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A B S T R A C T

Outputs of species distribution models (SDMs) are widely used as indicators of climate conditions favorable for
species occurrence. When using these outputs to inform planning and decision making, it is essential that the
uncertainties associated with the projections of present-day and future climatic suitability are carefully con-
sidered. Climate change assessments routinely consider the uncertainty introduced into SDM outputs by dif-
ferences in future climate projections, and other uncertainty sources, such as the choice of the threshold to
convert simulated probabilities to binary climatically suitable areas, are also oftentimes considered. However,
the uncertainty introduced by the limitations of the species occurrence data used in the SDM calibration is rarely
evaluated. These limitations, which include location error, sampling bias, and species misidentification, may
reduce the utility of SDM outputs in conservation research and practice. Using understory bamboo species in
southwest China as examples, here we demonstrate that species occurrences obtained using remote sensing offer
an additional dataset for calibrating SDMs that, in conjunction with conventional observations and employing an
ensemble approach of outputs from multiple models, provide an estimate of the uncertainty introduced by the
species occurrence data. A biweekly time series of the satellite-based Wide Dynamic Range Vegetation Index
(WDRI) was employed to estimate bamboo occurrence based on phenological signatures of the bamboo species
and their overstory canopies. Using Maxent, a popular modeling framework, present-day and projected future
climatic suitability were assessed separately for conventional species presence observations from the Fourth
National Giant Panda Survey and for the remotely-sensed presence estimates. The ensemble of model outputs
suggests that the uncertainty introduced by the species occurrence data, along with the interaction with other
sources of uncertainty, may be as substantial as the uncertainty introduced by the use of different climate
scenarios or by the threshold used to estimate binary climatically suitable areas. Ignoring the uncertainty in-
troduced by the limitations of the species occurrences may compromise the interpretation of SDM outputs and
reduce their usefulness for conservation planning. Remote sensing is a largely untapped resource for assessing
uncertainty in SDM simulations.

1. Introduction

Species distribution models (SDMs) are popular tools for developing
indicators of suitable climate conditions for species occurrence. They
are based on correlative relationships established using current climate
conditions in observed occurrence locations (Elith et al., 2011). Model

outputs provide a useful baseline of the location and extent of present-
day favorable climate conditions. These correlative relationships can
then be applied to projected future climate conditions to assess poten-
tial changes in species distributions due to changes in the location and
extent of climatically suitable areas (e.g., Ovalle-Rivera et al., 2015).

When using projections of future conditions to inform planning and
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decision making, it is essential that the uncertainties associated with the
projections are considered (Winkler, 2016). Uncertainty is often simply
defined as a state of incomplete knowledge (IPCC, 2014). Although
various methods have been used to evaluate uncertainty, a popular
approach is the use of multi-model ensembles, where the spread of the
model outputs provides an estimate of the uncertainty (Wallach et al.,
2015). Ensembles have been widely used when projecting future spe-
cies occurrence. These ensembles often include projections obtained
from different techniques (e.g., logistic regression, maximum entropy,
boosted regression trees) used to model species distributions (e.g.,
García-Callejas and Araújo, 2016), differences in model parameteriza-
tions (Cobos et al., 2019), alternative sources of climate observations as
environmental predictors (e.g., Tang et al., 2018), multiple thresholds
to covert likelihood of occurrence to binary predictions of species
presence (e.g., Nenzén and Araújo, 2011), or future climate conditions
acquired from numerous global climate models (GCMs) driven by sev-
eral greenhouse gas concentration pathways (e.g., Tuanmu et al.,
2013).

One uncertainty source that is rarely considered is the limitations of
the species occurrences used to calibrate a SDM. Barry and Elith (2006)
concluded that one type of modeling error arises from data deficiencies.
Common deficiencies for species occurrence data include small sample
sizes, bias in sampling, location error, and misidentification of species
(Barry and Elith, 2006; Ensing et al., 2012; Costa et al., 2015). While an
underlying assumption of SDMs is that the study area is well sampled
(Phillips et al., 2009), in practice, this is rarely the case because data on
species occurrences are usually obtained from museums/herbaria or
from field surveys (Guillera-Arroita et al., 2015). Under these circum-
stances, the size of the presence dataset is often small. Also, these data
typically are biased towards more accessible areas (e.g., close to roads)
or towards geographic areas where more intensive sampling was con-
ducted (Glon et al., 2017). Species misidentification is another rarely
reported source of error. Studies that compared available datasets and
taxonomically “reliable” records in species distribution modeling found
that climatic suitability obtained using the two sets of presence data
differed substantially (Ensing et al., 2012; Molinari-Jobin et al., 2012).
These limitations of species occurrence data, in turn, influence the
projections of future climatic suitability, with potentially negative ef-
fects on conservation actions (Schmitz et al., 2015).

Previous studies have either ignored these data limitations or have
attempted to correct for them by adjusting the species occurrence da-
tasets or by changing the SDM formulation. However, as these strate-
gies only indirectly infer the sampling process (Guillera-Arroita et al.,
2015), they do not completely remove sampling bias or correct data
errors. Commonly-used strategies to adjust for sampling bias include:
filtering of species occurrences to reduce spatial autocorrelation (Boria
et al., 2014); down-weighting occurrences from locations with higher
sampling intensity (Schulman et al., 2007); manipulating the back-
ground data such that they have a similar spatial bias as the presence
data (Phillips et al., 2009); inclusion of an autocovariate (“contagion”)
term within the SDM to account for spatial autocorrelation (Segurado
et al., 2006); and explicitly modeling observer bias (Warton et al.,
2013). While some studies reported that these adjustments improved
the outputs of SDMs (e.g., Boria et al., 2014; Kiedrzyński et al., 2017),
others noted substantial limitations. For example, a disadvantage of
spatial filtering is that it reduces the sample size, potentially decreasing
the SDM’s predictive performance (Araújo et al., 2005). Background
manipulations, such as defining a target group background by using the
occurrence locations of other species (Phillips et al., 2009), run the risk
of substituting underestimation bias with overestimation bias in poorly
sampled areas (Ranc et al., 2017). Contagion terms can conflate sam-
pling bias with the spatial autocorrelation of environmental (e.g., cli-
mate) covariates (Segurado et al., 2006). Model-based bias corrections
require relevant predictors that are independent of species occurrences
(Guillera-Arroita et al., 2015). In addition to these limitations, the ef-
fectiveness of bias correction strategies has been shown to vary with the

nature of the spatial clustering, the degree or intensity of the bias, and
species characteristics such as geographic range sizes (Kramer-Schadt
et al., 2013; Fourcade et al., 2014; Ranc et al., 2017). Thus, bias cor-
rected models do not necessarily constitute an improvement over
biased models. Furthermore, sampling data manipulations do not pro-
vide solutions to issues such as species misidentification.

New approaches are needed for assessing the influence of limita-
tions in the species occurrence data on projections of present-day and
future climatic suitability. One possible tactic is the use of the afore-
mentioned ensemble approach for estimating uncertainty. However,
multiple sources of species occurrence observations are rarely available
for incorporation into an ensemble, in contrast to other uncertainty
sources such as that associated with future climate projections for
which a large number of climate model simulations is accessible. Even
if repeated samples of species occurrence exist, such as for ongoing
censuses, they likely employed similar sampling designs and share
many of the same limitations. A possible approach to addressing this
dilemma is the use of remote sensing to develop an additional source of
species occurrences that, together with conventional species informa-
tion, can provide conservation planners and managers with an estimate
of the uncertainty introduced by the limitations of the species occur-
rence data. Although remotely sensed observations are commonly used
in SDMs as environmental covariates (Rocchini et al., 2015), they have
rarely been used as estimates of species occurrence (although see
Andrew and Ustin (2009) for an exception). Hence, remote sensing is an
untapped resource to help understand the contribution of limitations in
species occurrence information to the uncertainty of the outcomes from
species distribution modeling.

Here we explore the potential usefulness of an ensemble of model
outputs derived from two sources of species occurrence data – con-
ventional field survey observations and remotely-sensed estimates – to
assess the uncertainty introduced by the deficiencies of species occur-
rence data into projections of future species distributions. As our intent
is to demonstrate an approach that is transferable to a wide range of
plant species and locations, we employ freely-accessible remotely
sensed observations and the popular Maxent modeling framework to
model species occurrence and climatic suitability. We use bamboo
species in southwest China as a demonstration. These species and their
geographic location are important for several reasons. As understory
species, bamboo can be challenging to detect using remote sensing
procedures, and thus provide a crucial test of the usefulness of the
proposed ensemble approach. Although detailed field sampling of
bamboo has occurred within portions of the current geographical range
of the giant panda, as part of the Fourth National Giant Panda Survey
(State Forestry Administration, 2015) and earlier similar surveys, in-
accessible areas and areas outside of the panda’s current geographic
range were not sampled, reflecting the non-uniform coverage of field
observations most researchers encounter. Moreover, the bamboo spe-
cies evaluated constitute the main food source of the giant panda,
making up 99% of their diet (Schaller, 1985). As a global icon of bio-
diversity conservation (Shen et al., 2015), the giant panda constitutes a
gauge for measuring the success or failure of current conservation ac-
tions (Xu et al., 2017), and projected future changes in the distribution
of bamboo species, along with estimates of the uncertainty associated
with these projections, are essential to maintain the long-term viability
of panda populations and to support the design of successful panda
reintroduction projects (Swaisgood et al., 2018).

2. Methods

2.1. Study region

The study region encompasses the current geographic range of the
giant panda (Yang et al., 2017) and surrounding areas (Fig. 1). This
region is characterized by steep environmental gradients, a complex
vegetation mosaic (Kong et al., 2017), and a large number of understory
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bamboo species (Li, 1997; Hu and Wei, 2004). As mentioned above, this
region is ideal for the study objectives, as a portion was sampled for
bamboo occurrences during giant panda censuses organized by China’s
State Forestry Administration, with the remaining area not sampled.
The latter includes areas of high elevation where bamboo is not ex-
pected to occur, but also large areas where giant pandas are not re-
ported to occur but where bamboo species consumed by the pandas are
present (Wu et al., 1994; Viña et al., 2010).

2.2. Bamboo species occurrence locations

Observed occurrence locations of understory bamboo species were
obtained from the Fourth (2011–2014) National Giant Panda Survey
(hereafter 4S) (State Forestry Administration, 2015). Occurrence loca-
tions were carefully checked for errors in the reported locations (e.g.,
geographic coordinates located away from the surveyed areas, locations
exhibiting the same or inverted latitude and longitude coordinates) and
in the translation of vernacular to scientific names. Locations with
vernacular names that corresponded with more than one scientific
name were removed. In addition, the species names were compared to
those listed in the 4th National Survey Report on Giant Panda (State
Forestry Administration, 2015) to ensure that each species included in
the analysis constitutes a food source for giant pandas. Only species
with 15 or more occurrence locations, after removing erroneous entries,
were retained for further analysis, for a total of 28 species (Table S1).

2.3. Climate observations and future projections

Baseline (i.e., present-day) climate conditions were obtained from
remotely sensed estimates provided by Deblauwe et al. (2016) of long-
term monthly means of temperature and precipitation for 2001–2013
and 1981–2013, respectively. In this database, temperature estimates
were obtained from MODIS MOD11C3 v. 6.0, while precipitation esti-
mates were obtained from Climate Hazards Group InfraRed Precipita-
tion with Station data version 2 (CHIRPS v. 2.0). This dataset was se-
lected because of its finer (0.05 degree, about 6 km) inherent spatial
resolution compared to the much coarser, non-uniform resolution of
conventional climate observation networks. We downloaded 19 stan-
dard bioclimatic variables derived from the monthly temperature and
precipitation means (available from https://vdeblauwe.wordpress.com)
and resampled the gridded fields using bilinear interpolation to a 1 km2

resolution, a commonly used grid cell size for modeling climatic suit-
ability of species distributions (e.g., Hijmans et al., 2005). This choice

maintains a focus on mesoscale climate processes (e.g., changes in
temperature with elevation) rather than on microclimate processes
(e.g., aspect, local land cover) that cannot be easily inferred using
spatial interpolation.

Climate projections were derived for a future (2061–2080) time
slice using the popular delta downscaling method and simulations for
the RCP8.5 greenhouse gas concentration trajectory obtained from 17
global climate models (GCMs) in the Coupled Model Intercomparison
Project Phase 5 (CMIP5) archive (https://cmip.llnl.gov/cmip5/) (Table
S2). The deltas, defined as grid point differences between GCM simu-
lations for future and historical periods, were applied to the baseline
temperature and precipitation fields, and bioclimatic variables were
calculated for each of the downscaled future projections (see Tang et al.
(2018) for more detail).

2.4. Estimation of bamboo species occurrence using remote sensing

Bamboo species are challenging to detect using optical remote
sensing techniques given that they occur in the understory of trees.
However, due to the mismatch between the phenological signatures of
the overstory canopies with and without an understory of bamboo
(Viña et al., 2008; Tuanmu et al., 2010), it is possible to estimate their
occurrence using remotely sensed observations acquired with a high
temporal resolution. A time series (2008–2010) of bi-weekly Wide
Dynamic Range Vegetation Index (WDRVI; Gitelson, 2004) imagery,
calculated from surface reflectance values in the red and near infrared
spectral bands of the Moderate Resolution Imaging Spectroadiometer
(MOD09Q1 product available from https://lpdaac.usgs.gov/), was used
to estimate the bamboo occurrences. The WDRVI was preferred over the
more commonly used Normalized Difference Vegetation Index (NDVI),
which has been extensively used as a surrogate of vegetation biophy-
sical characteristics, since it does not lose sensitivity at the moderate-to-
high green biomass conditions characteristic of the forests in the study
area with a dense understory (Viña et al., 2008). Following the proce-
dures described by Viña et al. (2010), a principal components analysis
was applied to the WDRVI image time series, and 10 principal com-
ponents were retained for further analysis. These components, along
with the Shuttle Radar Topography Mission (SRTM) digital elevation
model (https://www2.jpl.nasa.gov/srtm/), served as explanatory vari-
ables. The 90m digital elevation model was resampled to the resolution
of MODIS-WDRVI (250m) using bilinear interpolation.

Given species misidentification problems, together with the fact that
time series of WDRVI capture not only phenological signatures of the
understory bamboo but also of the overstory canopy, rather than
modeling the climatic suitability of individual species we modeled the
climatic suitability of phenologically-defined bamboo species groups.
Such grouping of bamboo species by their phenological similarity, as
defined using time series of WDRVI, not only reduces potential biases
due to species misidentification, but also due to the effects of the
overstory canopy, since it has been shown that floristically similar areas
(i.e., composed of similar overstory and understory species) will also be
phenologically similar (Viña et al., 2012, 2016). Such grouping has the
additional advantage that it can be applied to datasets composed of a
large number of species in a guild, each with a small sample size of
occurrence locations. To obtain phenologically-driven groups of
bamboo species, we used k-means cluster analysis to group the species
based on the 10 principal component scores along with elevation. The
resulting 11 groups (Table 1) are composed either of a single species
(groups 1, 2, and 6), solely or almost entirely of species from the same
genus (groups 3, 5, 9, and 10), or of species from multiple genera that
exhibit similar phenological characteristics (groups 3, 4, 7, and 11).

We then used Maxent, a maximum entropy modeling algorithm
(Phillips and Dudik, 2008) to obtain bamboo occurrence probability
using the 11 independent input variables, together with the 4S occur-
rence locations of each of the 11 bamboo species groups. Although best
known for its use in species distribution modeling, recent studies have

Fig. 1. Map of the study area (outlined in red) showing elevation with major
topographic features and current habitat of the giant panda (light blue shading
in the inset map).
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found that Maxent also performs well as a one-class classifier of species
presence when applied to remotely sensed data (Stenzel et al., 2014;
Skowronek et al., 2017). As background data, we selected 10,000
randomly distributed pixels throughout the study region. To evaluate
the accuracy of the modeling algorithm for each bamboo species group,
we performed a cross-validation approach in which five replications
were obtained using the “subsample” run type. To this effect, the oc-
currence points were split iteratively five times into random training
and testing subsets, and the area under the receiver operating char-
acteristic curve (AUC; Hanley and McNeil, 1982) was calculated.
Average AUC values for the different bamboo groups ranged from 0.889
to 0.971 (Table 1).

The resulting probability maps were then resampled to the 1 km2

resolution of the climate variables using a minimum value filter which
emphasizes large bamboo patches. For each bamboo group, the re-
sampled probability values were ranked from largest to smallest, and
the locations with the largest probabilities were selected as the re-
motely sensed (hereafter RS) occurrence locations. For each bamboo
group, the number of RS locations was kept equal to the number of 4S
locations (also thinned to a 1 km2 resolution) to remove the influence of
sample size (van Proosdij et al., 2016) on the climatic suitability
modeling. The steps used to estimate the RS occurrence locations are
summarized in Fig. S1.

2.5. Climatic suitability modeling

Maxent was also used for climatic suitability modeling. Two cli-
matic suitability models were calibrated for each of the 11 bamboo
groups using the 4S and RS species locations. Following the procedures
described in Tang et al. (2018), climatic predictor variables were se-
lected using principal components analysis (PCA) applied to the fields
of 19 commonly-used bioclimatic variables that were calculated from
long-term averages of temperature and precipitation (Deblauwe et al.,
2016). For each rotated component with an eigenvalue greater than
one, the bioclimatic variable with the highest loading was retained for
the analysis to avoid the high correlation among bioclimatic variables.
Five bioclimatic variables served as predictors for the baseline climate:
annual mean temperature; temperature seasonality; annual precipita-
tion; precipitation seasonality; and annual temperature range. The si-
mulated probabilities were converted to binary climatically suitable
areas using all the thresholding procedures available within Maxent.
AUC values obtained from a similar cross-validation procedure applied
to evaluate the accuracy of these models as that applied to evaluate the
remote sensing models described above ranged from 0.926 to 0.996
(Tables S4 and S5). In addition to the AUC, we also calculated true skill
statistics (TSS) (Allouche et al., 2006) to assess the accuracy of the
binary climatic suitability obtained using the equal test sensitivity and
specificity threshold. TSS values ranged from 0.724 to 0.955. The
models derived from the present-day climate conditions were then
applied to the projected future (2061–2080) values of the bioclimatic

variables for the 17 GCMs, to obtain projections of future climatic
suitability for each bamboo group. The procedures for the climatic
suitability modeling are summarized in Fig. S1.

3. Results

3.1. Remotely sensed occurrence locations

The RS estimates produced a similar spatial distribution for the
majority of the bamboo groups as compared to surveyed data, while
revealing possible occurrence locations in unsurveyed areas (Fig. 2).
Beginning in the southwestern portion of the study area, considerable
spatial congruence is observed for two single species groups, groups 1
and 2, with the exception of a few RS locations that are not found in the
4S datasets. Multi-species groups 3, 4, and 5 are located in the central
and southwestern portions of the study region. Agreement between the
RS and 4S datasets is strong for these groups, except that for groups 3
and 4 the RS estimated locations extend farther north into the western
Qinling and the (unsurveyed) Dabashan Mountains. The RS locations
for the three bamboo groups found mainly in the northeastern portion
of the study area (groups 6, 7, and 8) suggest these species also occur in
the unsurveyed Dabashan Mountains. The fewer RS locations for these
three groups in areas sampled during the national survey are in large
part due to constraining the number of RS locations to that of the 4S
observations. Differences between the RS and 4S locations are more
substantial for the remaining three groups. For groups 9 and 10, the RS
estimates placed locations farther north into the Minshan Mountains
and farther south into the Daxiangling, Xioxingling, and Liangshan
Mountains. The RS estimates for group 10 also indicate occurrence of
these species in the Qinling and Dabashan Mountains. For group 11, the
RS estimates extend farther north as compared to the survey locations.

3.2. Present-day climatic suitability

For the majority of the bamboo groupings, the climatically suitable
area obtained from the RS locations is larger than that obtained from
the 4S locations (Fig. 3). For groups 6, 7, and 8, the greatest differences
are found in the Dabashan Mountains. Whereas the models developed
using the 4S locations suggest that a limited area within the Dabashan
Mountains currently is suitable for these bamboo species, the use of the
RS estimated locations results in a substantially expanded area of cli-
matically suitable conditions. Additionally, the RS models suggest a
larger suitable area for groups 1, 2, and 3, which is in line with the
larger spatial extent of the RS locations as compared to the 4S locations.
As noted above, the spatial extent of the RS locations for groups 9, 10,
and 11 is larger than that for the 4S locations, and, as expected, cli-
matically suitable area is larger for the RS models. In contrast, differ-
ences in climatically suitable areas obtained from the RS and 4S loca-
tions for groups 4 and 5 are small.

Table 1
The 11 phenologically-driven groups of bamboo species, the area under the receiver operating characteristic curve (AUC) for the models used to estimate the
remotely sensed presence locations, and the number of presence locations from the Fourth National Giant Panda Survey (4S) after thinning to 1 km2 raster cells.

Groups Bamboo Species AUC Number of 4S locations (after thinning)

Group 1 Q. opienensis 0.971 99
Group 2 Y. dafengdingensis 0.965 23
Group 3 B. faberi, F. ferax, Y. ailuropodine, Y. brevipaniculata, Y. glauca, Y. lineolate, Y. mabianensis 0.901 987
Group 4 C. szechuanensis, F. angustissima, Q. tumidinoda 0.960 308
Group 5 P. nidularia, P. nigra 0.952 113
Group 6 F. qinlingensis 0.889 1476
Group 7 B. fargesii, P. sulphurea 0.913 948
Group 8 F. dracocephala, I. tessellatus 0.954 362
Group 9 F. denudate, F. nitida, F. obliqua 0.904 877
Group 10 F. robusta , F. rufa, F. scabrida 0.924 575
Group 11 B. spanostachya, F. jiulongensis, Y. maculata 0.927 164
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3.3. Future climatic suitability

Focusing on the climatically suitable area obtained using the equal
test sensitivity and specificity threshold to convert probabilities to
binary values, we observe that for some of the bamboo groups the sign
of the projected changes for 2061–2080 differs depending on the source
of the occurrence data used for SDM calibration, whereas for other
groups the projected changes are in the same direction but of different
magnitude (Fig. 4).

Differences in the sign of the projected future changes are largest for
groups 1 and 2. For group 1, the 4S derived projections, regardless of
the GCM from which the future climate conditions were obtained,
suggest that the climatically suitable area will decrease, with several of
the projections indicating little or no remaining suitable area by
2061–2080 (Fig. S2). In contrast, all but five of the RS derived pro-
jections suggest that climatically suitable conditions will expand
northward along the eastern mountain slopes to at least the southern
Minshan Mountains and, for some GCMs, to the northern Minshan
Mountains. For group 2, the majority of the 4S derived projections
suggest that the climatically suitable area will expand northward into
areas that the RS model predicts as currently suitable, but that will
become less suitable in the future (Fig. S3).

Differences among GCM projections are particularly pronounced for
group 3. Future climate conditions from 10 of the 17 GCMs, when input

into the 4S model, and from 12 of the GCMs, when input into the RS
model, suggest that the climatically suitable area will increase in the
future, with the greatest increases occurring along the eastern slopes of
the Minshan Mountains and the northern Qionglai Mountains (Fig. S4).
This expansion is not observed in the projections obtained from the
remaining GCMs. In contrast, the majority of the 4S derived projections
and all of the RS derived projections for groups 4 and 5 suggest that the
climatically suitable area will decrease in the future, although the lo-
cation of the largest changes varies substantially among GCMs (Figs. S5
and S6). Regardless of GCM or the source of presence locations, the
climatically suitable area is projected to decrease in the future for
groups 6, 7, and 8. The Dabashan Mountains, for which the RS models,
and to a lesser extent the 4S models, predicted areas of present-day
suitable climate conditions, are projected to no longer be suitable in the
future. Large decreases are also projected for the Qinling Mountains
(Figs. S7–S9).

Interpretation of the differences in future changes obtained from RS
and 4S models is more difficult for the remaining three groups (groups
9, 10, and 11) because of the larger number of RS locations that differ
from the 4S locations. Nevertheless, the projected changes obtained for
the 4S and RS models are quite similar in the geographic areas where
the occurrence locations overlap. For groups 9 and 10, the projections
agree that climatically suitable areas within the Minshan Mountains
will decrease in extent (Figs. S10 and S11). Climatically suitable con-
ditions are projected to expand northward for group 11, although
substantial differences among GCMs are observed (Fig. S12).

The projections obtained from the two sources of species occurrence
locations, the 17 GCMs, and all of the conversion thresholds available in

Fig. 2. Bamboo presence locations from the Fourth National Giant Panda
Survey (4S) and estimated using remotely sensed data (RS) for the 11 bamboo
groups. The presence locations from both sources were thinned to 1 km2 raster
cells. See Table 1 for the names of the bamboo species in each group and for the
number of 4S presence locations for each bamboo group. The number of RS
locations was constrained to equal that of the 4S locations. The gray shading
represents elevation in meters.

Fig. 3. Climatically suitable area under the baseline climate conditions for the
11 bamboo groups obtained from Maxent models derived using species loca-
tions from the Fourth National Giant Panda Survey (4S) and from the remotely
sensed species locations (RS). The shading indicates the probability of species
presence, and the boundaries delineate the climatically suitable area for each
bamboo group based on the equal test sensitivity and specificity threshold.
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Maxent were included in an analysis of variance (ANOVA) to evaluate
the relative magnitudes of the uncertainty sources. Results indicate that
the magnitudes of the three main effect terms differ markedly by
bamboo group (Fig. 5). Ignoring groups 9, 10, and 11 for which the RS
locations need to be interpreted cautiously, the uncertainty introduced
by the distribution of the occurrence locations is particularly large for
group 1, considerably exceeding the values of the other two uncertainty
terms. For groups 2, 3, and 5, the uncertainty introduced by the oc-
currence locations is smaller than that of the choice of GCM but larger,

or similar in magnitude, to the choice of conversion threshold. On the
other hand, the main effect of the source of the occurrence data is small
for groups 4, 6, 7, and 8. For most of the bamboo groups, the interac-
tions between presence data source, choice of GCM, and conversion
threshold are substantial.

4. Discussion

4.1. Implications for planning and decision making

Peterson et al. (2018) recently cautioned that uncertainty in the
outputs of SDMs “may bias and limit confidence” (p. 66) in projections
of the impact of climate change on species distributional potential and
distributional shifts. If the outputs of SDMs are to be useful for con-
servation planning and research, this uncertainty must be commu-
nicated to stakeholders. Stakeholders require this information to make
decisions that are robust to a range of future conditions and also to
prevent against maladaptation which could lead to more, rather than
less, risk and vulnerability to climate change (Perdinan and Winkler,
2014; Winkler, 2016). Deficiencies in the species presence information
used to calibrate a SDM, including sampling bias, location error, and
species misidentification, are a fundamental source of uncertainty. We
investigated whether remote sensing can be useful in estimating this
uncertainty. Based on the analyses presented above, we argue that the
answer is a definite “yes”, although with some caveats but also with
avenues for modification and improvement, along with customization
for different species, data availability, and geographic regions. We
emphasize that our intent was not to replace conventional species oc-
currence data from field surveys and/or museums/herbaria with re-
motely sensed estimates of species presence, but rather to develop
SDMs using both sources of species presence information and evaluate
uncertainty from the ensemble of model outputs.

Our example analyses for bamboo species in southwest China de-
monstrate that the uncertainty introduced by species presence in-
formation may be large. In general, the SDMs derived using the RS
estimates of species presence predicted considerably larger present-day
climatically suitable areas for the phenologically-derived bamboo
groupings compared to the models derived using the field survey ob-
servations. This expansion occurred primarily in the portions of the
study area without field observations, suggesting that the field survey
observations captured only a portion of the fundamental niche of the
bamboo species. When the SDMs were applied to future climate con-
ditions obtained from global climate models, projections of future cli-
matically suitable area differed considerably depending on the source
of species occurrence data, and for some of the bamboo groups the
variability in the model outputs attributed to the species presence data
was as large as that attributed to the choice of future climate scenario or

Fig. 4. Proportional change in climatically-suitable
area for the 11 bamboo groups based on the species
locations from the Fourth National Giant Panda
Survey (4S) and the remote sensing estimated lo-
cations (RS). The projected change is expressed as
the ratio of the difference in climatically-suitable
area between the future (2061–2080) and present-
day climate conditions to the climatically suitable
area for the present-day conditions (the values can
be multiplied by 100 to obtain a percentage
change). Each box and whisker plot includes pro-
jections obtained from 17 global climate models
(GCMs). Probabilities of species presence were
converted to binary climatically suitable areas
using the equal test sensitivity and specificity
threshold.

Fig. 5. Proportion of the sum of squares for each main effect and interaction
term to the total sum of squares obtained from a three-way analysis of variance
(ANOVA) of the projected percentage change in climatically suitable area be-
tween the future and baseline periods for each of the 11 bamboo groups. The
analysis includes two sources of presence locations (Fourth National Giant
Panda Survey and remote sensing estimated locations), 17 global climate
models (GCMs), and 11 conversion thresholds. The main effect and interaction
terms are shown in different colors and hatchings (see legend at the top of the
figure), and the length of each color segment represents the variance con-
tributed by that term to the total variance of the projections of future climati-
cally suitable area.
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the conversion threshold used to estimate binary climatically suitable
areas. Thus, the uncertainty contributed by the species occurrence data
used to calibrate a SDM cannot be ignored, as has been the case in most
previous studies.

The ensemble approach advocated for here is only appropriate if the
remotely sensed estimates of species presence are plausible. Bamboo
species are challenging to detect using remote sensing given that they
occur in the understory and are covered by a tree overstory, but even
for these species our findings suggest that widely-available remote
sensing datasets along with a popular modeling tool (i.e., Maxent) can
provide a plausible dataset of species presence for uncertainty estima-
tion. The high AUC scores, obtained in a cross-validation procedure
over five replications, indicate that bamboo species presence was well
estimated using remote sensing. In addition, comparisons with atlases
and other secondary sources provide confidence in the remotely sensed
presence estimates outside of the areas sampled during the field survey.
For instance, the northward extension of the RS presence locations
compared to the 4S locations for groups 4 and 5 is supported by maps
published in the Atlas of Woody Plants in China (Fang et al., 2011) of the
individual species included in these two groups. The RS locations in the
unsurveyed Dabashan Mountains for groups 6, 7, and 8 are supported
by several secondary sources (Tang and Wei, 1983; Wu et al., 1994;
Wang et al., 2005; Fang et al., 2011). Similarly, secondary sources
(Ohrnberger, 1999; Royal Botanical Gardens, 2017) support the
northeastward extension of the RS-estimated presence locations com-
pared to the 4S locations for groups 9 and 10. Unfortunately, we were
unable to identify secondary sources to support the southward exten-
sion of the RS-estimated presence locations into the Daxiangling,
Xioxingling, and Liangshan Mountains for groups 9 and 10, or the
northward extension of the RS estimates for group 11. Although we
cannot rule out that these species occur in these areas but were not
sampled during the field survey, especially given the large model AUC
values, an alternative explanation for these differences is that the RS
estimation may conflate bamboo species within a group with other
species with similar phenological characteristics. For instance, the
species within group 11 occur at high elevations (> 3000m)
(Ohrnberger, 1999) and may be conflated with species with similar
phenologies located at lower elevations but higher latitudes. These
differences between the 4S and RS locations highlight that evaluating
the plausibility of both the conventional and remotely sensed species
presence information is an essential initial step when using an ensemble
approach to estimate the uncertainty contributed by the species oc-
currence data to future projections of climatic suitability.

In addition to outlining an approach for assessing uncertainty, this
research, along with the companion paper by Tang et al. (2018), also
provides additional insights on potential future changes in bamboo
distribution in southwest China. The impact of climate change on the
distribution of the bamboo food staples of the giant panda within the
panda’s current geographic range has been the focus of a number of
previous studies (e.g., Tuanmu et al., 2013; Li et al., 2015a,b; Zhang
et al., 2018). However, when calibrating species distribution models,
these studies employed a single source of species presence data and a
single source of present-day climate data, thus ignoring the contribu-
tions of these uncertainty sources to the projected future climatic
suitability and bamboo distributions. Direct comparison of the results of
this study and Tang et al. (2018) with those of previous studies is dif-
ficult because the number and type of bamboo species and climate
models included in the analysis vary considerably between the different
studies. However, Fig. 5 from this analysis and Fig. 8 from Tang et al.
(2018) provide a reference that can be used to infer for which bamboo
species the projected future climatic suitability is more likely to have
been impacted by the choice of data used in the SDM calibration. This
allows stakeholders to place more confidence in the results for those
species for which the uncertainty introduced by the calibration datasets
is small and less confidence for species for which the uncertainty is
large, increasing the utility of the larger body of research for

conservation planning and decision making. In addition, our analysis
extends beyond previous research to also consider future climatic
suitability and bamboo distribution in areas outside, but nearby, the
current panda range that may be options for panda reintroduction.

4.2. Limitations and opportunities

Just as conventional species presence data have limitations, so do
the remotely-sensed estimates, as mapping species distributions using
remote sensing is imperfect (Bradley, 2014). Such limitations need to be
fully acknowledged. One limitation is the resolution of the remotely
sensed data, with users often trading a finer temporal resolution for a
finer spatial resolution. Moreover, remotely sensed data with finer
spatial resolutions, such as those obtained from aircraft or unmanned
aerial vehicles, are usually available for only limited spatial extents
and/or at higher costs (Andrew et al., 2014). To demonstrate the po-
tential wide applicability of the proposed approach, we constrained our
analyses to a freely available global dataset, although the choice of
remotely sensed data, including those obtained from the fusion of data
acquired by different platforms (e.g., Viña et al., 2016), should be
customized to the species under consideration and to the resources
available for each particular study. In addition, numerous authors have
noted the difficulty distinguishing among species with similar char-
acteristics (e.g., Dronova et al., 2017). This is a concern for our analysis
as well, as many bamboo species have overlapping phenologies and
habitat requirements. We attempted to address this concern by
grouping bamboo species with similar phenological characteristics and
estimating occurrence by group rather than by individual species.
However, a confounding factor is that a number of bamboo species have
large latitudinal ranges and hence their phenological characteristics
may vary quite substantially across space, making occurrence estima-
tions more challenging. Another challenging factor related to the spatial
extent of understory species is latitudinal and elevation variability in
the associated overstory canopy (Du et al., 2011).

The limitations of an ensemble approach for estimating uncertainty
also need to be acknowledged. In particular, ensemble members are
rarely independent of each other. For example, the GCMs used to assess
the uncertainty introduced by the source of future climate projections
share many of the same computational procedures and parametriza-
tions (Pennell and Reichler, 2011). Similarly, the 4S observations were
used in the estimation of the RS locations, and thus the climatically
suitable area obtained from the RS estimated occurrences is not fully
independent of that obtained from the 4S observed locations. In addi-
tion, RS locations were estimated from differences in phenological
characteristics, but phenology, in and of itself, is influenced by climate.
Furthermore, the uncertainty estimates obtained from ensembles must
be carefully interpreted, keeping in mind that the full uncertainty is
unknown. Rather, ensembles provide an estimate of the ‘calibrated
range of uncertainty’ (Jones, 2000) or the ‘lower bound on the max-
imum range of uncertainty’ (Stainforth et al., 2007).

In spite of these limitations, the combined use of the 4S and RS
presence locations provided insights on the uncertainty of future spe-
cies distributions contributed by the species occurrence data. Moreover,
the RS occurrence locations have a number of useful features that can
be capitalized upon. For instance, we limited the number of RS loca-
tions to that of the 4S locations for comparison purposes, but a less
stringent threshold would provide a broader spatial coverage and a
larger sample size for SDM calibration. Also, our ensemble approach
does not need to be limited to only conventional species occurrences
and occurrences estimated from a single RS dataset, but can be ex-
panded to include estimates obtained from multiple remote sensing
platforms/sensors. For example, previous researchers have used 30m
Landsat Thermatic Mapper data (Linderman et al., 2004) and 2m
WorldView-2 data (Tang et al., 2016) to estimate bamboo occurrence in
the Qionglai Mountains. Furthermore, as remotely sensed observations
useful for species distribution modeling will continue to be available
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through time and from different platforms and sensor systems (He et al.,
2015), they will allow re-assessing model uncertainty through ensemble
approaches developed using newly obtained field data acquired con-
currently with the remotely sensed data.

5. Conclusions

We proposed that an ensemble of projections of future climatically
suitable area obtained from SDMs calibrated using conventional species
occurrence locations and from SDMs calibrated using remotely sensed
estimates of species presence can provide an estimate of the contribu-
tion of the species occurrence data to the uncertainty of future pro-
jections. Using bamboo species in southwest China as an example, we
obtained valuable insights on the uncertainty introduced by the lim-
itations of species occurrence data, which can help inform planning and
decision making. Our analysis is, to the best of our knowledge, the first
study to employ an ensemble approach to estimate the relative mag-
nitude of the uncertainty associated with the species occurrence data
used to calibrate SDMs. We found that, depending on the bamboo
group, this uncertainty can approach, and sometimes even exceed, the
uncertainty introduced by the choice of future climate scenarios and
conversion thresholds used to convert the modeled probabilities into
binary climatically suitable areas. Furthermore, the uncertainty related
to occurrence datasets interacts with other sources of uncertainty, thus
complicating the interpretation of projected future changes. Integration
of the findings of this study with those from a companion study (Tang
et al., 2018), which investigated the uncertainty introduced by the
choice of baseline climate information, emphasizes that users need to
pay as much attention to the input datasets used to calibrate the SDM as
to the uncertainty of the future climate scenarios. While it is now de
rigueur to include multiple sources of future climate projections, most
studies calibrate SDMs using a single source of species occurrences and
baseline climate data. These two studies, in combination, illustrate that
ignoring the uncertainty in both occurrence data and explanatory
variables may compromise the interpretation of SDM outputs and limit
their usefulness for conservation planning. Moreover, the usefulness of
remote sensing in assessing both of these uncertainties was demon-
strated.
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