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Abstract 1 

Assessing species composition and its changes through time across broad 2 

geographic regions are time consuming and difficult endeavors.  The synoptic view 3 

provided by imaging remote sensors offers an alternative.  But while many studies have 4 

developed procedures for assessing biodiversity using multi- and hyper-spectral imagery, 5 

they may only provide snapshots at particular months/seasons due to the seasonal 6 

variability of spectral characteristics induced by vegetated land surface phenologies.  7 

Thus, procedures for remotely assessing biodiversity patterns may not fully represent the 8 

biodiversity on the ground if vegetated land surface phenologies are not considered.  9 

Using Mantel tests, ordinarily least square regression models and spatial autoregressive 10 

models, we assessed the relationship between floristic diversity and vegetated land 11 

surface phenologies, as captured by time series of vegetation indices derived from data 12 

acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS). The 13 

relationship was calibrated with data from temperate montane forests of the Qinling 14 

Mountains region, Shaanxi Province, China. Our results show that floristically similar 15 

areas also exhibit a comparable similarity in phenological characteristics.  However, 16 

phenological similarity obtained using the Visible Atmospherically Resistant Index 17 

(VARI), a spectral vegetation index found to be not only sensitive to changes in 18 

chlorophyll content but also linearly related with the relative content of foliar 19 

anthocyanins, exhibited the strongest relationship with floristic similarity.  Therefore, 20 

analysis of the temporal dynamics of pigments through the use of satellite-derived 21 

metrics, such as VARI, may be used for evaluating the spatial patterns and temporal 22 

dynamics of species composition across broad geographic regions. 23 
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1. Introduction 24 

Information on the spatial patterns of biodiversity across broad geographic 25 

regions and their changes through time is important for many applications in ecology, 26 

biogeography and conservation biology, among many others (Ferrier 2002; Liu and 27 

Ashton 1999).  However, acquisition of such information requires a synoptic and large 28 

spatial extent view that is seldom provided by the limited spatial extents of traditional and 29 

labor-intensive field surveys.  The direct use of synoptic data acquired by remote sensors 30 

constitutes an alternative approach for analyzing the spatial patterns of biodiversity from 31 

local to regional and continental scales (Turner et al. 2003).   32 

Many attempts to assess biodiversity patterns through remote sensing techniques 33 

have relied on the relationships between biodiversity and land cover types (Laurent et al. 34 

2005), the latter obtained from numerical classifications of remotely sensed data 35 

(Nagendra 2001).  But information acquired through such relationships is insufficient for 36 

assessing biodiversity patterns within a single land cover type, which by definition is 37 

assumed to be spatially homogeneous.  Alternatively, recent studies have discerned pixel-38 

based relationships between patterns of biodiversity across broad geographic regions and 39 

multispectral imagery (Rocchini 2007; Rocchini et al. 2010; Thessler et al. 2005; 40 

Tuomisto et al. 2003a). Others have amassed spectral libraries of several plant species to 41 

develop relationships based on hyper-spectral imagery (Asner and Martin 2008, 2009; 42 

Carlson et al. 2007).  Although successful, many of these methods are constrained to 43 

particular geographic locations, individual species and/or species assemblages and have 44 

not been widely adopted due to the low availability and high cost of the required 45 

remotely sensed data, particularly those acquired by hyper-spectral imaging sensors.  46 
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Further, and perhaps more important, these methods do not necessarily account for the 47 

spectral variability that occurs in response to vegetation phenology.   48 

In contrast, multispectral synoptic data acquired by different operational satellite 49 

sensor systems, such as the Advanced Very High Resolution Radiometer (AVHRR) or 50 

the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the National 51 

Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites, are freely 52 

available and provide nearly global coverage.  While these data are being acquired in 53 

broad spectral bands and at coarse spatial resolutions (ca. 250x250 m/pixel or larger), 54 

their usefulness stems from their high temporal resolution (e.g., daily acquisition).  This 55 

makes them suitable for assessing land surface phenology and its changes through time in 56 

response to natural (de Beurs and Henebry 2008a; Viña and Henebry 2005) and human 57 

processes (de Beurs and Henebry 2004, 2008b).   From the perspective of biodiversity 58 

assessment, land surface phenology (as detected by remote sensors collecting data at a 59 

high frequency; e.g., MODIS) has been used to map the distribution of plant functional 60 

types (Sun et al. 2008), to evaluate the spatial distribution of understory species (Tuanmu 61 

et al. 2010), to assess the probability of occurrence of invasive species (Morisette et al. 62 

2006), to analyze wildlife habitat suitability (Tuanmu et al. 2011; Viña et al. 2008; Viña 63 

et al. 2010), and to evaluate species richness (Fairbanks and McGwire 2004) and species 64 

turnover across space (He et al. 2009).   However, in all these cases vegetation phenology 65 

has been characterized using remotely sensed metrics such as the normalized difference 66 

vegetation index (NDVI), the enhanced vegetation index (EVI) or the wide dynamic 67 

range vegetation index (WDRVI), which are related more to the variability of 68 
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photosynthetic biomass, thus chlorophyll content, and less to the variability in the content 69 

of other pigments.   70 

Foliar pigment content and composition have been shown to be related to species 71 

diversity (Asner and Martin 2008, 2009; Carlson et al. 2007), but we hypothesize that 72 

because plant species assemblages have distinctive phenologies associated with changes 73 

in pigment content and composition, a close relationship may exist between floristic 74 

similarity and the similarity in the seasonality of pigment expression.  Thus, the 75 

seasonality of pigment expression may constitute a suitable surrogate for evaluating the 76 

spatio-temporal dynamics of floristic diversity patterns across broad geographic regions. 77 

Here we show the results of a study performed to evaluate this proposition.  78 

 79 

2. Methods 80 

2.1. Study region 81 

The Qinling Mountains lie in an east-west direction in the southern portion of 82 

Shaanxi Province, China (Fig. 1).  Because it forms the divide between two major 83 

watersheds drained by the Yellow and Yangtze rivers, this mountain region forms a 84 

natural boundary between northern and southern China and also constitutes a climatic 85 

transition, from cold and dry in its northern slopes to warm and wet in its southern slopes.  86 

Due to this north-south climatic transition and its gradients in elevation (Fig. 1), the 87 

Qinling Mountains harbor high biodiversity, supporting more than 3,000 plant species, 88 

over 300 bird species, and more than 85 mammal species, including the endangered giant 89 

panda (Pan et al. 1988).  The distribution of vegetation in the Qinling Mountains follows 90 

an elevation gradient, with coniferous forests located mostly above 2500m, mixed 91 
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broadleaf/coniferous forests located mostly between 2000 and 2500m and broadleaf 92 

deciduous forests located mostly between 1400 and 2000m (Yue et al. 1999).  Areas 93 

below 1400m are dominated by agricultural activities, which historically remained below 94 

1400m since climatic and edaphic conditions above this elevation restrict year-round 95 

cultivation (Loucks et al. 2003).  But human disturbance above 1400m has increased 96 

during recent decades, particularly in the form of logging, expansion of human 97 

settlements, and infrastructure development (e.g., roads), which have fragmented and 98 

degraded the forests of the region (Loucks et al. 2003).  In response, 15 nature reserves 99 

have been established primarily for the conservation of giant pandas and their habitat (Fig. 100 

1).  These reserves also promote the conservation of other taxa, since the giant panda 101 

habitat comprises different types of forest ecosystems (Reid and Hu 1991).  102 

 103 

2.2. Field Data 104 

Between June and August of 2007 and 2008 a total of 104 circular plots (10 m 105 

radius) were randomly established in broadleaf deciduous, coniferous and mixed forests 106 

across the study region, within an elevation range of 1000 to 3000 m (Fig. 1).  Plots were 107 

located at least 1 km inside the forests to minimize edge effects.  Species composition of 108 

all tree stems (with a diameter at breast height, dbh ≥ 5 cm) within each plot was 109 

recorded, together with forest structural characteristics (i.e., stem density, basal area and 110 

canopy closure) and topographic variables (i.e., elevation, slope and aspect). The center 111 

of each plot was geo-referenced using Global Positioning System (GPS) receivers, which 112 

were also used to collect elevation data.  Stem density was established by counting all the 113 

stems (dbh > 5 cm) within each plot.  Basal area was determined from the measured dbh 114 
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of all the trees counted in the plot.  Per-plot canopy closure was determined as the 115 

average canopy closure estimated in three to five images of the canopy taken with a 116 

digital camera at breast height facing upward.  Slope and aspect (i.e., slope azimuth) were 117 

determined using a clinometer and a compass.  The aspect was later converted into soil 118 

moisture classes, ranging from 1 (dry) to 20 (wet). These discrete soil moisture classes 119 

derive from the observation that north-facing slopes in mountainous regions of the 120 

temperate zone in the northern hemisphere tend to be more moist than south-facing 121 

slopes, as they tend to receive less direct solar radiation (Parker 1982). As understory 122 

bamboo is a conspicuous and dominant characteristic of the forests in the Qinling 123 

Mountains, we also recorded bamboo species composition in each plot, when present. 124 

 125 

2.3. Remotely Sensed Data 126 

A time-series of 184 images acquired between January 2004 and December 2007 127 

by the MODIS system onboard NASA’s Terra satellite (MOD09A1 – Collection 5) was 128 

used to analyze land surface phenology in the pixels containing the field plots.  This 129 

image dataset is made up of eight-day composite surface reflectance values collected in 130 

seven spectral bands, and corrected for the effects of atmospheric gases, aerosols and thin 131 

cirrus clouds (Vermote et al. 1997).  Land surface phenology was assessed through the 132 

temporal analysis of four different vegetation indices calculated from the MODIS surface 133 

reflectance time series: the Normalized Difference Vegetation Index (NDVI) (Rouse et al. 134 

1973), the Wide Dynamic Range Vegetation Index (WDRVI) (Gitelson 2004), the 135 

Enhanced Vegetation Index (EVI) (Huete et al. 1997) and the Visible Atmospherically 136 

Resistant Index (VARI) (Gitelson et al. 2002) (Table 1).   137 
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The NDVI has been widely used for the analysis of land surface phenology (de 138 

Beurs and Henebry 2004) and its temporal variability has been associated with 139 

biodiversity patterns (He et al. 2009).  However, because NDVI approaches an 140 

asymptotic saturation under conditions of moderate to high biomass, other vegetation 141 

indices, such as the EVI and the WDRVI, were developed and their use has increased 142 

over the last few years.  The EVI is a feedback-based soil and atmospherically resistant 143 

index specifically designed for the MODIS system that has been successfully used to 144 

evaluate phenological patterns in high biomass systems such as tropical humid forests 145 

(Xiao et al. 2006).  The WDRVI is a non-linear transformation of the NDVI that has been 146 

shown to exhibit a linear relationship with the fraction of photosynthetically active 147 

radiation absorbed by vegetation (Viña and Gitelson 2005).  Phenological asynchronies 148 

detected using this index have been successfully used to discriminate individual 149 

understory bamboo species (Tuanmu et al. 2010) and to assess wildlife habitat suitability 150 

at local (Viña et al. 2008) and regional (Viña et al. 2010) scales.  Because these three 151 

indices are based on the contrast between the near-infrared and red spectral regions 152 

(Table 1), they mainly provide information on spatio-temporal changes in the amount of 153 

photosynthetic biomass.  Thus, they are responsive to changes in chlorophyll content but 154 

may neglect phenological dynamics associated with other pigments and processes. In 155 

response, alternative vegetation indices based on different spectral bands have been 156 

developed.  Such is the case of the VARI (Table 1), which has been shown to be sensitive 157 

not only to changes in chlorophyll content (Gitelson et al. 2002; Perry and Roberts 2008), 158 

but also to changes in the relative content of other foliar pigments, particularly 159 

anthocyanins (Viña and Gitelson 2011).  Therefore, the VARI is useful for detecting 160 
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changes associated with phenophases that go beyond the seasonal variability of 161 

photosynthetic biomass (e.g., flowering, fruiting, senescence) (Viña et al. 2004).  This 162 

index has also been used to detect live fuel moisture (Roberts et al. 2006), canopy 163 

moisture content (Stow et al. 2005) and water stress (Perry and Roberts 2008), using 164 

various remote sensors.   165 

To reduce the effects of a temporally and spatially extensive cloud cover observed 166 

over the study region, we smoothed the time series of each vegetation index by means of 167 

an adaptive filter (Savitzky and Golay 1964).   In addition, to reduce the inter-annual 168 

variability caused by short-term climate fluctuations, we obtained a final time series of 46 169 

eight-day composites for each vegetation index (Table 1), using the maximum value 170 

composite approach (Holben 1986) applied across years (i.e., 2004-2007). 171 

 172 

2.4. Numerical Analyses  173 

To evaluate floristic similarity among field plots, inter-plot similarity index 174 

matrices were calculated using both presence-absence data, as well as abundance (i.e., 175 

stem density) data.  In the case of presence-absence we used the Jaccard index (Jaccard 176 

1908), and in the case of abundance we used the Morisita index (Morisita 1959).  The 177 

Jaccard index was calculated for the tree species, as well as for the tree and bamboo 178 

species combined, while the Morisita index was calculated for the tree species only, since 179 

stem densities of tree and bamboo species are not comparable.  To evaluate the 180 

phenological similarity among the pixels where the field plots were located, we 181 

calculated inter-pixel Euclidean distance matrices (converted to similarity by changing 182 

their signs) for each of the four vegetation index image time series (i.e., NDVI, EVI, 183 
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WDRVI and VARI). The correlation between floristic and phenological similarity 184 

matrices was calculated using Mantel tests, to adjust for the increased number of cases 185 

deriving from the use of distances (Legendre 2000).  The significance of the Mantel tests 186 

was determined through a Monte Carlo permutation analysis in which the rows and 187 

columns in one of the similarity matrices were randomly permuted 999 times.  The 188 

significance measure corresponds to the number of times the Mantel correlation 189 

coefficient of the permuted matrices exceeded the original (i.e., non-permuted) 190 

coefficient (Legendre 2000).   To control for the potential effects of geographic distance 191 

(e.g., spatial autocorrelation) (Borcard et al. 1992), partial Mantel tests (Legendre 2000) 192 

were also calculated using an inter-plot geographic distance matrix as a co-variable.   193 

Linear models were developed to predict floristic similarity based on phenological 194 

similarity.  For this, ordination procedures were used to locate the field plots in multi-195 

dimensional coordinate systems based on their floristic and phenological similarities.  For 196 

floristic similarity, a non-metric multidimensional scaling (NMDS) procedure was 197 

employed, which maximizes the rank-order correlation between the similarity measures 198 

and the relative distances within the ordination space (Legendre and Legendre 1998).   199 

For phenological similarity, a principal components analysis (PCA) was applied to the 200 

vegetation index image time series.  Multiple linear regression models were then 201 

developed using the floristic ordination axes (i.e., derived from the NMDS) as dependent 202 

variables, and the phenological ordination axes (i.e., derived from the PCA) as 203 

independent predictive variables.  Model residuals were used to evaluate spatial 204 

autocorrelation through the calculation of Moran’s I correlograms (Legendre and 205 

Legendre 1998).  If spatial autocorrelation of the residuals was significant, spatial 206 
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autoregressive models (Besag 1974; Lichstein et al. 2002) were developed to estimate 207 

spatially unbiased regression coefficients.  Lag, error and mixed autoregressive models 208 

were computed (Lichstein et al. 2002) and the most appropriate for our datasets was 209 

selected. 210 

To invert and validate the models, the entire field dataset (i.e., 104 field plots) was 211 

divided into k mutually exclusive groups following a k-fold cross-validation partitioning 212 

design (Kohavi 1995).  In our case the data were randomly split into k = 3 sets, two of 213 

which were used iteratively for model calibration (ca. 70 field plots) and the remaining 214 

(ca. 34 field plots) for validation.  The advantages of this cross-validation method are that: 215 

(1) it reduces the dependence on a single random partition into calibration and validation 216 

data sets; and (2) all observations are used for both calibration and validation, with each 217 

observation used for validation exactly one time.  Predictions of the floristic ordination 218 

axes (i.e., NMDS axes) values for every field plot were obtained using their 219 

corresponding phenological ordination axes values (i.e., from the PCA) and the 220 

coefficients of the linear regressions described above.  An Euclidean distance matrix 221 

among all field plots was then calculated based on the predicted NMDS axes values.  222 

This matrix was correlated (using a Mantel test with 999 random permutations) with the 223 

inter-plot floristic similarity matrix obtained using the Jaccard index for the tree and 224 

bamboo species combined, described above.  Through this cross-validation procedure we 225 

inverted the model to assess the operational accuracy of the prediction of floristic 226 

similarity using phenological similarity. 227 

 228 
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3. Results 229 

3.1. Spatio-temporal characteristics of land surface phenology 230 

The average temporal variability of the forests studied exhibited the typical 231 

seasonal pattern of the temperate region (i.e., high and low vegetation index values 232 

during seasons with high and low sun angles, respectively).  This pattern was depicted by 233 

the four different vegetation indices evaluated (Fig. 2A).  However, the indices exhibited 234 

different temporal dynamics in the inter-pixel variance among the MODIS pixels where 235 

the field plots were located (Fig. 1).  For instance, the NDVI exhibited the highest inter-236 

pixel variance during winter and the lowest during summer, while the EVI exhibited an 237 

opposite pattern, with the highest variance during summer and the lowest during winter 238 

(Fig. 2B).  The WDRVI exhibited the highest inter-pixel variance during winter and 239 

spring, while the VARI exhibited the highest variance during spring and summer (Fig. 240 

2B).  These distinctive patterns in the timing of highest and lowest inter-pixel variance 241 

show the particular sensitivities of each vegetation index to differences among the forests 242 

of the study region throughout the year.   243 

The NDVI, the EVI and the WDRVI exhibited a significant negative correlation 244 

with elevation during late spring and summer (Fig. 2C).  In contrast, the VARI 245 

experienced a significant negative correlation during spring and autumn (Fig. 2C).  246 

Therefore, while the NDVI, the EVI and the WDRVI exhibited unimodal temporal 247 

patterns in their relationship with elevation, the VARI exhibited a bi-modal pattern (Fig. 248 

2C).   249 

 250 

 251 
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3.2. Floristic and structural characteristics 252 

As shown by the relationship between phenological patterns and elevation (Fig. 253 

2C), the vegetation of the study region is highly influenced by elevation.  However, with 254 

the exception of canopy closure (Fig. 3A), no statistically significant differences were 255 

found in average forest structural characteristics evaluated along this gradient (Figs. 3B-256 

D).  Nevertheless, while at elevations between 1000 and 2500m the species richness did 257 

not exhibit a significant trend with elevation, above 2500m the number of species per plot 258 

exhibited a significant decline (Fig. 3D).  Thus, a threshold of significant reduction in 259 

species richness was conspicuous at elevations of ca. 2500 m.   260 

With respect to species composition, a total of 115 tree species were sampled in 261 

the 104 field plots surveyed (see on-line Supplementary Data). The species Quercus 262 

aliena, Betula albo-sinensis, Prunus scopulorum, Toxicodendron vernicifluum, and Pinus 263 

armandii were the most widespread (i.e., each occurring in more than 20% of the plots).  264 

Understory bamboo was a particularly conspicuous feature of the forests in the study 265 

region, as it was found in ca. 82% of the field plots.  However, most of the bamboo 266 

sampled belonged to three species: Fargesia qinlingensis (present in ca. 38% of the plots), 267 

Bashania fargesii (present in ca. 37% of the plots) and F. dracocephala (present in ca. 268 

11% of the plots).  These three species were among the most widely distributed in the 269 

study region. 270 

 271 

3.3. Relationship between floristic and phenological similarities 272 

A strong and significant relationship was found between the similarity in floristic 273 

composition and the similarity in phenology.  All Mantel tests performed to assess this 274 
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relationship showed significant (p < 0.001) correlations (Table 2).  However, Mantel 275 

correlations were highest using the phenological similarity matrix based on the VARI 276 

(Table 2).  In addition, Mantel correlations were higher when using information on tree 277 

and bamboo species combined, than when only using information on tree species (Table 278 

2).  In the case of tree species information alone (i.e., excluding bamboo), Mantel 279 

correlations were higher when using presence-absence data (i.e., using the Jaccard index), 280 

than when using abundance data (i.e., using the Morisita index; Table 2).  Partial Mantel 281 

tests, using geographic distance as a co-variable to account for potential spatial 282 

autocorrelation among field plots, exhibited higher Mantel correlations in all cases, with 283 

the exception of those using the phenological similarity matrix based on the NDVI image 284 

time series (Table 2).  285 

 286 

3.4. Prediction of floristic similarity using phenological similarity 287 

A Non-Metric Multidimensional Scaling (NMDS) ordination procedure was 288 

applied to the inter-plot floristic similarity matrix obtained using presence-absence data 289 

of tree and bamboo species combined (i.e., using the Jaccard index), since this matrix 290 

exhibited the highest Mantel correlation coefficients with phenological similarity 291 

matrices (Table 2).  The NMDS procedure generated two orthogonal axes that represent a 292 

two-dimensional floristic space.  Patterns in the distribution of topographic characteristics 293 

(i.e., elevation, slope and aspect) among field plots, together with forest types (i.e., 294 

predominantly coniferous, predominantly deciduous broadleaf or mixed coniferous-295 

deciduous) are conspicuous in this floristic space (Fig. 4).  For instance, the elevational 296 

gradient follows a right-left pattern (Fig. 4A), while aspect, expressed as discrete relative 297 
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soil moisture classes (Parker 1982), follows an upper-right lower-left pattern in the 298 

floristic space (Fig. 4B).  Although not as clear, slope tends to show a lower-left, upper-299 

right pattern (Fig. 4C).  Finally, while mixed forests exhibited no clear pattern, 300 

predominantly coniferous forests tended to be located towards the upper-left, and 301 

predominantly deciduous broadleaf forests tended to be located toward the lower part of 302 

the floristic space (Fig. 4D).  However, elevation exhibited the highest effect since the 303 

first NMDS axis exhibited a statistically significant (p < 0.05) negative linear relation 304 

with elevation (Fig. 5A).   305 

A principal components analysis was applied on the image time series of the 306 

VARI, as the similarity matrix of this index exhibited the highest Mantel correlation 307 

coefficients with the floristic similarity matrices (Table 2).  We retained the first six 308 

principal components, which together explained ca. 99% of the image time series 309 

variance.  Similar to the NMDS, the first principal component exhibited a statistically 310 

significant (p < 0.05) negative linear relationship with elevation (Fig. 5B).  In addition, 311 

principal component loadings show different sensitivities of the VARI index along the 312 

year.  For instance, the first principal component exhibited high positive loadings along 313 

the year, but particularly during spring and autumn (Fig. 6).  Thus, loadings of this 314 

component exhibited a similar bi-modal temporal pattern (albeit with a different sign) as 315 

the bi-modal temporal pattern observed with elevation (Fig. 2C).  This is related to the 316 

fact that the first principal component of the VARI time series was significantly and 317 

negatively related to elevation (Fig. 5B).  The second component exhibited the highest 318 

positive and negative loadings during summer and winter, respectively, while the third 319 

component was positively related with autumn VARI values but negatively related with 320 
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spring values (Fig. 6). This reflects the sensitivity of VARI to changes in the forests of 321 

the region during these seasons.   322 

Significant linear models to predict floristic similarity (i.e., NMDS axes) using 323 

phenological similarity (i.e., principal component axes) were obtained (Table 3).  Thus, 324 

phenological ordination axes obtained using satellite imagery with a high temporal 325 

resolution may be used as significant predictors of floristic ordination axes obtained using 326 

data from field surveys.  The regression model developed for the first floristic NMDS 327 

axis was not affected by spatial autocorrelation.  In contrast, the model developed for the 328 

second floristic NMDS axis did exhibit significant spatial autocorrelation (Table 3).  329 

Therefore, we developed an ordinary least square regression model in the first case, and a 330 

spatial autoregressive model in the second case.  As the lag coefficient in the spatial 331 

autoregressive model was significant (p < 0.001; Table 3) while the spatial correlation 332 

coefficient in the error model was not, the spatial lag model was selected as the most 333 

appropriate spatial autoregressive model for our data.  In these linear models, the first, 334 

third, fourth and sixth principal components were significant predictors of the first 335 

NMDS axis, while the second and fourth components constituted significant predictors of 336 

the second NMDS axis (Table 3). 337 

Results of the model inversion using the k-fold cross-validation partitioning 338 

design (k=3) showed a statistically significant (p<0.001) Mantel correlation of 0.37.  This 339 

Mantel correlation was calculated using the Euclidean distance matrix derived from the 340 

predicted NMDS axes (using PCA in VARI time series) and the observed Jaccard Index 341 

matrix derived from presence/absence of tree and bamboo species observed in the field.  342 
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Therefore, inter-pixel phenological similarity obtained using the VARI image time series 343 

can be reasonably used for assessing floristic similarity. 344 

 345 

4. Discussion 346 

The results of this study show that there is a significant relationship between 347 

floristic similarity and phenological similarity obtained using all four vegetation indices 348 

evaluated.  These results agree with a previous study showing a significant relationship 349 

between MODIS-NDVI time series and species composition (He et al. 2009).   However, 350 

in this study it was the phenological similarity based on the VARI that exhibited the 351 

highest correlation.  Several studies have shown that VARI is sensitive to changes in the 352 

photosynthetic biomass (thus chlorophyll content) not only at foliar (Viña and Gitelson 353 

2011) but also at canopy levels using both close range (Gitelson et al. 2002) and remote 354 

(Almeida de Souza et al. 2009; Perry and Roberts 2008) sensors.  But because 355 

anthocyanins absorb radiation primarily in the green spectral range (i.e., around 540–560 356 

nm), it has been reported that vegetation indices using the green spectral region (such as 357 

VARI) are sensitive to their presence (Gitelson et al. 2006a; Gitelson et al. 2001).  358 

Furthermore, it has been reported that VARI is a suitable surrogate of the relative 359 

composition of foliar anthocyanins in at least five tree species (Viña and Gitelson 2011).   360 

Therefore, while changes in other canopy components may also be important, changes in 361 

pigment content and composition are important drivers of the seasonal variability of 362 

VARI.    363 

Previous studies have found that information on the amount and composition of 364 

foliar pigments can be used to assess floristic diversity (Asner and Martin 2008, 2009; 365 
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Carlson et al. 2007).  The results of this study suggest that information on the seasonal 366 

variability of pigment content and composition, using metrics such as VARI, may 367 

improve this assessment.  In addition, as VARI can be easily obtained using currently 368 

operational satellites, it allows evaluating floristic diversity patterns across broad 369 

geographic regions.  Nevertheless, a fundamental assumption in these analyses was that 370 

the sampled forest stands are homogeneous, at least within each of the MODIS pixels 371 

evaluated.  Thus, the species composition in each field plot was assumed to be 372 

representative of the entire MODIS pixel.  The strong and significant relationship found 373 

between floristic and phenological similarities suggests that this assumption was 374 

satisfactory.  However, floristic similarity based on presence-absence data (i.e., using the 375 

Jaccard similarity index) exhibited a stronger correlation with phenological similarity 376 

than the similarity obtained based on abundance (i.e., stem density) data (i.e., using the 377 

Morisita similarity index).  These results seem to relate to the scale mismatch between 378 

field plots and MODIS pixels, since the species present in a field plot may be 379 

representative of the entire MODIS pixel, but relative species abundance per plot may not 380 

fully represent that of the entire pixel.  In addition, higher correlations between floristic 381 

and phenological similarities were obtained using both tree and bamboo species 382 

composition, than when using tree species alone.  Thus, bamboo species, which are 383 

conspicuously dominant understory components in the forests of the region, strongly 384 

contribute to the overall spectral and phenological characteristics of the forest canopy 385 

(Tuanmu et al. 2010; Viña et al. 2008).   The use of phenological similarity to evaluate 386 

spatial patterns of floristic diversity, therefore, provides information on both overstory 387 

and understory canopy components.  This may also explain why vegetation phenology 388 
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can be successfully used for identifying the occurrence of understory bamboo species 389 

growing below the canopy of trees (Tuanmu et al. 2010).   390 

Environmental characteristics influence not only the patterns of floristic diversity 391 

and vegetation phenology but also their relationship.  For instance, the geographic 392 

distance among plots had a significant effect on the relationship between floristic and 393 

phenological similarities (e.g., partial Mantel correlations tended to be higher when using 394 

a matrix of inter-plot geographic distances as a co-variable).   This result suggests that 395 

species dispersal (which is a function of geographic distance) may constitute an important 396 

characteristic structuring the spatial patterns of tree species in the study region, as has 397 

been found in other forest ecosystems (Tuomisto et al. 2003b).   Therefore, spatial 398 

autocorrelation should be considered in models based on vegetation phenology for 399 

predicting floristic diversity patterns.  Topographic characteristics such as slope and 400 

aspect also influence  floristic diversity patterns, but elevation was the most important 401 

environmental characteristic evaluated that directly contributed to structuring not only the 402 

species composition [as shown for several other taxa and under different geographic 403 

settings (Hofer et al. 2008; Rahbek 1995)], but also vegetation phenology.  For example, 404 

the NDVI, the EVI and the WDRVI showed significant negative relationships with 405 

elevation, but mainly during spring and summer.  Since these vegetation indices have 406 

been found to be significantly related with gross primary productivity (Gitelson et al. 407 

2008; Gitelson et al. 2006b; Jahan and Gan 2009; Vourlitis et al. 2011; Xiao et al. 2004; 408 

Xiao et al. 2005), this temporal pattern in their relationship with elevation suggests that 409 

primary productivity of the forests of the study region during the growing season may 410 

decrease with elevation.  In contrast, the VARI was particularly interesting since it 411 
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showed the highest negative correlation coefficients during spring and autumn, thus 412 

exhibiting a bi-modal temporal pattern in its relationship with elevation.  This may be 413 

explained by the fact that foliar anthocyanins [whose relative contents were found to be 414 

linearly related with VARI (Viña and Gitelson 2011)] are produced not only during 415 

autumn senescence, but also in young emerging leaves (Lee et al. 1987). In the study 416 

region the leaves of trees start to emerge around early May (ca. day of the year 121-129) 417 

(Pan et al. 1988).  In fact, this time corresponded with the period of maximum VARI 418 

variance among the pixels where the field plots were located (see Fig. 2C).  Thus, the 419 

strong relationship between VARI and elevation during spring and autumn suggests that 420 

the timing of phenophases such as leaf emergence and senescence may be driven by the 421 

differences in species composition along the elevation gradient (Nautiyal et al. 2001; 422 

Negi et al. 1992; Ziello et al. 2009).   423 

 424 

5. Conclusions 425 

We have presented here a novel approach for synoptically assessing the spatio-426 

temporal patterns of floristic diversity across broad geographic regions, and successfully 427 

applied it in temperate montane forests of China.  If the hypothesis underlying this 428 

approach (i.e., a strong relationship between floristic and phenological similarities) is 429 

applicable in regions exhibiting less pronounced seasonal dynamics, it may also prove to 430 

be a valuable tool for mapping and monitoring floristic diversity patterns in other 431 

ecosystems around the globe. This has many practical implications, including its use in 432 

studies analyzing spatial congruence among communities or guilds (McKnight et al. 2007) 433 

or monitoring biodiversity dynamics under a changing environment (e.g., land use/cover 434 
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change, climate change).  The approach may also aid in the development of management 435 

actions oriented towards a more inclusive conservation of biodiversity across broad 436 

geographic regions (Ferrier 2002; Xu et al. 2006).  For example, knowledge of the spatial 437 

patterns of biodiversity can be used to analyze the proportion of the regional biodiversity 438 

protected inside nature reserves (Scott et al. 2001), and thus target further conservation 439 

actions.   440 
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Table 1. Vegetation Indices evaluated in the study. 

 

Index Formulation 
 

Reference 
 

Normalized 
Difference 

Vegetation Index Red

Red

ρρ
ρρ

+
−

=
NIR

NIRNDVI  (Rouse et al. 1973) 

Enhanced 
Vegetation Index 

BlueRedNIR

RedNIR

ρρρ
ρρ

5.761
5.2

−++
−

=EVI (Huete et al. 1997) 

Wide-Dynamic 
Range 

Vegetation 
Index* Red

Red

ρρα
ρρα

+⋅
−⋅

=
NIR

NIRWDRVI  (Gitelson 2004) 

Visible 
Atmospherically 
Resistant Index BlueRed

Red

ρρρ
ρρ
−+

−
=

Green

GreenVARI  (Gitelson et al. 
2002) 

*α = 0.2, as determined by a heuristic procedure (Henebry et al. 2004)
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Table 2. Mantel correlation coefficients of the relationship between floristic similarity 

(using the Jaccard index for presence-absence data and the Morisita index for abundance 

data) and phenological similarity (using the Euclidean distance with a changed sign) 

calculated using four vegetation index image time series.  Values in parentheses represent 

the correlation coefficients obtained from partial Mantel tests performed using a matrix of 

inter-plot geographic distances as a co-variable. All Mantel correlation coefficients were 

significant (p < 0.001) based on a Monte Carlo permutation test with 999 permutations. 

 

  
NDVI1  

(Euclidean) 
WDRVI2  

(Euclidean) 
EVI3  

(Euclidean) 
VARI4  

(Euclidean) 
     

Tree species 
(Jaccard) 

0.152 (0.148) 0.203 (0.208) 0.280 (0.288) 0.255 (0.258) 

Tree species 
(Morisita) 

0.140 (0.135) 0.177 (0.181) 0.213 (0.220) 0.235 (0.238) 

Tree & bamboo 
species (Jaccard) 

0.191 (0.187) 0.242 (0.249) 0.307 (0.317) 0.325 (0.331) 

1Normalized Difference Vegetation Index; 2Wide Dynamic Range Vegetation Index; 
3Enhanced Vegetation Index; 4Visible Atmospherically Resistant Index 
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Table 3. Coefficients of the multiple linear regression models between the Non-Metric 

Multidimensional Scaling (NMDS) axes (dependent variables) obtained from the floristic 

similarity (Jaccard index for presence-absence of tree and bamboo species) among 104 

field plots, and the first six principal components (PC) obtained from 46 eight-day 

maximum value composite image time series of the Visible Atmospherically Resistant 

Index (VARI).  Values in parentheses represent standard errors of model coefficients. 

 

NMDS Axis 1  NMDS Axis 2  Variable 
OLS (SE) SAR (SE) 

Intercept -0.0004 (0.0033) -0.0004 (0.0035) 
PC1 0.1943§ (0.0126) -0.0194 (0.0132) 
PC2 0.0454 (0.0250) -0.1403§ (0.0292) 
PC3 -0.1692† (0.0693) -0.0710 (0.0727) 
PC4 0.7582§ (0.0859) 0.2142* (0.0922) 
PC5 0.0105 (0.1708) -0.2890 (0.1792) 
PC6 0.9241† (0.2979) -0.2662 (0.3188) 

Spatial lag  N/A 0.4211§ (0.0970) 
 

R2 0.7821 0.5235 
   

OLS – Ordinary least squares model; SAR – Spatial auto-regressive model; SE – 
Standard error; *p < 0.05; †p < 0.01; §p<0.001. 
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Figure Legends 

 

Fig. 1. Topographic map of the study region (i.e., Qinling Mountains) showing the 

location and extent of nature reserves and of the 104 circular field plots (black dots) 

established during the summers of 2007 and 2008. 

 

Fig. 2. Temporal profiles of the (A) average, (B) standard deviation and (C) Pearson’s 

correlation coefficient with elevation, of the four different vegetation indices evaluated 

(see Table 1), obtained from the pixels where the field plots were located.    

 

Fig. 3. Average structural characteristics (A: canopy closure; B: basal area; C: stem 

density; D: tree species richness) of the forests studied among different elevation ranges.  

Elevation ranges with different letters exhibit significantly (p < 0.01) different structural 

characteristics, as determined by Bonferroni-corrected post-hoc Mann-Whitney U tests.  

Error bars correspond to 2 SEM. 

 

Fig. 4. Two-dimensional ordination space derived from a non-metric multidimensional 

scaling (NMDS) procedure applied to the floristic similarity among 104 field plots, using 

the Jaccard index for presence-absence of tree and bamboo species.  Symbol letters in (A) 

correspond to different elevation ranges (i.e., a: 1000-1500m; b: 1500-2000m; c: 2000-

2500m; d: 2500-3000m).  Symbol numbers in (B) correspond to aspect [converted into 

soil moisture classes (Parker 1982), ranging from dry=1 to wet=20].  Symbol letters in (C) 

correspond to different slope ranges (i.e., A: <10°; B: 11-20°; C: 21-30°; D: >30°).  
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Symbol letters in (D) correspond to different forest types (i.e., D: predominantly 

deciduous broadleaf; M: mixed coniferous-deciduous; C: predominantly coniferous).   

 

Fig. 5. Linear regressions of (A) axis 1 of the Non-Metric Multidimensional Scaling 

(NMDS) procedure applied to the floristic similarity among 104 field plots, using the 

Jaccard index for presence-absence of tree and bamboo species, and (B) first component 

of the principal component analysis (PCA) applied to 46 eight-day maximum value 

composite image time series of the Visible Atmospherically Resistant Index (VARI), vs. 

elevation.  Regression lines are significant (p < 0.05) after accounting for spatial 

autocorrelation (Clifford et al. 1989). 

 

Fig. 6. Principal component (PC) loadings (which indicate the correlation of each 

component with members of the original image time series) of the first six principal 

components obtained from the eight-day maximum value composite image time series 

(46 images) of the Visible Atmospherically Resistant Index (VARI).   
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List of families and species of trees found in 104 field plots established in temperate 
montane forests of the Qinling Mountains region, Shaanxi province, China. 
 
ACERACEAE  

Acer cappadocicum Rehd. 
 Acer davidii Franchet 
 Acer franchetii Pax  

Acer ginnala Maxim. 
 Acer henryi Pax. 

Acer maximowiczii Pax 
 Acer pictum subsp. mono (Maximowicz) H. Ohashi 
 Acer shensiense Fang 
 Acer truncatum Bunge 
 Dipteronia sinensis Oliver 
ADOXACEAE 
 Viburnum betulifolium Batalin 
 Viburnum dilatatum Thunb. 
ALANGIACEAE  
 Alangium chinense (Loureiro) Harms 
ANACARDIACEAE  
 Cotinus coggygria Scopoli 
 Rhus punjabensis var. sinica (Diels) Rehder & E. H. Wilson 
 Toxicodendron vernicifluum (Stokes) F. A. Barkley 
AQUIFOLIACEAE  
 Ilex pernyi Franchet 
ARALIACEAE  
 Kalopanax septemlobus (Thunberg) Koidzumi 
BETULACEAE  
 Betula albo-sinensis Burkill 
 Betula albo-sinensis var. septentrionalis Schneider 
 Betula luminifera H. Winkler 
 Betula platyphylla Sukaczev 
 Carpinus cordata Blume 
 Carpinus polyneura Franchet 
 Carpinus turczaninowii Hance 
 Corylus chinensis Franchet 
 Corylus ferox var. thibetica (Batalin) Franchet 
 Corylus heterophylla Fischer ex Trautvetter 
 Corylus mandshurica Maximowicz 
CAPRIFOLIACEAE  
 Lonicera hispida Pall. ex Roem. et Schult. 
CELASTRACEAE  
 Euonymus alatus (Thunberg) Siebold 
 Euonymus phellomanus Loesener 
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CERCIDIPHYLLACEAE  
 Cercidiphyllum japonicum Siebold & Zuccarini 
CORNACEAE  
 Cornus controversa Hemsley 
 Cornus hemsleyi C. K. Schneider & Wangerin 
 Cornus macrophylla Wallich 
 Cornus sp. 
 Dendrobenthamia japonica var. chinensis (Osborn) Fang 
CUPRESSACEAE  
 Juniperus chinensis Linnaeus 
ERICACEAE  
 Rhododendron purdomii Rehder & E. H. Wilson 
EUPTELEACEAE  
 Euptelea pleiosperma J. D. Hooker & Thomson 
FABACEAE  
 Cercis chinensis Bunge 
 Maackia hupehensis Takeda 
 Ormosia henryi Prain 
FAGACEAE  
 Castanea sp. 
 Cyclobalanopsis oxyodon (Miquel) Oersted 
 Quercus aliena Blume 
 Quercus aliena var. acutiserrata Maximowicz ex Wenzig 
 Quercus glandulifera Blume 
 Quercus spinosa David ex Franchet 
 Quercus variabilis Blume 
 Quercus wutaishanica Mayr 
FLACOURTIACEAE 
 Idesia polycarpa Maximowicz 
HAMAMELIDACEAE  
 Fortunearia sinensis Rehder & E. H. Wilson 

Sinowilsonia henryi Hemsley 
JUGLANDACEAE  
 Juglans cathayensis Dode 
 Platycarya strobilacea Siebold & Zuccarini 
 Pterocarya stenoptera C. de Candolle 
LAURACEAE  
 Lindera glauca (Siebold & Zuccarini) Blume 
 Lindera obtusiloba Blume 
 Litsea pungens Hemsley 
 Sassafras tzumu (Hemsley) Hemsley 
MAGNOLIACEAE 
 Magnolia biondii Pamp. 
MELIACEAE  
 Toona sinensis (A. Jussieu) M. Roemer 
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MORACEAE  
 Morus alba Linnaeus 
OLEACEAE  
 Fraxinus chinensis Roxburgh 
 Fraxinus mandschurica Ruprecht 
 Ligustrum lucidum W. T. Aiton 
PINACEAE  
 Abies chensiensis Tieghem 
 Abies fargesii Franchet 
 Larix chinensis Beissn. 
 Larix principis-rupprechtii Mayr 
 Picea wilsonii Mast. 
 Pinus armandii Franchet 
 Pinus tabuliformis Carrière 
 Tsuga chinensis (Franchet) E. Pritzel 
RHAMNACEAE  
 Rhamnus utilis Decaisne 
ROSACEAE  
 Crataegus kansuensis E. H. Wilson 
 Crataegus pinnatifida var. major N. E. Brown 
 Maddenia hypoxantha Koehne 
 Malus hupehensis  (Pampanini) Rehder 
 Prunus scopulorum Koehne 
 Prunus sp. 
 Pyrus betulifolia Bunge 
 Pyrus xerophila T. T. Yu 
 Sorbus alnifolia (Siebold & Zuccarini) K. Koch 
 Sorbus koehneana C. K. Schneider 
 Sorbus sp. 
SABIACEAE  
 Meliosma cuneifolia Franchet 
 Meliosma oldhamii Miquel ex Maximowicz 
SALICACEAE  
 Populus davidiana Dode 
 Populus purdomii Rehder 
 Populus szechuanica C. K. Schneider 
 Populus wilsonii C. K. Schneider 
 Salix matsudana Koidz. 

Salix pseudotangii C. Wang & C. Y. Yu 
 Salix sp. 
 Salix variegata Franchet 
SAPINDACEAE  
 Aesculus chinensis Bunge 

Koelreuteria paniculata Laxmann 
SAXIFRAGACEAE  
 Deutzia scabra Thunb. 
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SIMAROUBACEAE  
 Ailanthus altissima (Miller) Swingle 
STAPHYLEACEAE  
 Staphylea holocarpa Hemsley 
SYMPLOCACEAE 
 Symplocos paniculata (Thunberg) Miquel 
THEACEAE 
 Stewartia shensiensis Hung T. Chang 
TILIACEAE  
 Tilia chinensis Maximowicz 
 Tilia mandshurica Ruprecht & Maximowicz 
 Tilia paucicostata Maximowicz 
ULMACEAE  
 Celtis koraiensis Nakai 

Celtis sinensis Persoon 
 Ulmus bergmanniana C. K. Schneider 
 Ulmus macrocarpa Hance 
 Ulmus parvifolia Jacquin 
 Ulmus pumila Linnaeus 
VERBENACEAE 
 Clerodendrum trichotomum Thunberg 
 

 

  

 


