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Abstract At landscape scale, the normalized difference veg-
etation index (NDVI) can be used to indicate the vegetation’s
dynamic characteristics and has been widely employed to
develop correlated and dependent relationships with the cli-
matic and environmental factors. However, studies show that
NDVI-environment relationships always emerge with com-
plex features such as nonlinearity, scale dependency, and
nonstationarity, especially in highly heterogeneous areas. In
this study, we used geographically weighted regression
(GWR), a local modeling technique to estimate regression
models with spatially varying relationships, to investigate
the spatially nonstationary relationships between NDVI and
climatic factors at multiple scales in North China. The results
indicate that all GWR models with appropriate bandwidth
represented significant improvements of model performance
over the ordinary least squares (OLS) models. The spatial

relationships between NDVI and climatic factors varied sig-
nificantly over space and were more significant and sensitive
in the ecogeographical transition zone. Clear spatial patterns
of slope parameters and local coefficient of determination (R2)
were found from the results of the GWR models. Moreover,
the spatial patterns of the local R2 of NDVI-precipitation are
much clearer than the R2 of NDVI-temperature in the semi-
arid and subhumid areas, which mean that precipitation has
more significant influence on vegetation in these areas. In
conclusion, the study revealed detailed site information on
the variable relationships in different parts of the study area,
especially in the ecogeographical transition zone, and the
GWR model can improve model ability to address spatial,
nonstationary, and scale-dependent problems in landscape
ecology.

Abbreviations
GWR Geographically weighted regression
OLS Ordinary least squares
NDVI Normalized different vegetation index
AP Annual precipitation
AMT Annual mean temperature
GLM Global regression model
MVC Maximum value composite
AICc Akaike information criterion
Moran’s I Moran indexes
RMSEE Root mean squared error estimate

1 Introduction

The normalized difference vegetation index (NDVI) has been
commonly used as an estimator of terrestrial vegetation dis-
tribution and productivity (Evans et al. 2006; Kerr and
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Ostrovsky 2003; Xiao and Moody 2004) and an index for
monitoring green cover (Maselli and Chiesi 2006; Myneni
et al. 1998). Several global and regional studies have revealed
that NDVI can be used to indicate vegetation spatial-temporal
characteristics (Moody and Johnson 2001; Piao et al. 2003;
Wu et al. 2009; Zhang et al. 2009) and has been widely
employed to quantify relationships with such climatic and
environmental factors as: land surface temperature
(Raynolds et al. 2008), precipitation (Fang et al. 2001;
Onema and Taigbenu 2009; Piao et al. 2006), evapotranspira-
tion (Di Bella et al. 2000), and topography (Gao et al. 2012a;
Li et al. 2006). Since global climate change became a major
topic of discussion, the relations between NDVI and climatic
factors have become a hot issue in geography and ecology
(Gao et al. 2012b; Li et al. 2011; Piao et al. 2006; Udelhoven
et al. 2009; Xiao and Moody 2004).

Usually, general correlation and linear regression analysis
were used to explore these relationships. However, a large
number of studies have shown that NDVI-environment rela-
tionships always emerge with complex features such as non-
linearity, scale dependency, and nonstationarity, especially in
the highly heterogeneous areas (Foody 2003, 2004; Gao et al.
2012a; Li et al. 2011; Osborne et al. 2007). In these cases, the
conventional methods might fail to detect causality because
their underlying assumption of linearity is violated, resulting
in poor insights regarding the evolution trends of vegetation
cover and underlying physical processes (Li et al. 2011).
Recently, as an extension of traditional standard global regres-
sion techniques, geographically weighted regression (GWR)
was developed to explore spatially varying relationships
(Brunsdon et al. 1998; Fotheringham et al. 2002). A few
studies have confirmed the analytical efficacy of GWR for
investigating spatially varying relationships in some research
fields, such as climatology (Brunsdon et al. 2001), ecological
inference problem (Calvo and Escolar 2003), forests (Shi et al.
2006b), urban poverty (Longley and Tobón 2004), environ-
mental justice (Mennis and Jordan 2005), urban land surface
temperature (Li et al. 2010), and urban landscape fragmenta-
tion (Gao and Li 2011). In recent years, a limited number of
studies extended its scope into relationships between vegeta-
tion and climate (Gao et al. 2012a, b; Gaughan et al. 2012;
Propastin et al. 2008).

Ecogeographical transition zones are widely distributed on
every continent except Antarctica and are fragile ecosystems
to variations in climate. According to the Köppen climate
classification (Kottek et al. 2006; Peel et al. 2007), transition
zones, shifting from humid climates to desert climates, gener-
ally have semi-arid climates and exhibit some features of
transition in ecological characteristics. Many scientists have
focused attention on the transition zone of North China to
examine the relationships between NDVI and climatic factors
(Cui et al. 2009; Guo et al. 2007; Li et al. 2006; Sun and Guo
2012; Wu et al. 2009). However, few studies focused on the

influences of climatic variables on vegetation in conjunction
with scale dependency and spatial stationarity in this region.
Considering the strong spatial heterogeneity of climatic con-
ditions, the different effects of climate on vegetation between
the transition zone and surrounding areas is worth investigat-
ing. Our concern was whether the relationship between NDVI
and climatic factors was more sensitive in a transition zone
than in the surrounding areas.

Our objective in this paper is to represent the spatial
nonstationarity and heterogeneous features in NDVI-climate
relationships at the transition zone and surrounding areas. We
examined the relationships using the GWR model and com-
pared model performance with the ordinary least squares
(OLS) regression model using a geographic information sys-
tem (GIS). Results related to the importance of spatial
nonstationarity, scale dependency, and spatial heterogeneity
of relationships are presented and discussed.

2 Study area

Our study area (35–48° N, 112–126° E) is located in North
China. The climate in this region is dominated by the winter
monsoon from continental Inner Asia and the Pacific summer
monsoon from the southeast. As a consequence, annual pre-
cipitation in this area decreases from the southeast to the
northwest and ranges from <100 mm at the west of Inner
Mongolia Plateau to >800 mm at the coastal zone of the
Yellow Sea. The mean annual temperatures are −10 to
15 °C, varying with altitude and latitude (Fig. 1).

According to the study of the ecogeographical regional
system of China (Zheng 2008), this area can be divided into
two temperature belts, except for Qilian Qingdong mountain
basin (HIIC1), which belongs to the plateau temperate belt,
and 16 natural regions (Fig. 1 and Table 1). More detailed
descriptions of the natural regions can be found in the book by
Zheng (2008).

The vegetation patterns are associated with decreasing
annual precipitation (AP) from southeast to northwest, as
indicated in Fig. 1, changing from agricultural land, forest,
and shrubland tomeadow steppe, to typical steppe, and then to
desert steppe. An important ecogeographical transition zone
occurs where the semihumid agriculture area and arid and
semi-arid pasture area meet. The ecogeographical transition
zone is generally distributed along the 400 mm isohyet,
a boundary between a semihumid monsoon climate and
a semi-arid continental climate. Based on previous research
(Wang et al. 1999; Zhao et al. 2002; Zheng 2008), we
defined the border of the ecogeographical transition
zone by using indexes including the mean AP (~300–
450 mm), rainfall variability (15 to ~30 %), and aridity index
(1.0–2.0; Fig. 1c).
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3 Methodology

3.1 Data

3.1.1 Dependent variable: NDVI

For this study, NDVI was employed as the dependent variable
of GWR and OLS models in this study. As one of the most
widely used indices for green cover monitoring, NDVI is
computed as the ratio of two electromagnetic wavelengths;
NDVI=(N−R)/(N+R), where N refers to the spectral reflec-
tance in the near infrared, where reflectance from the plant
canopy is dominant, and R is the reflectance in the red portion
of the spectrum, where chlorophyll absorbs maximally. The
NDVI series of satellite observations about 1 km2 spatial and
10-day (decades) temporal resolution were produced by the
Vlaamse Instelling voor Technologisch Onderzock (VITO)
Image Processing Centre (Mol, Belgium) from the sensor
VEGETATION on board the SPOT-4 satellite (http://free.
vgt.vito.be/). VGT-S10 NDVI were synthesized from S1 (1-
day resolution) NDVI products using a maximum value com-
posite (MVC) algorithm (Jarlan et al. 2008). The influence of
cloud cover was well reduced because the highest signal data
within the 10-day observation was used as a pixel value for the
10-day synthesis data. The VGT-S10 products were compiled
by merging segments (data strips) acquired over a 10-day
period. All the segments of this period were compared again
pixel by pixel to pick out the “best” ground reflectance values.
In addition, the processing of VGT-S10 products also included
the application of corrections for radiometric, atmospheric,
and geometric effects. For this study, we generated the annual

Fig. 1 Maps of the study area. a
Digital elevation map of the study
area (red rectangle) and
surroundings. b Study area
showing vegetation patterns and
natural regions. c Map of annual
mean temperature (°C) and
isohyets of annual precipitation
(mm) in the study area. d NDVI
map of the study area with the
transition zone (red dashed line)

Table 1 Natural and geographical divisions of the study area

Code Natural region

II A2 Lesser Xing’an Ranges Changbai mountain coniferous forest
region

II A3 East Songliao Plain pediment tableland mixed coniferous broad-
leaf forest region

II B1 Central Songliao Plain forest steppe region

II B2 Central Great Xing’an Ranges mountain forest steppe region

II C1 West Liao River Plain steppe region

II C2 South Great Xing’an Ranges steppe region

II C3 East Inner Mongolian Plateau steppe region

II D1 Ordos and West Inner Mongolian Plateau desert steppe region

II D2 Alxa and Hexi Corridor desert region

III A1 Liaodong Jiaodong hilly and lower mountain deciduous broad-
leaf mixed forest and revegetated region

III B1 Luzhong hilly and lower mountain deciduous broad-leaf mixed
forest and revegetated region

III B2 North China Plain revegetated region

III B3 North China mountain mixed deciduous broad-leaf forest region

III B4 Fenwei Basin deciduous broad-leaf mixed forest and revegetated
region

III C1 North-central Loess Plateau steppe region

HII
C1

Qilian Qingdong mountain basin coniferous forest and steppe
region

In natural region codes, the Roman numerals represent division of temper-
ate zones—II is a subtemperate zone, III is a warm-temperate zone, andHII
is a plateau temperate zone; the capital letters represent divisions of dry and
wet areas—A is a humid area, B is a subhumid area, C is a semi-arid area,
and D is an arid area. The subscript numbers 1–4 represent different nature
regions which are divided according to the physiognomy and the terrain
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maximum NDVI image of 2008 to represent the spatial dis-
tribution of NDVI in the study area by using the maximum
value composite (MVC) method.

3.1.2 Explanatory variable: climatic factors

Explanatory variables were obtained from the WorldClim
Database (Hijmans et al. 2005), which was produced by the
University of California, Berkeley, in the USA and the Uni-
versity of Queensland in Australia. This database is a set of
global climate layers (climate grids) with a spatial resolution
of about 1 km2 using a smoothing thin-plate spline interpola-
tion method, and included 47,554 mean precipitation data
entries, 24,542 mean temperature entries, and 14,835 mini-
mum and maximum temperature data entries gathered from a
variety of sources and restricted mostly for the 1950–2000
period.. It includes 19 derived bioclimatic variables and is
commonly used to represent the annual average trends. The
database can be downloaded from the WorldClim Website
(http://www.worldclim.org/).

We used Pearson correlation analysis and mutual informa-
tion entropy analysis to describe the relationships between 19
climatic factors and NDVI. And the results showed that AP
(BIO12 in the WorldClim database) and Annual Mean Tem-
perature (AMT, BIO1 in the WorldClim database) were the
best explanatory variables to estimate the relationship across
the whole study area.

3.2 Geographically weighted regression

3.2.1 Brief description of GWR

As one of several local regression techniques, GWR is an
extension of traditional standard global regression techniques
such as OLS regression. Fotheringham et al. (2002) provide a
detailed description of the algorithm and the principle of
GWR. Hence, we give only a brief overview of GWR in this
section.

Consider that the conventional global regression model
(GLM) could be expressed as:

yi ¼ β0 þ
X
k

βkxik þ εi ð1Þ

where yi, xik, and εi, respectively, represent the dependent
variable, the independent variables, and the random error term
at different locations (the subscript i stands for the spatial
locations and k expresses the independent variable number).
β0 is the model intercept and βk is the slope coefficient for
independent variable xk. This type of model implies a spatially
stationary relationship, i.e., no geographical location informa-
tion is considered in the estimation of the model parameters,
and gives a single summary statistic for the whole dataset.

The GWR technique extends the conventional global re-
gression of Eq. (1) by adding a geographical location param-
eter, with the model rewritten as:

yi ¼ β0 ui; við Þ þ
X
k

βk ui; við Þxik þ εi ð2Þ

where (ui, vi) denotes the coordinates of the ith point in space,
β0(ui,vi) is the intercept for location i, and βk(ui,vi) represents
the local parameter estimate for independent variable xk at
location i, and again ɛi is the random error term at point i.

In Eq. (2), β0 and βk are parameters to be estimated, and
could be estimated from:

β ui; við Þ ¼ XTW ui; við ÞX� �−1
XTW ui; við Þy ð3Þ

where bβ ui; við Þ represents the unbiased estimate of the regres-
sion coefficient β, W(ui, vi) is the weighting matrix to ensure
that observations near the specific point have larger weight
value, and X and Yare matrices for independent and dependent
variables, respectively.

Weighting the kernel function could be stated using the
exponential distance decay form:

wij ¼ exp −
dij
b2

� �
ð4Þ

where wij represents the weight of observation j for location i,
dij is the Euclidean distance between regression point i, and
neighboring observation j, and b expresses a basal width of the
kernel function, called bandwidth. In Eq. (4), if j coincides
with i, the weighting value of the data at that point is set to 1,
while wij is decreasing according to a Gaussian curve as the
distance dij increases (Fotheringham et al. 2002; Shi et al.
2006a), and the weight would be set to 0 if the distance is
greater than the kernel bandwidth.

By adding the geographical location parameter, a separate
GWR model can be run for each observation point, and
parameter estimates obtained by weighting all observations
around a specific point i based on their spatial proximity to it.
Larger weights are assigned to observations closer to point i,
and these observations have higher impacts on the parameter
estimates for the location. Precisely because GWR obtains
local rather than global parameter estimates (Fotheringham
et al. 2002), its estimates are not constant but vary over space;
therefore, it could help to show the hidden causes of vegeta-
tion patterns.

In our study, GWR analysis was performed using ArcGIS
9.3 (ESRI Inc., 1999–2008) software, and all maps were
produced using the same software.
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3.2.2 Data sampling

Both dependent and independent variables were initially raster
layers with 1-km spatial resolution and had to be converted to
vector format tomeet the requirements of ArcGIS-based GWR.
Three steps converted the data format (Gao et al. 2012a; Li
et al. 2010): (1) sampling points in the study area were gener-
ated randomly; (2) values were extracted from original raster
data layers to points; and (3) points with variables were chosen
for GWRmodel. In this study, a total of 6,485 data points were
used in the GWR model after removing NoData cases.

3.2.3 Measuring nonstationarity

The spatial nonstationarity of ecological variables and their rela-
tionships were scale-dependent (Foody 2004; Li et al. 2010).
Somewhat similar to a spatial microscope, the GWR model
provided useful information at different resolutions by varying
the bandwidth parameter. More generalized geographical patterns
were revealed as the bandwidth coarsened, and the spatial
nonstationarity in the relationship tended to decline (Li et al. 2010).

In our study, a stationarity index proposed by Brunsdon
et al. (1998) and Osborne et al. (2007) was used to estimate
spatial nonstationarity. It is computed as follow:

SI ¼ βGWR iqr

2�GLM se
ð5Þ

where SI is the stationarity index, βGWR_iqr is the interquartile
range of standard errors for theGWR coefficients, andGLM_se is
the standard error of the global regression coefficient.When SI<1,
the explanatory variable y and dependent variable x reach spatial
stationarity (Gao and Li 2011). To identify the scale dependence
of spatial nonstationarity in local parameter coefficients, we iter-
ated the GWR model with increasing fixed kernel bandwidth
from 25 to 1,500 km as the search radius. The SI was calculated
using Matlab 2008B (The MathWorks Inc., Natick, MA, USA).

3.2.4 Model test

GWR model is equivalent to the global regression model if the
localized parameter estimates do not have statistically significant
differences (Gao et al. 2012b; Li et al. 2010), therefore, a statis-
tical significance test of the spatial nonstationarity was necessary.

We used the corrected Akaike information criterion (AICc)
(Hurvich and Tsai 1989; Akaike 1973), a relative measure of
model performance, to compare performances of GWR and
OLS models.

AICc ¼ 2nln bσ
� �

þ nln 2πð Þ þ n
n ¼ tr Sð Þ
n−2−tr Sð Þ

� �
ð6Þ

where n is the number of the sample size, ô is the estimate of
the standard deviation of the residuals, and tr(S) is the trace of

the hat matrix. The model with the lower AICc value indicated
better fit to the observed data and superior performance.
Generally, a decrease in AICc values to lower than 3 indicated
that the model with the lower AICc was better.

Furthermore, global and local Moran indexes (Moran’s I)
of residuals of the GWR and OLS models were calculated in
ArcGIS 9.3 to compare the ability to deal with spatial auto-
correlation. Moran’s I values ranged from −1 to 1, and the
larger the absolute value of Moran’s I, the more significant the
spatial autocorrelation. Moreover, sigma2, the normalized re-
sidual sum of squares (the smaller the values, the closer the fit
of the model to the observed data) was calculated to compare
the two models. The F3 test (Leung et al. 2000) was also
calibrated for the GWR model.

4 Results

4.1 Scale dependence of spatial relationships

As shown in Fig. 2, the variational trends of the stationarity
index for AMT and AP exhibited significant spatial scale
dependence. The stationarity index decayed rapidly with the
coarsening of the scale for both explanatory variables, and the
decline slopes of the curves became flat above the spatial scale
of 400 km. Compared with AMT, the curve for AP had not
only a bigger decline gradient but also relatively larger sta-
tionarity index values. The fact that different predictors had
different stationarity index values suggested that the NDVI

Fig. 2 Stationarity indexes at multiple scales for two explanatory vari-
ables. The stationarity index is a ratio between the interquartile range of
standard error for GWR coefficients and twice the standard error for a
global regression analysis such as OLS, and values smaller than 1
indicates stationarity. The most striking difference between SI for MAP
(0 to 99.3) and MAT (0 to 0.95) is the numeric range
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spatial pattern was dominated by climatic factors at different
spatial scales.

Within the whole study area spatial scale range, the rela-
tionships between NDVI and AMT and between NDVI and
AP tended to stabilize at the scales of 50 and 500 km, respec-
tively. The results indicated that if we want to establish a
stationary regression relationship between NDVI and AMT
andAP, a bandwidth of 50–500 kmwas suitable. According to
cross-validation and corrected AIC, a GWR model with
430 km as the bandwidth was most appropriate for our study
area.

4.2 The spatial patterns of NDVI-climate relationships

Maps of slope parameters (beta coefficients), local R2, and
intercept (alpha coefficients) obtained from GWR models
provided a simple way to detect the spatially varying relation-
ships between NDVI and climatic factors. As shown in Fig. 3,
there was significant spatial heterogeneity in the relationships
between NDVI and AP and AMT.

Regression correlation coefficients, ranging from 0 to 1,
were used to indicate how well the local regression model fit
the observations, and the local models with higher values
perform better. The spatial pattern of local R2 (Fig. 3d) indi-
cated that higher values (R2>0.45) occurred in the transition
zones (Table 2). However, in the northwest and southeast of
the study area, the Alxa and Hexi Corridor desert and
revegetated region, respectively, the correlation coefficients
were lower, which indicated that other factors had more influ-
ence on NDVI.

AP had a positive correlation with NDVI in most of
our study area (Fig. 3a), which indicated that higher
NDVI values were related to more precipitation. How-
ever, slope parameters, local R2, and intercept obtained
from GWR were not spatially consistent, which meant
that the strength of correlation varied across space
(Fig. 3a and Table 2). Beta of AP in transition zones
(mean=0.0013, SD=0.0003) was greater than that in
surrounding areas, especially more than twice as many
holdouts as in humid areas (mean=0.0006, SD=0.0005).
Compared with AP, positive and negative correlations
were observed between NDVI and AMT by the GWR
model (Fig. 3b). In addition, the strength of the associ-
ation of temperature also varied across space (Fig. 3b
and Table 2). Furthermore, a comparison of Fig. 3a with
b showed that the patterns of the strength of AP exhib-
ited obvious regularity. However, the spatial patterns of
the strength of AMT were more complicated, showing
no regular distribution along the climatic conditions.
This result indicated that, in semi-arid and subhumid
areas, transitioning from humid climates to arid cli-
mates, precipitation had more significant influence on
NDVI distribution than temperature.

4.3 Spatial heterogeneity of relationships

As the study area covered a wide-ranging geographical region,
the local natural and environmental conditions had huge var-
iations. In Sections 4.1 and 4.2, we described how the spatial
scales of stationarity, R2, slope parameters, and intercepts
obtained from the GWR model (Figs. 2 and 3, Table 2) had
primarily shown the spatial variance of the relationships be-
tween NDVI and climatic factors. In this section, we discuss
how GWR and OLS models were run in each natural region
based on the natural and geographical divisions of China
(Zheng 2008) (Fig. 1a). As shown in Table 3, the model
performances were inconsistent among regions, which indi-
cated the spatial heterogeneity of relationships.

The performance of the regression relationships between
NDVI and AMTand APwere better in grassland and meadow
areas, which indicated that the influence of climatic factors on
NDVI was relatively stable in these regions. However, both
GWR and OLS models’ regression performances were very
poor in some areas (e.g., Liaodong Jiaodong hilly and lower
mountain deciduous broad-leaf mixed forest and revegetated
region (IIIA1), Luzhong hilly and lower mountain deciduous
broad-leaf mixed forest and revegetated region (IIIB1), and the
North China Plain revegetated region (IIIB2)). Thus, other
climatic factors besides AMT and AP might be better explan-
atory variables explaining the distribution of NDVI in these
regions. Moreover, in the transition zones, such as the central
Great Xing’an Ranges mountain forest steppe region (IIB2),
Qilian Qingdong mountain basin coniferous forest and steppe
region (HIIC1), east Songliao Plain pediment tableland mixed
coniferous broad-leaf forest region (IIA3), and Ordos and
West Inner Mongolian Plateau desert steppe region (IID1),
the GWR models performed better than the OLS models.

4.4 Comparisons between OLS and GWR models

4.4.1 Model performance

The AICc, R
2, and sigma2 of GWR and OLS models are

shown in Table 4. In all cases, the GWR model yielded more
accurate simulation results, characterized by higher R2 values,
lower AICc values, and lower sigma2 values of the GWR
models. With AMT and AP as explanatory variables, the R2

of the GWR model was 0.84, compared with 0.69 for OLS;
the AICc of GWR was −15,491.47, lower than the OLS value
of −9,671.21; the Sigma2 of GWR was 0.0103, also lower
than the OLS value of 0.0199. As indicated by the R2 values,
AMTcould only explain less than 1% of the variance in NDVI
in the OLS model, while it can account for almost 80 % of the
variance in GWR. Since the vegetation patterns of the study
area were mainly associated with the AP patterns, all AICc, R

2

and sigma2 values indicated that both OLS and GWR models
for NDVI and precipitation showed significantly better
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performance than models for NDVI and temperature. Like-
wise, AP could explain more than 83 % of the variance in
NDVI in the GWR model, compared with 63 % in the OLS
model. Furthermore, the results of F3 tests (not shown) also
indicated that the improvement of the GWRmodels over their
corresponding OLS models was statistically significant based
on 500 sampling points.

4.4.2 Spatial autocorrelation of residuals

Autocorrelation is an expression of the lack of independence
between pairs of observations at given distances apart, in time
and in space (Legendre 1993). Generally, the high randomness
of simulated residuals and the cumulative residual amount
indicated better performance of the regression model. The

Fig. 3 Spatial variation of regression outputs from the GWRmodels for NDVI and climatic variables in the study area—a beta of AP, b beta of AMT, c
intercept, d local R2

Table 2 Comparison of GWRmodel outputs between the transition zone
and nontransition zones (east and west sides). An independent-samples t
test was conducted to compare mean values for regression outputs in the

transition zone and nontransition zones. There were significant differ-
ences (p<0.01) in the beta of MAP, beta of MAT, intercepts, and local R2

between the transition zone and nontransition zones

Regression outputs Transition zone East side West side

Mean SD Mean SD Mean SD

Beta of AP 0.0013 0.0003 0.0006 0.0005 0.0010 0.0002

Beta of AMT −0.0138 0.0136 −0.0058 0.0121 −0.0064 0.0118

Intercepts 0.1074 0.1499 0.3851 0.2902 0.0608 0.0753

local R2 0.5266 0.1082 0.3006 0.1979 0.4864 0.1538
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spatial distribution of the simulated residuals of the GWR and
OLS models are shown in in Fig. 4. As illustrated, the simu-
lated residuals of the OLS model showed lower random
distribution than those of the GWR model.

The global Moran’s I analysis of model residuals is
shown in Table 5 and confirms the improved performance
of the GWR model over the OLS model. Significant
positive spatial autocorrelations were detected in the re-
siduals from all runs of the OLS model, characterized by
Moran’s I values ranging from 0.732 to 0.917 at p<0.01,
and the GWR model residuals had weaker significant
spatial autocorrelation patterns (Moran’s I ranging from
0.522 to 0.610 at p<0.01). With the same independent
variable, GWR models produced smaller Moran’s I than
OLS models, which indicated that GWR models

represented more reliable relationships by reducing the
spatial autocorrelations of residuals. The value for precip-
itation was smaller than the value for temperature, corre-
sponding to the results of model performance.

4.4.3 Predicted NDVI patterns

Figure 5 shows the NDVI spatial patterns observed and
predicted by the GWR and OLS models. In order to
compare the predicted and observed NDVI values, the
root mean squared error estimate (RMSEE) was calculat-
ed to compare the two models. In general, both models
predicted similar overall patterns that NDVI values would
decrease from southeast to northwest of in the study area.
However, comparing the actual spatial pattern of NDVI
(Fig. 5a), the pattern predicted by GWR (Fig. 5b,
RMSEE=0.094) was more precise than the spatial pattern
estimated by the OLS model in the whole study area
(Fig. 5c, RMSEE=0.141). The OLS model tended to
overestimate the NDVI values, especially in the southeast,
where OLS estimated NDVI values would be up to 1.36
although the real values were only about 0.9. Further-
more, by comparing the spatial pattern of NDVI predicted
by GWR and the spatial pattern estimated by the OLS
model in each natural region (Fig. 5d, RMSEE=0.103),
we could see that both results were quite similar to real
spatial patterns. Modeling and taking into consideration
the heterogeneity of the regional and subregional condi-
tions were achieved by using the GWR model; therefore,
this local regression model showed signif icant

Table 3 Regression correlation coefficients of GWR and OLS models in natural regions

Region code Mean Local R2G Minimum Local R2G Maximum Local R2G R2O Adj R2O

IIA2 0.3461 0.2631 0.3989 0.416 0.412

IIA3 0.3996 0.3730 0.4266 0.028 0.019

IIB1 0.4263 0.3255 0.4716 0.309 0.307

IIB2 0.4815 0.4556 0.5059 0.270 0.246

IIC1 0.4384 0.3762 0.5227 0.467 0.461

IIC2 0.5397 0.4368 0.7017 0.547 0.544

IIC3 0.5486 0.2614 0.7988 0.469 0.468

IID1 0.4772 0.2618 0.7449 0.024 0.020

IID2 0.4525 0.2156 0.8149 0.472 0.471

IIIA1 0.1205 0.0013 0.2911 0.107 0.092

IIIB1 0.0077 0.0011 0.0122 0.090 0.074

IIIB2 0.0357 0.0001 0.1945 0.052 0.049

IIIB3 0.2664 0.0341 0.5423 0.174 0.172

IIIB4 0.5327 0.1516 0.6764 0.249 0.242

IIIC1 0.5183 0.2042 0.6797 0.604 0.603

HIIC1 0.5897 0.5551 0.6235 0.019 0.001

Subscript G represents GWR; subscript O represents OLS

Table 4 Comparison of model performance between GWR and OLS

Indicator Temp Prec Temp + Prec

AICcO −882.11 −8,087.07 −9,671.21
AICcG −13,347.34 −14,940.01 −15,491.47
R2

O 0.0070 0.6357 0.6949

R2
G 0.7985 0.8314 0.8417

R2
O adjusted 0.0069 0.6356 0.6948

R2
G adjusted 0.7980 0.8309 0.8412

Sigma2O 0.0646 0.0237 0.0199

Sigma2G 0.0131 0.0110 0.0103

The subscript O in the index represents OLS, and G represents GWR
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improvement over the OLS model with the same predictor
and proved to be practical for similar applications and
expansions.

5 Discussion

The results of this study showed significant spatial het-
erogeneity in the relationship between NDVI and climatic
factors. Previous research had reported that the variations
in NDVI and its correlation with temperature and precip-
itation in different climatic zones and land use types were
spatially heterogeneous (Cui et al. 2009; Sun and Guo
2012). Thus, it was unreasonable to assume that a single
set of regression coefficients could capture space-varying
and scale-dependent relationships between variables when
conducting large-scale analysis (Finley 2011). The
findings on spatial relationship between NDVI and
climatic factors were basically consistent with several
other studies. In some subarea studies, Liu et al. (2008)
showed that NDVI variability had significant positive
correlation with annual precipitation and insignificant
negative correlation with annual precipitation at Tianjin,

and Wu et al. (2009) found that variability of precipitation
had the most important influence on NDVI variation in
Shanxi Province. In our study, we found that AP had a
positive correlation with the NDVI for almost the entire
study area; however, both positive and negative correla-
tions were observed between NDVI and AMT (Fig. 3).
Regardless of the positive or negative association of
NDVI with AMT and AP, the associations were stronger
for the transition zone (Table 2), where vegetation distri-
bution was more sensitive to climatic conditions. This
result corresponded to previous findings in eastern China
in that it showed stronger correlations between NDVI and
temperature and precipitation in the midtemperature semi-
arid zone (Cui et al. 2009). Therefore, the transition zone
with vulnerability (Lamb and Mallik 2003) and sensitive
spatiotemporal dynamics properties (Ross et al. 2003)
needs further investigation in the future.

Meanwhile, we found that the correlation between NDVI
and AMT and AP was not significant in some regions, espe-
cially the southeast study area with relatively wet conditions
and higher human activity. Previous studies suggested that
human activity is a major force affecting the vegetation
change. For instance, Morawitz et al. (2006) conducted a
longitudinal study and found that population density was
highly correlated with negative NDVI change 15 years in
central Puget Sound. On a spatially distribution perspective,
however, studies showed strong positive correlations between
human population density and NPP (Balmford et al. 2001;
Chown et al. 2003). Luck (2007) explained that it was because
humans tend to settle in areas with midhigh productivity. In
addition to economic growth and human population density,
agricultural irrigation also has effects on the distribution of
NDVI. However, the irrigation amount for agriculture signif-
icantly varies with annual precipitation and its seasonal distri-
bution. In the study area, the rainy days and precipitation

Fig. 4 The spatial distribution of the simulated residuals of the GWR model (a) and OLS model (b)

Table 5 Comparison of Moran’s Index (MI) of residuals between OLS
and GWR models

Explanatory variables MIO p value MIG p value

Temperature 0.917 0.01 0.610 0.01

Precipitation 0.763 0.01 0.551 0.01

All variables 0.732 0.01 0.522 0.01

Subscript O represents OLS, subscript G represents GWR, and p value is
the pseudosignificance level
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amount are mainly concentrated in summer and coincide with
the summer maize growing season. Previous study has shown
that the crop water requirement for summer maize was about
430 mm (Sun et al. 2010), which explained why precipitation
was not the determinant which affected the NDVI value in
these regions. The distribution of vegetation is affected syn-
thetically by various factors, but effects of influences on
vegetation are different in scales. Human activities may result
in the disruption of ecological communities, while the climatic
factors are critical for the spatial variations of vegetation on
large scales.

An appropriate scale was very important in analyzing the
spatial data. One of the fundamental concepts of geography is
distance decay, which was once called the “First Law of
Geography”: Everything is related to everything else, but near
things are more related than distant things (Tobler 1970).
Based on this principle, GWR employs a weighted matrix
generated by Gaussian function at each regression point in
the space. Choosing a suitable kernel bandwidth parameter is
crucial in analyzing the spatial data. Thus, before

implementing GWR models, the kernel function and corre-
sponding bandwidth should be determined (Guo et al. 2008).
In ArcGIS-based GWR models, there are two options for
bandwidth parameter—self-adaptive and fixed. Many
studies about the relationship between vegetation and
climate, such as the studies of Gao et al. (2012a, b), Gaughan
et al. (2012), Propastin et al. (2008), were carried out using a
fixed bandwidth, since a fixed bandwidth is suitable used for
the entire study (Foody 2003). To confirm numerical values of
bandwidth, we still need to analyze the distribution of data
across the study area. Gao et al. (2012a) discussed the poten-
tial impacts of GWR results when using smaller or larger
bandwidths. Smaller bandwidths produced estimates with a
lower risk of bias and larger standard errors correspondingly,
as locally weighted regressions were calibrated on a small
number of samples. Likewise, the variance of prediction was
smaller, but the bias was large when using larger bandwidths
(Propastin 2009). Therefore, we calculated the stationarity
index at multiple scales to analyze the scale dependence of
spatial relationships and the performance of GWR models

516 Z. Zhao et al.

Fig. 5 Comparison of predicted NDVI between GWR and OLS models.
a The true spatial pattern of NDVI in the study area. b The spatial patterns
of NDVI predicted by the GWR. c The spatial patterns of NDVI predicted

by the OLS model. d The spatial patterns of NDVI predicted by the OLS
models in all natural regions



with multiple bandwidths. Gao et al. (2012b) used GWR to
model the relationship between NDVI and climatic factors on
Qinghai-Tibet Plateau, and the results of univariate regression
analyses between NDVI and AMT and AP showed that the
relationships tend to stabilize at the scales of 120 and 185 km,
respectively. In our study area, however, these two values
were 50 and 500 km, respectively. By using the samemethods
of cross-validation and AICc which we used, Gao et al.
(2012b) showed that a bandwidth of 156 km was suitable
for Qinghai-Tibet Plateau, whereas this value was 430 km in
North China. These differences in values reflect that impacts
of climatic factors on vegetation had different characteristic
spatial scales depending on the specific regions. The
magnitude and certain value of this suitable bandwidth
might be related with the gradients spatial scales of climate
variability of the study area. In our study area, the
ecogeographical transition zone is approximately 150 to
450 km in width. The result also indicated the significance
of research and comparison in different geographic regions.

In this study, the results showed that the GWR model had
more advantages over the OLS model in many aspects, such
as better model performance, lower spatial autocorrelation of
residuals, and more precisely predicted NDVI patterns. Gao
et al. (2012b) summarized two available methods for charac-
terizing the scale dependence of the NDVI-climate relation-
ship: one was to obtain the data samples of NDVI and climatic
factors with a series of different spatial resolutions through
polymerization, and establish multiple regression relation-
ships in each subregion; the second was to define the appro-
priate spatial relationship filter to find the optimum for char-
acterizing the relationship, for instance the GWR model. In
our study, the findings are consistent with this argument. We
compared the spatial pattern of NDVI predicted by GWR
(Fig. 5b) and the spatial pattern estimated by the OLS model
in each natural region (Fig. 5d and Table 3), and found that
both results were quite similar to real spatial patterns. How-
ever, the geographical divisions and establishment of separate
models implied a huge amount of data and work and were
extremely difficult in many cases. Therefore, the study and
development of the GWR model has significance in theory
and practices, both presently and in the future. The GWR
model, of course, was not problem free. One of the deficien-
cies was that the estimated local coefficients can suffer from
the multicollinearity issue (Wheeler and Tiefelsdorf 2005). It
assumes spatial nonstationarity for all variables; however,
some natural processes and variables may exhibit spatial
stationarity in some cases, especially in homogeneous regions
(Holt and Lo 2008). Some improvements have been devel-
oped to extend the GWRmodel, such asmixed geographically
weighted regression (MGWR) (Mei et al. 2006) and an inte-
grated model of spatially adjusted coefficient processes and
Bayesian regression (Wheeler and Calder 2007). In the future,
we plan to research the synchronization and dynamic causes

of vegetation cover variation and try to enhance the explana-
tory power and generalization of the GWR model.

6 Conclusions

Studies have shown that NDVI-environment relationships
always emerge with complex features such as scale depen-
dency and nonstationarity in the highly heterogeneous areas.
Considering the strong spatial heterogeneity of climatic con-
ditions in transition zones, the different effects of climate on
vegetation between the transition zone and surrounding areas
is worth investigating. In this study, we revealed spatial var-
iation and scale-dependent relationships between NDVI and
climatic factors in North China, using geographically weight-
ed regression analysis. On the basis of discussions and anal-
ysis of appropriate scale in analyzing spatial relations, the
results indicated detailed site information on the variable
relationships in different parts of the study area, and the spatial
relationships were more significant at the ecogeographical
transition zone. Since climatic factors are critical for the
spatial variations of vegetation on large scales, the vegetation
distributions of the ecogeographical transition zone, where
located at the northern edge of the East Asian monsoon
influences, are very sensitive to climatic conditions, especially
strictly restricted by precipitation. In addition, effects of other
various factors are worth studying on different scales. Com-
pared with traditional regression models such as OLS, the
GWR model yielded more accurate model results and im-
proved model ability to understand the local situation of
NDVI. Thus, the local regression method is practical for
addressing spatial nonstationary and scale-dependent prob-
lems in landscape ecology.
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