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Abstract: In recent years, geographically weighted regression (GWR) has become popular for modeling spatial hetero-
geneity in a regression context. However, the current weighting function used in GWR only considers the geographical
distances of trees in a stand, while the attributes (e.g., tree diameter) of the neighboring trees are totally ignored. In
this study, we proposed a new weighting function that combines the “geographical space” and “attribute space” be-
tween the subject tree and its neighbors, such that (1) neighbors with greater geographical distances from the subject
tree are assigned smaller weights, and (2) at a given geographical distance, neighboring trees with sizes that are similar
to that of the subject tree are assigned larger weights. The results indicate that the GWR model with the new spatial-
attribute weighting function performs better than the one with the spatial weighting function in terms of model residu-
als and predictions for different spatial patterns of tree locations.

Résumé : Dans les dernières années, la régression géographiquement pondérée (RGP) a souvent été utilisée pour mo-
déliser l’hétérogénéité spatiale dans un contexte de régression. Toutefois, les fonctions de pondération actuellement dis-
ponibles pour la RGP considèrent seulement la distance entre les arbres dans un peuplement, alors que sont totalement
ignorés les attributs des arbres voisins comme le diamètre. Dans la présente étude, nous proposons une nouvelle fonc-
tion de pondération qui combine l’information spatiale à celle d’attributs de l’arbre étudié et de ses voisins, de telle
sorte (1) que les voisins les plus éloignés reçoivent une pondération plus faible et (2) qu’à une distance donnée, les
voisins de taille similaire à l’arbre étudié reçoivent une pondération plus élevée. Les résultats montrent qu’une RGP
utilisée avec la nouvelle fonction de pondération proposée a une meilleure performance que celle qui utilise un fonc-
tion de pondération uniquement spatiale, que ce soit en termes de résidus ou de valeurs prédites pour différents patrons
de distribution spatiale des arbres.

[Traduit par la Rédaction] Shi et al. 1005

Introduction

Existence of spatial patterns in forest stands has been
widely recognized. The complex historical and environmental
mosaic imposed by initial establishment patterns, microen-
vironmental conditions, climate factors, and competing
vegetation may result in various spatial compositions and
structures in different forest stands (Moeur 1993; Rouvinen
and Kuuluvainen 1997). The spatial distribution of trees
strongly affects tree size, growth, crown structure, and mor-
tality (Miller and Weiner 1989; Kenkel et al. 1989; Weiner
1990; Newton and Jolliffe 1998; Dovciak et al. 2001). On
the contrary, differences in tree sizes, crown structures, and
other tree characteristics can result in different spatial pat-
terns of trees over time. Therefore, the attributes (e.g., tree
height), competition (e.g., neighboring tree size), and loca-
tion (e.g., spatial coordinate) of trees are all of great impor-
tance (Liu and Ashton 1999; Lee and Wong 2001). All these
factors lead to spatial heterogeneity across space. The tradi-
tional way of modeling forest growth and yield is to use or-

dinary least-square (OLS) regression. However, OLS cannot
deal with spatial heterogeneity in forestry data (Zhang and Shi
2004). It is necessary to understand the influence of spatial het-
erogeneity on tree competition and growth, and to improve
the performance of the traditional forest growth and yield
models by incorporating spatial information in the model systems.

Various spatial modeling methods have been applied to
explore the effect of spatial heterogeneity in forest and eco-
logical studies (Haining 1978; Anselin 1988; Fox et al. 2001).
For example, the spatial expansion model takes the parame-
ters of a linear regression model as a function of spatial co-
ordinates. Hence, the resultant parameter estimates drift over
space (Casetti 1972, 1997; Jones and Casetti 1992;
Fotheringham and Brunsdon 1999; Páez et al. 2002). The
spatially adaptive filtering model is based on a “predictor–
corrector” approach, which works iteratively to adjust the
parameter estimates in terms of adjacent neighbors (Gorr
and Olligschlaeger 1994; Fotheringham et al. 2002). Thus,
the model coefficients vary locally across space. An alterna-
tive method is using a random coefficient model in which
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the regression coefficients are assumed to vary from case to
case and follow a probability distribution such as the normal
distribution (Anselin 1988).

A new approach, geographically weighted regression (GWR),
for depicting the spatial heterogeneity in a regression context
has been developed and has become popular in recent years
(Fotheringham et al. 1996, 2002; Brunsdon et al. 1996, 1998;
Zhang and Shi 2004; Zhang et al. 2004; Shi et al. 2006). In
GWR, any spatial nonstationarity in the relationship of inter-
est is accounted for by the local estimation of model coeffi-
cients through a spatial weighting function. This spatial
weighting function is a decreasing function of distance (geo-
graphical space) from the focal point (x0), so that the impact
of the neighbors (xi, i = 1, …, k, where k is the number of
neighbors) nearby is stronger than that of neighbors farther
away. However, the use of distance (geographical space)
only for determining the weights in the GWR model may
not be realistic and reasonable because the attribute effects
of the focal point and its neighbors are totally ignored.

In fact, the development of GWR follows the general prin-
ciple of local smoothing and locally weighted regression
(Leung et al. 2000; Páez et al. 2002), in which the weights
are determined according to the size of the residuals (Cleve-
land 1979; Cleveland and Devlin 1988; Casetti 1982; Casetti
and Can 1999). For a given focal point x0 in the locally
weighted regression, if the size of its neighbor xi is similar
to the size of x0, the “distance of attribute space” between x0
and xi is small. Thus, the neighbor is assigned a large weight
by the weighting function. In contrast, a neighbor xi with a
size that is dissimilar to the size of x0 is assigned a small
weight, since it is far away from x0 in the distance of attrib-
ute space. In other words, the weights are determined by the
“attribute space” instead of the “geographical space” (Leung
et al. 2000). This approach pays more attention to the fitting of
the dependent variable rather than to spatially varying param-
eters. Clearly, the “attribute space” approach does not consider
geographical locations of the neighbors and the relative dis-
tance (geographical space) between x0 and xi in spatial data.

In this study, we propose an approach that incorporates
the tree attribute into the spatial weighting function used in
GWR. The new weighting function will combine the geo-
graphical space and attribute space between the subject tree
(x0) and its neighboring trees (xi), such that (1) the neighbors
(xi) with large geographical distances from x0 will be as-
signed small weights, and vice versa, and (2) at a given geo-
graphical distance, the neighbors (xi) with attributes that are
similar to those of x0 will be assigned large weights, and
vice versa. Therefore, the spatial-attribute weighting func-
tion takes into account both geographical distance and size
of the subject tree and of its neighbors. Biologically, this
function implies that competition is a reciprocal process.
Large trees have an influence on small trees, while small
trees also compete for resources with large trees. The prop-
erties of this spatial-attribute weighting function will be tested
with regard to spatial continuity and statistical and biologi-
cal interpretations.

The objectives of this study were (1) to model the rela-
tionship between tree size and growth using OLS and GWR
with different weighting functions (i.e., spatial weighting
and spatial-attribute weighting functions), (2) to compare
model fitting for the OLS and the two GWR models using a

goodness-of-fit test and through mapping parameter estimates
used to interpret individual tree growth, and (3) to evaluate
the performance of the two GWR models with different
weighting functions.

Data

The data used in this study were collected from 48 plots
of mixed-species, second-growth northern hardwoods in the
Bartlett Experimental Forest at Bartlett, New Hampshire,
which were established as a density study in 1963 (Leak and
Solomon 1975; Solomon 1977). The dominant species in
these plots were beech (Fagus grandifolia Ehrh.), red maple
(Acer rubrum L.), and paper birch (Betula papyrifera
Marsh). Some other species included yellow birch (Betula
alleghaniensis Britt.), sugar maple (Acer saccharum
Marsh.), white ash (Fraxinus americana L.), and miscella-
neous softwoods. Each plot was a 36.58 m × 36.58 m square
and was surrounded by a 15.24 m isolation strip. All trees on
the plots were marked, tagged, and recorded by species. Tree
diameter at breast height (DBH) was measured for trees with
DBH equal to or greater than 11.43 cm at plot establishment
and remeasured several times afterward. Plot maps were also
constructed in 1991 following the field procedure developed
by Reed et al. (1989) for measuring tree coordinates. Thus,
the coordinates of each tree and the distances between trees
were available. The last remeasurements were taken in sum-
mer 2000. The tree basal area growth between 1991 and
2000 was used in the regression model in this study.

Methods

GWR model
Suppose we have a set of n observations {Xij} with the

spatial coordinates {(ui, vi)}, i = 1, 2, …, n, on p independ-
ent or predictor variables, j = 1, 2, …, p, and a set of n ob-
servations on a dependent or response variable {yi}. The
underlying model for GWR is

[1] y u v X u vi i i ij
j

p

j i i i= + +
=

∑β β ε0
1

( , ) ( , )

where {β0(ui, vi), β1(ui, vi), …, βp(ui, vi)} are p + 1 continu-
ous functions of the location (ui, vi) in the study area. The εi
is the random error term with a distribution N(0, σ2I).

The parameter estimation is a moving window process. A
region or window was drawn around a location i, and all the
data points within this region or window were then used to
estimate the parameters in eq. 1. The estimator of βi is given
at each location i by a weighted least-squares approach:
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In locally weighted regression models, the values of
Wi(ui, vi) are constant. In the GWR model, on the other

© 2006 NRC Canada

Shi et al. 997



hand, Wi(ui, vi) varies with the location i depending on the
distance between location i and its neighboring locations
(see eq. 4). The above process was repeated for each obser-
vation in the data, and consequently, a set of parameter esti-
mates was obtained for each location.

The weights (wij) in the weight matrix Wi(ui, vi) is a de-
creasing function of distance dij between the subject i and its
neighboring location j. In general, the spatial weighting
function is taken as the exponential distance-decay form:

[4] wij

d

h

ij

=
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

e

2

2

where h is the kernel bandwidth. If the locations i and j co-
incide (i.e., dij = 0), wij equals one, while wij decreases ac-
cording to a Gaussian curve as the distance dij increases.
However, the weights are nonzero for all data points, no
matter how far they are from the center i (Fotheringham et
al. 2002).

Kernel bandwidth plays an important role in model fitting.
There are three common approaches available for choosing
the “optimal” kernel bandwidth: (1) a predefined bandwidth,
(2) using a cross-validation procedure, and (3) using a mini-
mum Akaike information criterion (AIC) (Brunsdon et al.
1998; Fotheringham et al. 2000, 2002). Using the AIC and
cross-validation methods to process large samples is com-
putationally intense. Pàáez et al. (2002) also found that the
cross-validation procedure sometimes might not result in a
reasonable kernel bandwidth. In contrast, the use of the pre-
defined bandwidth is quite simple. It generally depends on
existing knowledge and the researchers’ experience.

Spatial-attribute weighting function
The spatial weighting function (eq. 4) takes only the geo-

graphical distance into account and ignores the influence of
the trees’ attributes. Since both tree size and location have a
strong impact on competition among trees, growth, crown
structure, and mortality (e.g., Miller and Weiner 1989;
Moeur 1993; Newton and Jollife 1998), we propose to mod-
ify eq. 4 as follows:
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where f(τ) is a function that changes the weight wij according
to the difference (τ) between the size of the subject tree and
the size of its neighbor. According to the idea of the weight-
ing function in locally weighted regression techniques
(Cleveland 1979; Castti 1982; Cleveland and Devlin 1988),
the weight should decrease as the difference between the fo-
cal point and its neighbors increases. The symmetric weight
is one of the important properties of the weighting function,
because it reduces bias (Cleveland and Devlin 1988). The
f(τ) function can be a bisquare, a “tribcube”, or an exponen-
tial function. In this study we propose the following format
for the f(τ) function:

[6] f ij

ii
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where DBHii is the DBH of the subject tree i, and DBHij is
the DBH of the neighboring tree j. According to eqs. 5 and
6, large weights are assigned to the neighboring trees with
DBHs that are similar to that of the subject tree, and the
small weights are assigned to the neighboring trees if their
DBHs are different from that of the subject tree. When the
size of a neighboring tree is the same as that of the subject
tree (i.e., f(τ) = 1), the weight wij for that tree is determined
by the spatial distance only.

Regression model
We selected the following model for the relationship be-

tween tree growth and size, which has been used success-
fully in similar situations (Vanclay 1994; Zhang and Shi
2004).

[7] log( ) ( , ) ( , ) logBAG 1 (DBH)+ = +β β0 1u v u v

+ +β ε2( , )u v DBH2

where BAG is the tree basal area growth between 1991 and
2000, DBH is the tree DBH in 1991, log is a 10-based loga-
rithm, β0(u, v)~ β2(u, v) are regression coefficients to be esti-
mated, and ε is the model random error. If the spatial
coordinates are removed from the above model, eq. 7 be-
comes the derivative model of the Bertalanffy growth func-
tion. This model has been used as a basic function in several
forest growth and yield models because of its simplicity and
robust predictions (e.g., Wykoff 1990; Hann and Larsen 1991;
Vanclay 1994; Monserud and Sterba 1996).

Goodness-of-fit test
It is important to test whether the GWR models offer a

statistically significant improvement over the OLS model. In
GWR, the parameter estimates change as the spatial coordi-
nates vary. By incorporating the local spatial information in
the model estimation, GWR always provides a better model
fit in terms of the residual sum of squares (Brunsdon et al.
1998; Fotheringham et al. 2002). In this study, we performed
the goodness-of-fit test using the approach proposed by
Leung et al. (2000) to test whether GWR is an improvement
over OLS (Zhang and Shi 2004).

Evaluation of the spatial and spatial-attribute weighting
functions

Bootstrapping, jack-knifing, and cross-validation are com-
mon methods based on “resampling” for evaluating regres-
sion models when new data are not available for the same
purpose (Efron and Gong 1983; Shao and Tu 1995). In a re-
cent study, Kozak and Kozak (2003) found that cross-
validation or data splitting provides little additional informa-
tion in the process of evaluating regression models. Jack-
knifing or predicted residual error sum of squares (PRESS)
in regression analysis may not be an appropriate method for
evaluating the GWR models because the sample size for any
subject tree within the kernel bandwidth is usually small.
Omitting one or more observation(s) will make the sample
size even smaller. Thus, we decided to use bootstrapping for
the evaluation of the GWR model with our proposed spatial-
attribute weighting function against the model with the spa-
tial weighting function (Efron and Gong 1983; Mooney and
Duval 1993; Fox 1997). During the bootstrapping process,
100 random samples with replacement were drawn from all
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Spatial
weighting GWR

Spatial-attribute
weighting GWR

Plot Fa Pa F P

01 2.5223 0.0017 2.6110 0.0025
02 2.0390 0.0130 1.8809 0.0333
03 5.2687 <0.0001 5.7664 0.0001
04 6.1597 <0.0001 6.6956 <0.0001
05 3.9897 0.0324 6.2960 0.0246
06 2.4673 0.0031 2.5129 0.0045
07 2.2733 0.0014 2.9239 0.0001
08 2.3188 0.0056 2.3097 0.0086
09 1.8045 0.0485 1.7131 0.0810
10 1.9815 0.0482 2.4301 0.1635
11 2.0855 0.0414 2.2536 0.0369
12 1.6308 0.0474 1.6758 0.0642
13 2.2761 0.0073 2.2218 0.0136
15 1.7089 0.0376 1.6955 0.0449
16 1.5265 0.0766 1.9351 0.0172
17 2.7232 0.0031 2.6660 0.0073
18 3.1648 0.0046 3.9078 0.0041
19 4.6006 <0.0001 4.8624 0.0000
20 1.2741 0.2406 1.4967 0.1381
21 1.9180 0.0122 2.1911 0.0050
22 4.2975 0.0001 4.6588 0.0002
25 2.9870 0.0005 3.4297 0.0003
26 1.7848 0.0447 1.7015 0.1861
29 3.7249 0.0028 4.0095 0.0038
30 2.0904 0.0462 2.6593 0.0340
31 2.0691 0.0077 2.3319 0.0043
32 3.9460 0.0136 4.5785 0.0222
33 3.4593 0.0041 3.3886 0.0085
34 2.7529 0.0333 3.0080 0.0346
35 1.0696 0.4150 0.9851 0.5288
36 2.5141 0.0063 2.9397 0.0046
37 5.3968 0.0063 5.2163 0.0156
38 3.0901 <0.0001 3.0259 <0.0001
39 2.0412 0.0353 2.1114 0.0440
40 2.2591 0.0173 2.2903 0.0209
41 4.3077 0.0107 5.2538 0.0386
42 3.0153 0.0227 3.9896 0.0315
43 5.7198 <0.0001 5.9300 <0.0001
45 1.1837 0.3279 3.7878 0.0008
46 2.3584 0.0087 2.2756 0.0191
47 3.6691 0.0003 4.3857 0.0002
49 2.3901 0.0041 2.1904 0.0108
50 2.3224 0.0014 2.6537 0.0005
51 3.8221 <0.0001 3.8169 <0.0001
53 3.3976 0.0001 4.0204 <0.0001
54 1.8322 0.0457 1.8244 0.1710
56 3.1504 0.0004 4.3216 0.0001
59 4.8137 0.0010 6.0975 0.0021

aSee Zhang and Shi (2004).

Table 1. Goodness-of-fit test for the improvement of the geo-
graphically weighted regression (GWR) models over the ordinary
least-square (OLS) model for the 48 plots.
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Fig. 1. Maps of tree locations for the three example plots:
(a) regularity, (b) randomness, and (c) clustering. The circle is
proportional to the tree DBH.



the trees (including the subject tree) surrounding the subject
tree within the kernel bandwidth for each location. The fol-
lowing equation was used to compute the bootstrapping root
mean square error (RMSE):

[8] RMSE

MRES2

=

⎛
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⎡
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⎥==
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where MRESij is the model residual, n is the number of ob-
servations, i is the ith tree, j is the index of bootstrapping
replication. RMSE provides an overall measure of predictive
performance of the two GWR models with different weight-
ing functions.

Example plots
Using Ripley’s K function (Ripley 1977; Diggle 1983;

Haase 1995), we grouped the 48 plots into three categories:
regularity (12 plots), randomness (30 plots), and clustering
(6 plots). Three example plots (plots 17, 39, and 59) were
selected from the three categories to further assess the spa-
tial variation of parameter estimates and differences between
the two GWR models with different weighting functions. We
selected these three example plots because their tree loca-
tions represented typical regular, random, and clustered spatial
patterns, respectively, based on the analysis of the Ripley’s
K function. In addition, the number of trees in these three
example plots was similar (n = 59 in plot 17, n = 52 in plot
39, and n = 50 in plot 59). We evaluated the impact of spatial
patterns on tree growth through the contour maps of the pa-
rameter estimates for each example plot. The initial spatial
locations of each tree in the three example plots are shown
in Fig. 1. The circles in the figure are proportional to the
sizes of tree DBH.

Results

Determination of kernel bandwidth
In this study, we decided to predefine the bandwidth for

the 48 plots based on the variogram of the OLS model resid-
uals. Our analysis indicated that the variogram curve tended
to flatten out after 5.2 m (i.e., range = 5.2 m), meaning that
there was no spatial autocorrelation between trees beyond
the distance (Isaaks and Srivastava 1989; Kohl and Gertner
1997). Therefore, we chose 5.2 m as the predefined kernel
bandwidth. The reasons for using predefined kernel band-
width were (1) the plot size is relatively small (0.135 ha),
and therefore unreasonable kernel bandwidths could be ob-
tained using the AIC and cross-validation methods, and
(2) different kernel bandwidths had to be chosen for these
48 plots. To make comparisons among these 48 plots, we
need to make a compromise by using a predefined kernel
bandwidth. In addition, similar distances (or kernel band-
width) have been used in other studies of distance-dependent
competition indices (e.g., Pukkala 1989; Kenkel et al. 1989;
Rouvinen and Kuuluvainen 1997; Shi and Zhang 2003;
Zhang and Shi 2004).

Improvement of the GWR models over the OLS model
All trees in each plot were used to fit eq. 7 by OLS, GWR

with the spatial weighting function, and GWR with the spatial-
attribute weighting function. The null hypothesis of no im-
provement of the GWR models over the OLS model was
tested using the approximate F test proposed by Leung et al.
(2000). The results indicated that both GWR models per-
formed better than the OLS model (Table 1). For the GWR
model with the spatial weighting function, the model fitting
was significantly improved over the OLS model (α = 0.05)
for 44 (92%) of the 48 plots. In the case of the GWR model
with the spatial-attribute weighting function, 42 (87.5%)
plots showed an improvement in model fitting. The goodness-
of-fit test indicated that the model parameter estimates of
eq. 7 were better modeled as a spatially variable parameter
from location to location within each plot. In other words,
the relationship between BAG and DBH was not constant
across each plot.

The two GWR models generally produce smaller model
residuals than the OLS model across 4 cm diameter classes
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Fig. 2. Model residuals across 4 cm diameter classes over 48 plots.



(Fig. 2). The OLS model appears to produces much larger
negative biases (overestimation) for intermediate-sized trees
(28–40 cm in diameter) and much larger positive biases (un-
derestimation) for both small trees (16–24 cm in diameter)
and large trees (>40 cm in diameter) than the two GWR
models. However, the two GWR models had similar patterns
of model residuals across the diameter classes.

The equivalence test using paired t test was performed to
compare the average model residuals and absolute residuals
between the two GWR models across the 48 plots. We fol-
lowed the testing procedure proposed by Robinson and
Froese (2004). We chose three criteria (i.e., ε = 10%, 25%,
and 50%) that were relative to the standard deviation of the
difference of the two model residuals. The cutoff (Cα;n–1(ε))
was obtained from the noncentral F distribution. According
to the equivalence test, if the t value was greater than the
cutoff value, then the null hypothesis of dissimilarity would
not be rejected (Robinson and Froese 2004). Our equiva-
lence test indicated that the GWR model with the spatial-
attribute weighting function produced significantly smaller
model residuals (t = 2.43, C0.01;47(10%) = 0.02,
C0.01;47(25%) = 0.06, and C0.01;47(50%) = 1.13), and absolute
residuals (t = 18.13) than did the GWR model with the spa-
tial weighting function. Therefore, our proposed spatial-
attribute weighting function performed better than the spatial
weighting function currently used in GWR in terms of model
fitting.

Evaluation of the spatial and spatial-attribute weighting
functions

The comparison of the bootstrapping RMSE in Table 2 in-
dicated that the GWR model with the spatial-attribute
weighting function had smaller RMSE in 40 (83.33%) of the
48 plots than the GWR model with the spatial weighting
function. Similarly, we used the equivalence test to test
whether there was a significant difference between these two
RMSEs. The results indicated that the GWR model with the
spatial-attribute weighting function produced a significantly
smaller bootstrapping RMSE than did the GWR model with
the spatial weighting function (t = 1.51, the cutoff values
were the same as above), implying that although the former
model is more complicated because of the incorporation of
the tree attribute information in the weighting function, it
does provide better predictions for the response variable.

Further comparisons between the two GWR models
using the three example plots

To further investigate the difference of model residuals be-
tween the two GWR models, we studied the model residual
and absolute model residuals for the three example plots in
detail. In general, the GWR model with the spatial-attribute
weighting function produced smaller model residuals than
did the GWR model with the spatial weighting function
across tree diameter classes (Fig. 3). The difference between
the two models was smaller for the regular plot (Fig. 3a)
than for the clustered plot (Fig. 3c).

The difference between the two GWR models was clearer
for the absolute model residuals (Fig. 4). The absolute model
residuals obtained from the GWR model with the spatial-
attribute weighting function were smaller than those of the
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RMSE

Plot
Spatial
weighting GWR

Spatial-attribute
weighting GWR

01 0.00035 0.00025
02a 0.00048 0.00049
03 0.00066 0.00036
04 0.00037 0.00021
05 0.00060 0.00041
06 0.00040 0.00029
07 0.00041 0.00023
08 0.00035 0.00026
09 0.00046 0.00034
10a 0.00097 0.00204
11 0.00049 0.00046
12 0.00053 0.00038
13 0.00037 0.00028
15 0.00038 0.00028
16 0.00041 0.00025
17 0.00062 0.00049
18 0.00078 0.00053
19 0.00078 0.00072
20 0.00054 0.00042
21 0.00046 0.00029
22 0.00045 0.00026
25 0.00049 0.00024
26 0.00080 0.00067
29a 0.00128 0.00137
30a 0.00406 0.00468
31 0.00036 0.00022
32 0.00071 0.00041
33 0.00063 0.00050
34 0.00057 0.00029
35 0.00075 0.00059
36 0.00045 0.00037
37 0.00108 0.00091
38 0.00031 0.00023
39a 0.00064 0.00129
40 0.00059 0.00055
41 0.00066 0.00036
42 0.00076 0.00130
43 0.00040 0.00024
45 0.00041 0.00030
46 0.00039 0.00033
47 0.00047 0.00030
49a 0.00051 0.00052
50a 0.00044 0.00063
51 0.00044 0.00021
53 0.00043 0.00027
54a 0.00045 0.00046
56 0.00081 0.00071
59 0.00064 0.00046

aThe RMSE obtained from the GWR model with the
spatial-attribute weighting function is larger than that from
the GWR model with the spatial weighting function.

Table 2. The comparison of root mean square error
(RMSE) obtained from the geographically weighted
regression (GWR) models with the spatial and spatial-
attribute weighting functions using bootstrapping.



GWR model with the spatial weighting function across tree
diameter classes, especially for the clustered plot (Fig. 4c).

In general, the range of the parameter estimates obtained
from the GWR model with the spatial-attribute weighting
function was wider than that of GWR model with the spatial
weighting function. Figure 5 shows the contour plots of the
parameter estimates (β1) of eq. 7 for the three example plots.
To make the comparison among these contour maps, the
same range of parameter estimates was used for each exam-
ple plot. The wide range of parameter estimates locally high-
lighted the large variation of parameter estimates in each
example plot. For the regular spatial pattern, the large varia-

tion of the parameter estimates (β1) was close to the center
of this plot. The range of the parameter estimates (β1) was
from –0.0063 to 0.0041 for the GWR model with the spatial
weighting function (Fig. 5a), while it varied from –0.0089 to
0.018 for the GWR model with the spatial-attribute weight-
ing method (Fig. 5b). For the random and clustered spatial
patterns, similar results can be seen (Figs. 5c, 5d, 5e, and
5f). The GWR model with the new spatial-attribute weight-
ing function took the local spatial variation of tree density,
growth conditions, and competition (e.g., tree size) into ac-
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Fig. 3. Model residuals across the diameter classes for the three
example plots: (a) regularity, (b) randomness, and (c) clustering.
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Fig. 4. Absolute model residuals across the diameter classes for
the three example plots: (a) regularity, (b) randomness, and
(c) clustering.



count, and therefore the wider range of parameter estimates
might represent the local conditions better than the smaller
range. It would improve the precision and accuracy of model
predictions.

Discussion

The choice of spatial kernel is very important in GWR.

Two types of spatial kernels are available: fixed and
adaptive spatial kernels. In this study, we employed a fixed
spatial kernel for each example plot. In general, the adaptive
spatial kernel is suitable for sparse data. In other words, the
kernel would be different at different locations. In this case,
if the fixed spatial kernel was used, there might have been
few data points in the kernel bandwidth for the sparse data,
which can cause large standard errors for parameter esti-
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Fig. 5. Contour plots of the parameter estimates of β1 in eq. 7: (a) regular plot, spatial weighting function; (b) regular plot, spatial-
attribute weighting function; (c) random plot, spatial weighting function; (d) random plot, spatial-attribute weighting function; (e) clus-
tered plot, spatial weighting function; and (f) clustered plot, spatial-attribute weighting function.



mates and “undersmoothed” surfaces (Fotheringham et al.
2002). In this study, the cross-validation and AIC methods
cannot be used to obtain the adaptive kernels because of the
size limitation of our example plots. Although it would be
useful to test the model fitting using the spatial adaptive ker-
nel, it is almost unrealistic to determine the spatial adaptive
kernels for each data point in our example plots according to
subjective judgment. If the plot size is large enough, the
adaptive kernel can be obtained using the cross-validation or
AIC method. We are aware of the size limitation of our ex-
ample plots. Our proposed spatial-attribute weighting func-
tion needs to be tested using large field plots in the future.

The weights matrices obtained from the weighting func-
tions are key elements in most regression models (Getis and
Aldstadt 2004). The spatial weights matrix in GWR is de-
fined as the expression of spatial dependence between obser-
vations (Fotheringham et al. 2002). However, according to
our study, constructing a weights matrix should take into ac-
count dependences not only from “geographical space” but
also from “attribute space” in local statistical analysis and
spatial modeling. We proposed the spatial-attribute weight-
ing function (eq. 5) to obtain the weights matrix, and there-
fore the local variation being measured in attribute space and
geographical space can be coped with at the same time. It
can be further used to investigate local conditions influenc-
ing individual tree growth.

Although the contour plots indicate the existence of spa-
tial heterogeneity for each example plot, it is difficult to de-
termine the impact of attribute space in the local parameter
estimates. The impact of attribute space is the combined ef-
fect of the neighbors of the subject tree. Therefore, it is a
multidimensional space and cannot be visually investigated.
The effect of attribute space should be cautiously interpreted
across space. However, from the comparison of the contour
plots between the two GWR models, we can see that the tree
attributes do have an influence on the regression coefficients.

Conclusions

The GWR method is a useful tool for modeling spatial
heterogeneity according to the analysis of the model fitting
with our example plots (i.e., regular, random, and clustered
plots). Not only the spatial information but also the attrib-
utes of trees can be incorporated into the weighting function
of the GWR model. Our results indicate that no matter what
spatial patterns existed in the stand, the performance of the
GWR model with the spatial-attribute weighting function
would be better than that of the GWR model with the spatial
weighting function, especially for the plots where trees are
clustered. The visualization of the parameter estimates high-
lights the spatial distribution of the multivariate relationship
under study, such as the relationship between tree growth
and spatial locations. With the rapid development of GIS,
the GWR model can be easily incorporated into GIS for for-
est growth simulations.
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