +44 (0) 207 848 2604.
E-mail address: james.millington@kcl.ac.uk (J.D.A. Millington).

304-3800/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.ecolmodel.2012.12.033
 periods  (i.e., 200  years).
© 2013 Elsevier B.V. All rights reserved.

between these factors (Powers and Nagel, 2009; Matonis et al.,
2011). Variation in regeneration of dominant canopy species can
lead to substantial changes in forest stand composition and struc-
ture over time (Seagle and Liang, 2001; Pedersen and Wallis, 2004),
thus altering habitat for wildlife (Millington et al., 2011), and pos-
ing economic concerns for the timber industry (Donovan, 2005;
Racevskis and Lupi, 2006). Predicting regeneration abundance and
composition due to environmental drivers is therefore important
both for understanding long-term forest dynamics and to inform
forest management actions.

To study tree population dynamics, many forest gap models
have been developed (e.g., Botkin et al., 1972; Shugart, 1984;
Urban, 1990; Bugmann et al., 1996; Larocque et al., 2011). Gap
models represent the establishment, growth and senescence of

individual trees in and around forest gaps through time. These
models are primarily used to investigate ecological questions such
as how species interactions influence succession. In contrast, for-
est growth and yield models are designed and used primarily for

dx.doi.org/10.1016/j.ecolmodel.2012.12.033
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:james.millington@kcl.ac.uk
dx.doi.org/10.1016/j.ecolmodel.2012.12.033
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lanning and managing commercial forests (Liu and Aston, 1995;
eiskittel et al., 2011). Examples include the US Forest Service ‘For-

st Vegetation Simulator’ (FVS, Crookston and Dixon, 2005) and
he ORGANON model (Hann, 2011). The focus of forest growth and
ield models on overstory trees (for merchantable timber) is at the
xpense of the representation of other processes such as under-
tory regeneration. Model users often must provide forest growth
nd yield models with data on new trees regenerating following

 timber harvest. For example, beyond the Rocky Mountains (for
hich a regeneration module has been developed, Ferguson and
arlson, 1993), managers using FVS must specify the species, den-
ity, and size of expected new trees at each simulated cycle. Such
n approach assumes managers have good knowledge of previ-
us regeneration abundance and composition and that it will not
hange through time (or that planting will drive regeneration).
owever, observed spatial (e.g., Matonis et al., 2011) and tempo-

al variation (e.g., Sage et al., 2003) in the multiple environmental
rivers of natural regeneration suggest that future regeneration

s unlikely to be stable. To overcome these shortcomings, hybrid
pproaches which combine statistical models of regeneration with
stablished forest growth and yield models are useful for under-
tanding and predicting variation in tree regeneration and its
ong-term impacts on forest stand conditions (Weiskittel et al.,
011).

Predicting regeneration abundance and composition has long
hallenged forest scientists and managers (Liu and Aston, 1999),
ith a variety of approaches used to statistically model regen-

ration. These approaches include probabilistic (Monserud and
k, 1977), multi-level regression (Miina and Saksa, 2006), artifi-
ial neural networks (Hasenauer and Kindermann, 2002), nearest
eighbour imputation (Hassani et al., 2004), and expert-based
Vickers et al., 2011) models. Given the inherent variability in
orest regeneration, methods that incorporate stochasticity along-
ide deterministic functions are particularly important (Miina
nd Heinonen, 2008). Furthermore, if the regeneration model
s to be coupled with a growth and yield model for continued
imulation of tree growth, harvest, and mortality, regeneration
odel structure must consider the requirements of the growth

nd yield model and the specific questions it will be used to
ddress.

To better understand and predict the consequences of environ-
ental drivers of regeneration in managed uneven-aged northern

ardwood forests over the long term, and to contribute to iden-
ifying management practices for meeting regeneration targets,
e have developed a stochastic, regression-based compositional

orest gap regeneration model. Coupling this regeneration model
ith FVS (Ontario variant, Lacerte et al., 2006; Sharma et al., 2008)

nd other submodels (e.g., representing deer populations) results
n an integrated forest simulation model for evaluating impacts
f scenarios of timber and wildlife management on tree regen-
ration and forest dynamics over long time periods (Millington
t al., 2013). Here, we present the parameterization and evalu-
tion of our stochastic gap regeneration model, which takes an
nnovative approach to represent only trees with the best chance
f growing into the canopy and which is specifically designed to
rovide input to FVS. The model simulates the initial height of
he tallest saplings 10 years following gap creation (potentially
ither advanced regeneration or gap colonizers), and grows them
ntil they are at least 7 m in height when they are passed to
VS for continued simulation. Our approach does not aim to pro-
uce a thorough mechanistic model of regeneration dynamics, but
ather is one that is sufficiently mechanistically based to allow

s to reliably predict regeneration for trees most likely to recruit
o canopy positions from readily collectable field data. We  also
nvestigate and illustrate regeneration responses (species compo-
ition and abundance) to environmental conditions implied by the
Modelling 253 (2013) 17– 27

model by examining scenarios based on observed environmental
conditions.

2. Methods

2.1. Data collection and preparation

The data used to develop the forest gap regeneration model
presented here were collected from 166 gaps in 28 northern hard-
wood stands in the central Upper Peninsula (UP) of Michigan, USA
(see Appendix A for a summary of stand attributes and Millington
et al., 2010 and Matonis et al., 2011 for wider study area details).
The overstory canopies of these stands are dominated by commer-
cially valuable sugar maple (Acer saccharum Marsh.), but include
other species such as American basswood (Tilia americana L.), black
cherry (Prunus serotina Ehrh.), paper birch (Betula papyrifera Mar-
shall), red maple (Acer rubrum L.), white ash (Fraxinus americana L.),
and yellow birch (Betula alleghaniensis Britton). Ironwood (Ostrya
virginiana (Mill.) K. Koch) is also prevalent in these stands (Matonis
et al., 2011), but compared with other common tree species, the rel-
atively small maximum size of ironwood relegates it to subcanopy
status and low economic value. Sugar maple and ironwood are
the dominant species regenerating in northern hardwood stands
in our central UP study area, representing approximately 75% of
trees 2–7 m tall across harvest gaps we  surveyed.

Our approach to data collection and modelling is influenced by
the intention to provide regeneration data to the FVS model, as
part of an integrated simulation model. This integrated simulation
model will run at a temporal resolution of 10 years, both because
it can take this long for seedlings to recruit to heights beyond the
influence of deer (e.g., Matonis, 2009) and because this represents
a reasonable timber harvest return interval for our study area. Con-
sequently, we selected stands for data collection that had been
harvested between 8 and 12 years prior to surveying (we  used a
range of gap ages centred around 10 years to maximize the size of
our sample). In each stand, six harvest gaps were sampled unless
fewer existed or very high sapling densities made data collection
prohibitively time-intensive (which was the case in only five of the
28 stands, see Matonis et al., 2011).

At each stand, ‘habitat type’ – a categorical proxy for soil mois-
ture and nutrient regimes (Burger and Kotar, 2003) routinely used
by forest managers in our study area – was  determined using
diagnostic assemblages of understory vegetation. Habitat type clas-
sifications for surveyed stands were: AOCa (mesic soil moisture
regime; rich to very rich soil nutrient regime), ATD-Hp (mesic;
medium to rich), ATD (mesic; medium to rich), ATM (dry-mesic to
mesic; medium), or TMC  (mesic to wet-mesic; medium). Winter
deer density was estimated for each stand using spring-time faecal
pellet surveys to account for the influence of browse on regener-
ation (Cote et al., 2004). Pellet group counts from ten transects
(50 m × 4 m oriented in a ‘bow tie’ shape around each stand cen-
tre; see Millington et al., 2010) were averaged and converted to an
estimate of deer density (deer km−2, after Hill, 2001). To account
for seed production potential, estimates of the basal area (m2 ha−1)
of mature (potentially seed bearing) sugar maple and ironwood
basal area (trees with DBH > 20 cm and DBH > 5 cm respectively)
were estimated for trees in a fixed radius plot (20 m radius from
centre of gap). We  used a radius of 20 m as the majority of seeds
for most northern hardwood species have been found to fall within
20 m of their tree of origin (Ribbens et al., 1994).

In each gap, heights (to the nearest 0.25 m)  and species of all

saplings (trees 2–7 m tall) in a 154 m2 circular plot (7 m radius cen-
tred in the gap) were recorded. Age at 0.05 m and 1.4 m height was
determined for one sugar maple and one ironwood sapling in each
of three height strata (1–2 m,  2–4 m and > 4 m)  to estimate height
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rowth rate and to assess whether the sapling was present prior to
ap creation (‘advanced regeneration’) or not (‘gap colonizer’). For
he sampled trees 2–7 m tall, 95% of sugar maple and 92% of iron-
ood saplings were ‘advanced regeneration’. Extended gap area

EGA, m2) was estimated (i.e., the area between the boles of gap-
dge trees; Runkle, 1981), and converted to canopy gap area (CGA,
2) using the relationship (after Ménard et al., 2002):

GA = 0.0762 × EGA1.309 (1)

As this equation predicts canopy gap area at the time of gap for-
ation, we adjusted the estimate of CGA to account for the lateral

rowth of overstory branches over a 10-year period (as we were
easuring regeneration approximately 10 years after harvest). We

ssumed that gaps were shaped as an ellipse with a length:width
atio of 1.25 (based on our empirical measurements) and then
educed the length and width of the canopy gap area by 8.97 cm
er year (the average rate of lateral branch extension for hardwood
pecies; Webster and Lorimer, 2005) for 10 years. Canopy openness
%), a proxy for light availability (Kobe and Hogarth, 2007), was  esti-

ated from hemispherical photographs taken in each gap (Canham
t al., 1990 and see Matonis et al., 2011).

.2. Regeneration model structure

The regeneration model takes a phenomenological approach to
imulate heights of gap saplings 10 years following timber har-
est and grows them until they are 7 m tall (see Millington et al.,
011 for details), at which point they are passed to FVS for contin-
ed growth and harvest. Initial regeneration sapling heights (i.e.,
0 years after harvest) are estimated as a function of canopy open-
ess (Eq. (2) in Millington et al., 2011) and subsequent growth rate

s modelled as a function of tree height, time since the gap was  cre-
ted, and whether the sapling was advanced regeneration or gap
olonizer (Eq. (3) in Millington et al., 2011). All saplings modelled
s having initial height ≥3 m are assumed to be advanced regen-
ration (as 100% of empirically sampled saplings with height ≥3 m
ere advanced regeneration) and the probability that a modelled

apling with height < 3 m is advanced regeneration is estimated as
 function of sapling height and time since the gap was created (Eq.
4) in Millington et al., 2011).

In our regeneration model we assume that each gap contains
pace for a total of n, 7 m tall trees. We  simulate n or less trees
ecause we are only concerned with the first trees that grow to 7 m
o completely fill the gap at that height, thereby out-competing any
ther trees in the gap (i.e., the n ‘gap winners’; see Millington et al.,
011). We  estimate n for each gap using:

 = CGA

CA7
(2)

here CA7 is the canopy area of a tree 7 m tall (equal to 13.79 m2

ased on our empirical data for sugar maple; see Millington et al.,
011) and n is rounded down to the nearest integer.

For each of the n spaces in a gap (‘gap spaces’), we  estimate
he probability that the gap space is in one of four states 10 years
fter harvest. The four gap-space states we consider are: (i) occu-
ied by a > 2 m tall sugar maple tree (SM); (ii) occupied by a > 2 m
all ironwood tree (IW); (iii) occupied by a > 2 m tall tree of another
pecies (OT); or (iv) not occupied by a tree > 2 m tall (i.e., empty,
T). We  use these categories as sugar maple and ironwood are the
ominant regenerating species in our study area and because the
bsence of regeneration (i.e., empty spaces) is concerning to forest

anagers. We  include ‘other species’ for completeness. The other

pecies category is heavily dominated by red maple, white ash,
nd black cherry (representing approximately 88% of non-sugar
aple and non-ironwood saplings 2–7 m tall). We  consider only
Modelling 253 (2013) 17– 27 19

trees with height > 2 m,  as these trees have successfully regener-
ated beyond the influence of deer browse and competing non-tree
vegetation. Considering shorter trees is not necessarily more useful
for identifying and modelling ‘gap winners’, as taller trees are more
likely to outcompete shorter trees and the probabilities of shorter
trees negotiating strong negative stressors such as deer browse are
smaller and less discernible (i.e., fewer trees negotiate these stress-
ors and identifying which individuals will succeed is more difficult).
Furthermore, our parameters for height growth of regenerating
trees (Appendix B in Millington et al., 2011), while significantly
different from zero, are not significantly different between species.
This helps to justify the assumption that species composition does
not change in the 2–7 m height interval, as our approach implies.

The gap-level probability for each of the four gap-space states
(i.e., composition probabilities) is estimated by a regression model
for composition data (Aitchison, 1982, 1986). Our raw composi-
tion data are a vector for each of our empirical gaps specifying the
proportion of all saplings with height > 2 m that were sugar maple,
ironwood, or other species (i.e., SM,  IW,  and OT). If the total num-
ber of trees with height > 2 m is denoted by t, the proportion of
empty spaces (ET) equals zero if t > n, otherwise ET = (n − t)/n. These
raw composition data provide information on the ratios of the
components (i.e., gap-space states). The use of standard statistical
methods with raw composition data can lead to spurious correla-
tion effects, in part due to the absence of an interpretable covariance
structure (Aitchison, 1986). However, transforming composition
data, for example by taking logarithms of ratios (log-ratios), enables
a mapping of the data onto the whole of real space and the use
of standard unconstrained multivariate analyses (Aitchison and
Egozcue, 2005). We  transformed our composition data with a
centred log-ratio transform using the ‘aComp’ scale in the ‘composi-
tions’ package (van den Boogaart and Tolosana-Delgado, 2008) in R
(R Development Core Team, 2009). These transformed data were
then ready for use in a standard multivariate regression model.
A centred log-ratio transform is appropriate in our case as our
composition data are proportions (not amounts) and the differ-
ence between components is relative (not absolute). The ‘aComp’
transformation uses the centred log-ratio scalar product (Aitchison,
2001) and worked examples of the transformation computation can
be found in Tolosana-Delgado et al. (2005).

Our regression model then has the general form:

clr(y)∼ˇ1x1 + ˇ2x2 + · · · + ˇixi (3)

where clr(y) is the centred log-ratio transformed vector of gap-
space state probabilities and ˇi is the parameter estimate of
environmental predictor variable xi. This regression model can be
used to stochastically predict the regeneration composition in gaps
10 years after harvest, given values of environmental predictors for
each gap. For each gap, proportions of gap-spaces in the four states
predicted by the regression model are interpreted as the probability
that each of the n gap-spaces is in the corresponding state. The state
of each gap-space is then predicted by comparing a uniform ran-
dom value from the interval [0,1] to the cumulative gap-space state
probabilities (gap-space is assigned the state for which the random
value is closest to, but smaller than, the corresponding cumulative
probability; e.g., see Table 1).

We take a multi-model inference approach to select the regres-
sion model with the lowest Bayesian Information Criterion (BIC,
Schwarz, 1978) value and the highest subsequently derived model
weighting (BICwt, see Millington and Perry, 2011). The model with
these criteria is deemed the ‘best’ model. Our model selection eval-
uated all possible models for five variables (i.e., 25 = 32). The five

predictor variables used in the model are based on our previous
work (Matonis et al., 2011, and see rationales provided in Section
2.1) and can be readily derived from output of the integrated simu-
lation model to which this regeneration model will contribute. The
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Table 1
Stochastic prediction of gap-space states. At the gap-level, a regression model predicts the proportions of each gap-space state given environmental predictors. These
proportions are interpreted as the cumulative probability of gap-spaces being in each state. In this hypothetical example, there are five gap-spaces (i.e., n = 5, see Eq. (2))
and  so five uniform random values are found (one for each gap-space). Each gap-space is assigned the state for which the random value is closest to, but smaller than, the
corresponding cumulative probability.

Gap-level
Gap-space state SM IW ET OT
Predicted proportion 0.30 0.30 0.30 0.10
Cumulative probability 0.30 0.60 0.90 1.00

Gap-space level
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positively related to ironwood proportion and negatively related
to other species’ proportion (95% CI) and negatively related to
empty proportion (90% CI) but has no relationship with sugar maple

Table 2
Variable values used in scenario analyses. Values are for the 5th, 25th, 75th and 95th
percentiles of the available data for each variable used as boundary conditions to
the  model. Variables are defined in Section 2.2 of the text.
Gap-space identifier 1 2 

Uniform random value 0.62 0.65 

Predicted state ET ET 

ve variables are forest habitat type (HabitatType, with AOCa as the
eference category), deer density (DeerDensity), canopy openness
CO), basal area of mature sugar maple trees (AcerBA) and ironwood
rees (OstryaBA). Matonis et al. (2011) also found that cover of com-
eting, non-tree, ground vegetation was important for determining
ree regeneration. However, we currently do not represent the pres-
nce of non-tree vegetation in our simulation model because data
n understory composition were not collected and are not avail-
ble in stand inventory data used to parameterize the integrated
imulation model.

Using the variables identified as belonging to the ‘best’ model,
e fit a Bayesian linear regression model and for all variables
e use Bayesian Model Averaging (BMA) to find the averaged
odel (Hoeting et al., 1999; Millington and Perry, 2011). For our

ayesian regression model we used uninformative priors for all
arameter estimates (∼Normal[� = 0, �2 = 10,000]). Model estima-
ion was performed using WinBUGS v.1.4.3 (Spiegelhalter et al.,
003) through the ‘R2WinBUGS’ package (Sturtz et al., 2005) using
hree parallel chains with randomly selected starting values for
0,000 iterations (burn-in of 5000 and a thinning rate of 1). All
odels showed evidence of convergence (i.e., Rhat < 1.01).

.3. Model testing and analysis

To measure models’ predictive performance we simulate com-
ositions of our 166 observed gaps using the ‘best’, ‘averaged’, and

null’ models and compare predicted compositions to observed
ap compositions. The null model assumes that probabilities for
ach state in all gaps are equal to the mean observed gap pro-
ortions, which are 27% in SM,  21% in IW,  37% in ET, and 15% in
T. As our approach is probabilistic we run 1000 simulations for
ach model, determining gap-space states by comparing a uniform
andom value from the interval [0,1] to cumulative modelled prob-
bilities (as described above and see Table 1). For each simulation,
e calculate the mean Kendall rank correlation coefficient (tau)

etween observed and simulated ranks of gap-space state proba-
ilities across all gaps. In each gap, the state with highest observed
roportion or simulated probability is ranked as first, and lowest

s ranked as fourth. Kendall’s tau is calculated using these rankings
or each gap and the mean for all gaps is then found. We  also calcu-
ate the proportion of gaps in a simulation for which all gap-space
tates are ranked correctly (i.e., ranking of probabilities in the gap
erfectly matches the ranking of observed state proportions) and
he proportion of gaps in which each individual gap-space state is
orrectly ranked. For each of these model performance measures
e calculate mean and maximum values for all simulations. We
se paired t-tests to evaluate significant differences in performance
easures between the null and other models. To ensure we  are
ot over-fitting our ‘best’ model and to evaluate its performance
eyond data used to calibrate it, we use k-fold cross validation
Hastie et al., 2001) with k = 10, re-fitting the model in each of 1000
uns.
3 4 5
0.93 0.26 0.42
OT SM IW

To investigate and illustrate regeneration responses (species
composition and abundance) to environmental conditions, we use
the model to examine scenarios with different values for driv-
ing variables in all gaps and stands. For these scenarios we use
parameters of the ‘best’ model. We  examine the influence of each
environmental variable in turn, setting gap values at 5th, 25th, 75th
and 95th percentiles of empirical values (Table 2). For example, to
examine the influence of deer density on regeneration composi-
tion and abundance, we  run the model assuming that all gaps have
deer densities (deer km−2) of 4.4 (5th), 10.9 (25th), 21.0 (75th) and
50.4 (95th percentile). As above, we simulate each scenario 1000
times, generating a new set of uniform random values in the inter-
val [0,1] to compare to estimated cumulative probabilities for each
gap state. The R script used to fit models and run all tests and anal-
yses described above can be found in the online supplementary
material (Appendix B).

3. Results

3.1. Model selection and parameter estimates

Our model selection analysis shows that the model which mini-
mizes BIC (the ‘best’ model) contains all variables except basal
area of mature sugar maple (AcerBA, Table 3). This ‘best’ model
has a probability of 0.478 that it is the ‘true’ model, given that
truth is in the set of models considered (Link and Barker, 2006;
Millington and Perry, 2011). Habitat type and basal area of iron-
wood are present in all of the eight models with lowest BIC values,
and deer density, canopy openness and basal area of mature sugar
maple are present in half of those eight. Signs for means of poste-
rior parameter distributions for variables in the ‘best’ model and
the averaged model from BMA  (Table 4) are consistent with our
previous findings for saplings 1–2 m tall (Matonis et al., 2011),
with the exception of canopy openness (described below). For
example, in the ‘best’ model deer density has a negative relation-
ship with sugar maple proportion and a positive relationship with
ironwood proportion, with parameter estimate credible intervals
(CI) not encompassing zero at the 90% and 95% confidence lev-
els respectively (Table 4). Furthermore, basal area of ironwood is
Variable 5th 25th Empirical mean 75th 95th

DeerDensity (km−2) 4.40 10.90 18.36 21.00 50.40
CO  (%) 4.45 7.94 12.52 16.33 24.63
OstryaBA (m2 ha−1) 0.00 0.03 0.31 0.59 1.28
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Table  3
Model selection results for composition models. An ‘×’ indicates the inclusion of the corresponding variable in the model. Also shown for each model are the Bayesian
Information Criterion (BIC) value, difference between model BIC and minimum BIC (�BIC)  and the model weight (BICwt). The BICwt can be interpreted as the probability that
the  model is true, given that truth is in the set of models considered. Variables are defined in Section 2.2 of the text.

Model HabitatType DeerDensity CO OstryaBA AcerBA BIC �BIC BICwt

1 × × × × 497.5 0.0 0.478
2  × × × 498.7 1.2 0.265
3  × × × × × 499.5 2.0 0.177
4  × × × × 501.3 3.8 0.073
5  × × × 507.6 10.1 0.003
6 × × 508.3 10.8 0.002

× 

× 
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7 × × 

8 ×  

roportion. Habitat type TMC  is positively related to sugar maple
nd other species proportions (95% and 90% CI respectively) and
egatively related to ironwood and empty proportions (95% and
0% CI respectively). Habitat type ATD is positively related to iron-
ood proportion and negatively related to empty proportion (95%
I) and habitat type ATM is positively related to ironwood and
ugar maple proportions (95% and 90% CI respectively) and neg-
tively related to empty proportion (95% CI). Counter-intuitively,

nd in contrast to previous findings for 1–2 m saplings (Matonis
t al., 2011), canopy openness (CO) is negatively related to sugar
aple proportion and positively related to empty proportion

95% CI).

able 4
veraged and ‘best’ composition models. Mean and standard deviation of posterior param
tate  for both models. Also presented for the averaged model (from Bayesian Model Aver
ariables for which the 95% credible interval of a parameter estimate does not encompa
efined in Section 2.2 of the text.

Variable Averaged 

p

Acer saccharum Intercept 1.000 

HabitatTypeATD 0.114 

HabitatTypeATD-Hp 0.162 

HabitatTypeATM 0.355 

HabitatTypeTMC 0.236 

DeerDensity 0.170 

CO 0.202 

OstryaBA 0.034 

AcerBA  0.156 

Ostrya virginiana Intercept 1.000 

HabitatTypeATD 0.527 

HabitatTypeATD-Hp 0.292 

HabitatTypeATM 0.464 

HabitatTypeTMC 0.439 

DeerDensity 0.317 

CO  0.224 

OstryaBA 1.000 

AcerBA 0.132 

Empty Intercept 1.000 

HabitatTypeATD 0.987 

HabitatTypeATD-Hp 0.101 

HabitatTypeATM 0.983 

HabitatTypeTMC 0.406 

DeerDensity 0.059 

CO 0.801 

OstryaBA 0.221 

AcerBA 0.042 

Other species Intercept 1.000 

HabitatTypeATD 0.092 

HabitatTypeATD-Hp 0.040 

HabitatTypeATM 0.053 

HabitatTypeTMC 0.240 

DeerDensity 0.038 

CO 0.041 

OstryaBA 1.000 

AcerBA 0.039 
× 509.3 11.8 0.001
× 510.6 13.1 0.001

3.2. Predictive performance

According to t-tests, all performance measures for both ‘best’
and averaged models are statistically better than the null model
(significant at p < 0.001). Our performance measures also show
however, that the ‘best’ model outperforms the averaged model
(Table 5). The ‘best’ model has a mean Kendall tau (maxima in
parentheses) across all simulations of 0.228 (0.352), produces gap

space state probabilities which rank all four states perfectly in
16.1% (24.7%) of gaps, and correctly ranks the sugar maple, iron-
wood, other tree species and empty space state probabilities in
40.6% (56.6%), 45.1% (54.2%), 50.0% (58.4%) and 45.3% (56.6%) of

eter distributions (mean and SD) are presented for each variable for each gap-space
aging) is the posterior probability that the variable is present in the true model (p).
ss 0.0 are shown in bold, and for the 90% credible interval in italics.  Variables are

Best

Mean SD Mean SD

0.325 0.113 0.467 0.108
0.015 0.050 0.081 0.093

−0.020 0.053 −0.067 0.080
0.085 0.133 0.231 0.122
0.055 0.118 0.314 0.129

−0.001 0.002 −0.005 0.003
−0.002 0.004 −0.012 0.005
−0.003 0.021 0.002 0.088
−0.002 0.004

0.066 0.121 0.057 0.094
0.100 0.112 0.174 0.079

−0.039 0.071 −0.089 0.068
0.111 0.141 0.239 0.110

−0.107 0.142 −0.244 0.112
0.001 0.002 0.005 0.002

−0.002 0.004 −0.005 0.004
0.369 0.081 0.400 0.079
0.001 0.003

0.321 0.123 0.304 0.117
−0.317 0.102 −0.341 0.102

0.011 0.043 0.100 0.086
−0.408 0.138 −0.437 0.136
−0.115 0.163 −0.271 0.141

0.000 0.001 0.000 0.003
0.012 0.008 0.016 0.006

−0.036 0.081 −0.181 0.099
0.000 0.002

0.216 0.037 0.177 0.086
0.006 0.027 0.086 0.070
0.001 0.011 0.053 0.058

−0.004 0.026 −0.030 0.095
0.040 0.083 0.196 0.103
0.000 0.000 −0.001 0.002
0.000 0.001 0.001 0.004

−0.223 0.061 −0.216 0.069
0.000 0.001
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Table 5
Performance measures for composition models. ‘Best’ is the best model selected using multi-model inference, ‘Averaged’ is the Bayesian averaged model, ‘Null’ is the model
that  assumes the empirical mean of regeneration proportions, and ‘Best-CV’ is the performance of the best model for k-fold cross validation with k = 10. Values are means
across  1000 replicates (values in brackets are maxima). See text (Section 2.3) for descriptions of model performance measures (RankX are proportion of gaps in which each
gap-space state was  ranked correctly, where SM = sugar maple, IW = ironwood, ET = empty and OT = other).

Model Tau Perfect ranking RankSM RankIW RankET RankOT

Best 0.228 (0.352) 0.161 (0.247) 0.406 (0.566) 0.451 (0.542) 0.500 (0.584) 0.453 (0.566)
Averaged 0.177 (0.297) 0.139 (0.253) 0.394 (0.554) 0.437 (0.560) 0.476 (0.578) 0.420 (0.536)
Null  0.040 (0.183) 0.109 (0.181) 0.357 (0.488) 0.391 (0.512) 0.406 (0.512) 0.408 (0.506)

0.727

g
m
u

3

u
h
5
T
u

F
p
1

Best-CV 0.181 (0.516) 0.143 (0.247) 0.394 (

aps respectively. Cross validation results indicate that the ‘best’
odel also out-performs the null model when predicting gaps not

sed for model fitting (Table 5, ‘Best-CV’).

.3. Scenario analysis

Scenario analysis results show that greatest differences in sim-
lated regeneration abundance and composition are due to the

abitat type variable (HabitatType, Fig. 1a). For example, we observe
.4% gap spaces empty for ATM compared with 53.6% for ATD-Hp.
he deer density variable (DeerDensity) does little to influence sim-
lated regeneration abundance (i.e., ET), but does drive shifts in
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ig. 1. Scenario analysis results. (a) Habitat type, (b) deer density, (c) canopy openness
resented in Table 1. Results are mean gap proportions of each gap-space state for all gap
.96  × standard deviation of mean gap proportions from 1000 simulations).
) 0.436 (0.773) 0.478 (0.773) 0.436 (0.733)

composition between sugar maple and ironwood. Our model pre-
dicts that as deer density increases, SM decreases and IW increases
(Fig. 1b). When deer density is very high (∼50 deer km−2) in all our
gaps, the percentage of gap-spaces in the SM state drops to 11.1%,
compared with 25.8% using empirical mean deer densities for each
gap and 32.4% for very low densities (∼4 deer km−2) in all gaps
(Fig. 1b). The canopy openness variable (CO) has a greater influ-
ence on regeneration abundance than composition, with increases

in CO increasing ET and decreasing both SM and IW (Fig. 1c). The
variable for basal area of mature ironwood (OstryaBA) has little
influence on SM,  but increases IW at the expense of ET and OT as it
increases (Fig. 1d). Although there is little difference in proportions
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(d)

, (d) ironwood basal area. Percentile values used for environmental variables are
s averaged over 1000 simulation replicates. Error bars provide 95% confidence (i.e.,
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f gaps in the IW state between 5th and 25th percentiles (10.9% and
1.7%, respectively) as the difference between these percentile val-
es is low (Table 2), differences for the 75th and 95th percentiles
re much larger (32.7% and 54.7%, respectively) as ironwood basal
rea increases (to greater than 1 m2 ha−1, Table 2).

. Discussion

.1. Predictors of northern hardwood regeneration

Our model results show that variation in forest habitat type (a
roxy for soil moisture and nutrients), deer density, canopy open-
ess and basal area of seed-bearing ironwood trees are important
redictors of regeneration composition and abundance in harvest
aps of northern hardwood forest stands. This is demonstrated by
he selection of these variables via multi-model inference (Table 3),
he credible intervals of parameters in the best model identified
Table 4), and the results of our scenario analyses (Fig. 1). Variables
or habitat type (HabitatType) and ironwood basal area (OstryaBA)
re consistently selected for inclusion in the model according to
he Bayesian Information Criterion (BIC), and variables for canopy
penness (CO) and deer density (DeerDensity) are present in four
f the best eight models (Table 3). Given that deer density is only
elected once in the best two models and that �BIC < 2 for these
wo models, it could be argued that this variable should not be
ncluded in the best model. We  argue that its inclusion is justified
ere for several reasons. First, deer are included in the model with
reatest probability (0.48) of being the most appropriate model
Table 3); second, deer are a key factor of management interest in
orthern hardwood (and other) forests and it is therefore useful to

nclude a representative variable in the model to explore impacts of
anagement alternatives; and third, our scenario analyses (dis-

ussed below) indicate that deer density is important as a predictor
f regeneration composition (although not abundance). The limited
redictive power of AcerBA,  which was not included in our best
odel, may  be due to limited variation in sugar maple basal area

etween stands in our empirical data (as this factor is controlled by
imber management). However, large variability in regeneration
t other tree-height classes across central Upper Michigan despite
his limited variation in AcerBA (e.g., Matonis et al., 2011 found that
ensities of sugar maple 1–2 m tall saplings in forest gaps ranged
rom 0 to 260 per 100 m2) implies that other factors are influencing
egeneration densities.

Our model shows that sugar maple and ironwood respond oppo-
itely to variation in environmental predictors. Ironwood appears
o gain a competitive advantage over sugar maple at high deer
ensity. Furthermore, the proportion of ironwood regeneration in

 gap is greater on habitat types where sugar maple comprises a
maller proportion. This might be driven by variation in deer den-
ities across habitat types (see Matonis et al., 2011) or differences
etween habitat types in the suitability for ironwood vs. sugar
aple. However, with the exception of the TMC  habitat type, rela-

ionships between habitat type and sugar maple and ironwood are
onsistent but opposite to those for empty gap-spaces (Table 4).
his pattern, with the fact that sugar maple and ironwood compose
he vast majority of regenerating trees, highlights the importance
f habitat type as a predictor of overall regeneration abundance.

The only counter-intuitive finding from our analysis is the neg-
tive impact that canopy openness has on the abundance of sugar
aple and ironwood saplings. It would likely be expected that

reater canopy openness would result in greater proportions of

ugar maple and ironwood and lower proportions of empty gap
paces, as greater canopy openness implies greater light availability
or the growth of regenerating trees. One reason for our counter-
ntuitive finding may  be that tree density declines with increasing
Modelling 253 (2013) 17– 27 23

gap size due to increasing seed limitation (i.e., increasing distance
to seed sources), increasing competing vegetation, and/or greater
mortality rates in the hotter/drier conditions of larger gaps. Alterna-
tively, declining sapling density with increasing gap size may  be an
artefact of how we  have analyzed our data to structure the model.
The vast majority of 2–7 m tall trees we sampled (e.g., 95% of sugar
maple) were ‘advanced regeneration’ (i.e., present in the forest
stand prior to creation of the gap by harvest). Assuming advanced
regeneration grew larger and faster in larger gaps (due to greater
light availability and hence greater canopy openness) and that self-
thinning occurred amongst advanced regeneration in those gaps,
then empty spaces (i.e., ET) would be the only gap-space state that
would increase in proportion. That is, competitive exclusion (i.e.,
mortality) of smaller trees no longer present in the gap when we
collected our data results in greater numbers of empty gap spaces
(i.e., higher proportion of ET). Although this self-thinning effect in
larger gaps may  produce counter-intuitive results at the gap-space
level (given how we  have structured our regeneration model), our
previous results indicate that at the stand level and through time
the number of regenerating trees reaching maturity in the canopy
produces appropriate stand basal areas (Millington et al., 2011).

4.2. Prediction of regeneration at the gap level

The predictive performance of our best model is better than that
of a null model using all measures we  considered (Table 5). How-
ever, in absolute terms our model performs seemingly poorly. For
example, it is able to rank gap-space states perfectly on average
only 16% of the time. The difficulties of predicting forest regen-
eration – in part due to difficulties associated with measuring
processes that influence germination, growth, damage and mortal-
ity of trees – have been previously acknowledged (e.g., Miina and
Heinonen, 2008). We  suggest two  reasons to explain our model
performance, the first related to the system we are studying and
the second to the scale and level of aggregation at which we  are
considering it. First, as highlighted above, regeneration densities
in northern hardwood stand harvest gaps across the central Upper
Peninsula of Michigan are highly variable, despite limited variation
in seed availability (i.e., AcerBA controlled by timber management).
Although our model accounts for several other factors likely influ-
encing regeneration densities, it does not account for potential
spatial variation in regeneration within gaps due to factors such as
light availability or soil moisture (although with our gap-centred
plots we believe effects would be limited). Furthermore, our model
does not account for competing, non-tree, ground vegetation which
has been found to be important for determining tree regeneration
(see Section 2.2). These missing predictors require data which is
usually unavailable to forest managers and cannot be provided as
variables by the growth and yield model to which we couple this
regeneration model. Second, our model testing is at the gap-level.
Regeneration components of many models representing forest
dynamics are tested using only stand-level aggregate measures
(e.g., total stand basal area, total stand stem density) simulated
through time (e.g., Seagle and Liang, 2001; Larocque et al., 2011;
Holm et al., 2012). We  are unable to make similar comparison with
our model, both because we  do not have historical data with which
to make such a comparison and because such stand-level aggre-
gate measures in our study system are strongly driven by forest
management (i.e., timber harvest prescriptions). Until such assess-
ments are made, use of our model outside the limits of our empirical
data may  not be possible (unless re-parameterized for the area of
interest).
However, as we highlighted at the outset, the development of
our regeneration model was pursued with the intention of incor-
porating it into an integrated forest tree regeneration, growth
and harvest model to examine impacts of alternative timber and
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Fig. 2. Sensitivity analysis results from using the regeneration model in an integrated forest regeneration, growth and harvest simulation model. (a) mean stand merchantable
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arvested timber from regenerated trees. The effect of varying each regeneration m
imulated centuries.

ildlife (deer) management actions over long time periods. A
ull description of how our regeneration model is used in that
ntegrated simulation model can be found in Millington et al.
2013). When our regeneration model is used in the integrated

odel, we find that stand-level aggregated measures such as stand-
ng merchantable timber vary through time at expected levels
Figure 1 of Millington et al., 2013). To demonstrate how regen-
ration influences the stand-level aggregate measures via the
ntegrated model, we present the results of a sensitivity analy-
is which varies each parameter value in the regeneration model
i.e., those in Table 4) in turn by +50% and −50%. The integrated

odel was run for 200 years from initial empirical conditions (see
illington et al., 2013) with operationally realistic harvest pre-

criptions rules as described by Millington et al. (2011,  Prescription
 in Table 1). The response of the integrated model state variables
Fig. 2) show that for stand-level aggregates, measures of stand-
ng and cut merchantable timber from all and regeneration-only
rees are most sensitive to OstryaBA and DeerDensity. However,
ll variables are insensitive to changes in parameter estimates
i.e., for 50% increase/decrease in parameter estimates, stand-
evel aggregate measures change < 50%). Stand-level measures
f timber that account only for simulated regeneration (stand-
ng and cut) are most sensitive, but change only 5–15%. This
nsensitivity in parameter estimates suggests that the regenera-
ion model is sufficiently robust for use in the integrated model
or simulation of forest management dynamics over long time
eriods.

Future development and improvement of the regeneration
odel should focus in part on improving parameter estimates

o reduce the range of credible intervals. This improvement

ould come through better quantification of the factors influ-
ncing regeneration. For example, our estimates of deer density
sed to produce parameter estimates in the regeneration
ub-model come from deer pellet counts (Millington et al., 2010)
(c) mean stand merchantable harvested timber, and (d) mean stand merchantable
arameter estimate ±50% in turn on state variables is shown for the first and second

which themselves provide only a proxy for deer density. Consider-
ing other potential environmental factors (such as snow fall which
can control soil moisture availability during spring-time, Henne
et al., 2007) should also help to improve the regeneration sub-
model.

5. Conclusions

We  have presented the structure, parameterization, testing
and use of a stochastic, regression-based compositional forest
gap regeneration model developed with the express purpose of
being integrated with a forest growth and yield model (FVS).
The innovative structure of the model represents only those trees
regenerating in gaps created by timber harvest with the best chance
of subsequently growing into the canopy. A multi-model inference
approach identified that habitat type, deer density, canopy open-
ness and basal area of mature ironwood in the vicinity of a gap drive
regeneration abundance and composition. The best model of those
examined shows that where deer densities are high, ironwood
appears to gain a competitive advantage over sugar maple and
that habitat type is an important predictor of overall regeneration
success. In its current state the regeneration model is sufficiently
robust for use with FVS to simulate forest dynamics over long time
periods (as explored in Millington et al., 2013).
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A

 (n = 28) in the central Upper Peninsula of Michigan, USA.

Canopy
opennessc

Ironwood
basal aread

Sugar maple
basal areae

Relative
densityf,g

Year of
harvest

11.2 (11.2) 0.25 22.34 SM 97%
BP 2%
YB 1%

2000

12.6 (6.7) 0.03 21.16 SM 97%
BA 3%
IW < 1%

1999

14.1 (14.0) 0.18 5.09 BA 54%
SM 22%
WA 20%

2000

21.4 (14.1) 0.10 22.18 SM 79%
BA 20%
YB 1%

1999

16.9 (9.0) 0.00 25.73 SM 100% 1999

19.3 (17.3) 0.62 19.67 SM 78%
YB 13%
RM 4%

1999

14.6 (19.3) 0.01 8.68 SM 97%
RM 3%

1999

8.1 (5.0) 0.00 16.85 SM 85%
BC 6%
RM 6%

1998

14.5 (14.8) 0.04 18.06 SM 69%
RM 17%
AE 8%

1998

6.2 (9.5) 0.00 24.43 SM 78%
RM 20%
HM 1%

1997

12.3 (15.3) 0.20 13.24 BA 65%
SM 24%
QA 9%

2000

13.5 (14.6) 0.00 10.78 SM 36%
RM 36%
HM 22%

1996

9.1 (8.5) 0.03 21.14 SM 94%
RM 3%
NC 2%?

1999

7.6 (6.3) 0.20 18.00 SM 77%
RM 18%
BA 5%

1996

13.5 (11.4) 0.69 11.63 SM 78%
BA 12%
YB 8%

1999

9.0 (12.3) 0.52 16.03 SM 59%
BA 33%
WA 8%

1998

18.3 (15.5) 0.82 16.08 SM 79%
HM 11%
BA 9%

2000

10.1 (13.7) 0.20 17.61 SM 84%
BA 11%
NC 4%

1999

7.7 (13.5) 1.31 17.47 SM 97%
BA 2%
WA 1%

1996

24.6 (10.4) 0.00 24.79 SM 94%
BC 4%
YB 2%

1998

18.0 (10.8) 0.01 25.95 SM 98%
RM 1%
YB 1%

1998

11.7 (20.3) 0.12 11.21 SM 84%
HM 8%
AB 6%

2000

9.7 (5.1) 0.03 20.25 SM 95%
WA 4%

1997
J.D.A. Millington et al. / Ecolo

ppendix A.

Description of northern hardwood stands sampled in this study

Stand ID UTM Easting
UTM Northing

Habitat typea Deer densityb

803 461,407
5,088,766

ATD-Hp 12.4 

806  449,656
5,100,197

AOCa 10.9 

808 464,248
5,082,430

ATD-Hp 13.9 

814  443,446
5,101,948

AOCa 7.8 

819 452,458
5,100,012

AOCa 27.0 

824  433,048
5,170,449

TMC 3.2 

826 475,013
5,139,239

ATM 12.2 

829  475,972
5,130,553

ATD 5.3 

837  405,133
5,131,185

AOCa 21.5 

842  478,993
5,126,810

ATD 15.3 

851 437,221
5,111,274

ATD  15.4 

1042  401,125
5,117,269

TMC 61.6 

1043  401,029
5,117,607

AOCa 16.6 

1081  413,026
5,135,891

ATM 8.0 

1133 436,239
5,090,816

AOCa 17.2 

1272‘  446,459
5,085,661

ATD-Hp 27.6 

4024  452,336
5,074,499

ATD-Hp 15.5 

4042  457,134
5,078,785

AOCa 4.4 

4102  446,405
5,099,004

AOCa 50.4 

4332  454,413
5,126,758

ATM 14.0 

4342  458,611
5,124,129

ATD 7.5 

4422  458,436
5,073,974

ATD-Hp 9.7 

4423  457,874
5,073,803

ATD-Hp 21.0 
4429  458,262
5,074,127

AOCa 13.7 15.3 (2

HM < 1%

3.0) 0.68 13.20 SM 84%
HM 5%
AB 4%

1999
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Stand ID UTM Easting
UTM Northing

Habitat typea Deer densityb Canopy
opennessc

Ironwood
basal aread

Sugar maple
basal areae

Relative
densityf,g

Year of
harvest

4524 434,902
5,104,419

ATD-Hp 18.1 9.4 (10.95) 0.88 17.75 SM 83%
BA 15%
RM 1%

1998

5032  437,620
5,082,189

ATD-Hp 12.8 8.9 (16.09) 1.28 20.90 SM 88%
BA 11%
IW 1%

1997

5104  460,065
5,115,757

ATD 20.1 10.4 (7.7) 0.07 26.42 SM 97%
RM 3%
IW < 1%

1998

5292  407,479
5,121,325

AOCa 21.3 11.1 (12.5) 0.14 20.58 SM 95%
RM 4%
BA 1%

1997

a Habitat type is a proxy for soil moisture and nutrient regimes (see Burger and Kotar, 2003): AOCa (mesic soil moisture regime; rich to very rich soil nutrient regime),
TD-Hp  (mesic; medium to rich), ATD (mesic; medium to rich), ATM (dry-mesic to mesic; medium), and TMC (mesic to wet-mesic; medium).
b Winter deer density (km−2) was estimated for using spring-time faecal pellet surveys (see Matonis et al., 2011).
c Canopy openness (%) was  estimated from hemispherical photographs taken in each gap. Mean gap value is shown with range in brackets.
d Basal area (m2 ha−1) of mature (> 10 cm diameter at breast height, DBH, breast height = 1.4 m)  ironwood (Ostrya virginiana) trees.
e Basal area (m2 ha−1) of mature (> 20 cm DBH) sugar maple (Acer saccharum) trees.
f Relative abundance is provided for the three most abundant overstory tree (DBH > 20 cm)  species, calculated using basal area.
g AB = American beech (Fagus grandifolia Ehrh.), AE = American elm (Ulmus americana L.), BA = American basswood (Tilia americana L.), BC = black cherry (Prunus serotina

hrh.),  BP = balsam poplar (Populus balsamifera L.), HM = eastern hemlock (Tsuga canadensis (L.) Carrière), IW = ironwood (Ostrya virginiana (Mill.) K. Koch), NC = northern
hite-cedar (Thuja occidentalis L.), QA = quaking aspen (Populus tremuloides Michx.), RM = red maple (Acer rubrum L.), SM = sugar maple (Acer saccharum Marsh.), WA = white

sh  (Fraxinus americana L.), YB = yellow birch (Betula alleghaniensis Britton).

ppendix B. Supplementary data

Supplementary data associated with this article can be found,
n the online version, at http://dx.doi.org/10.1016/j.ecolmodel.
012.12.033.
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