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Scale is a vital component to consider in ecological research, and spatial resolution or 
grain size is one of its key facets. Species distribution models (SDMs) are prime examples 
of ecological research in which grain size is an important component. Despite this, 
SDMs rarely explicitly examine the effects of varying the grain size of the predictors for 
species with different niche breadths. To investigate the effect of grain size and niche 
breadth on SDMs, we simulated four virtual species with different grain sizes/niche 
breadths using three environmental predictors (elevation, aspect, and percent forest) 
across two real landscapes of differing heterogeneity in predictor values. We aggregated 
these predictors to seven different grain sizes and modeled the distribution of each 
of our simulated species using MaxEnt and GLM techniques at each grain size. We 
examined model accuracy using the AUC statistic, Pearson’s correlations of predicted 
suitability with the true suitability, and the binary area of presence determined from 
suitability above the maximum true skill statistic (TSS) threshold. Habitat specialists 
were more accurately modeled than generalist species, and the models constructed 
at the grain size from which a species was derived generally performed the best. The 
accuracy of models in the homogenous landscape deteriorated with increasing grain 
size to a greater degree than models in the heterogenous landscape. Variable effects on 
the model varied with grain size, with elevation increasing in importance as grain size 
increased while aspect lost importance. The area of predicted presence was drastically 
affected by grain size, with larger grain sizes over predicting this value by up to a factor 
of 14. Our results have implications for species distribution modeling and conservation 
planning, and we suggest more studies include analysis of grain size as part of their 
protocol.
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Introduction

Spatial scale has long been recognized as a vital component 
of ecological research, with complex effects that vary by spe-
cies and system (Wiens 1989). Specifically, the grain of the 
sample and the extent of the study area are the components 
of spatial scale that must be defined in the research and man-
agement of an ecological phenomenon (Levin 1992). Spatial 
scale is important to consider in species distribution mod-
els (SDMs), an increasingly widely used suite of methods 
for both ecological research and conservation management. 
SDMs have been applied to a large range of taxa to estimate 
occurrence across landscapes and seascapes (see review in 
Guisan and Thuiller 2005, Leipold et al. 2017). They can aid 
in understanding of species–habitat relationships and delin-
eating species distributions. They also have direct applica-
tion to prioritizing areas for protection and can model future 
effects of land-use and climate change on species habitat and 
distributions (Porfirio et al. 2014). SDMs use environmental 
predictors combined with species presence and absence or 
background points to make these estimations (Elith and 
Leathwick 2009). Although building SDMs only requires 
predictor values at species presence and absence/background 
locations, making predictions about species occurrence 
across a landscape requires spatially explicit environmental 
predictors. The continuing improvement of remote sensing 
technology, such as light detection and ranging (LiDAR, 
Hudak et al. 2009) methods, has resulted in higher resolution 
environmental variables available to be included as predictors 
in SDMs.

Despite this increase in the variety of available data 
resolutions, research on the effect of grain size on SDMs 
is scant and usually limited to comparing three or fewer 
grain sizes (Guisan et al. 2007a, b, Revermann et al. 2012, 
Bean et al. 2014). There is also some uncertainty within the 
existing body of literature on the effects of increasing grain size 
of environmental predictors on SDMs. Guisan et al. (2007a, 
b) found that a 10-fold increase in grain size degraded the 
accuracy (as measured by AUC) of SDMs of some species, 
but did not result in large changes and in fact improved AUC 
in other species. Additional studies have found small effects 
of increasing grain size on SDMs of birds (Seoane  et  al. 
2004), generally concluding that coarser grains capture the 
necessary habitat variation. A study of bird habitat occupancy 
in Germany found that grain size was important in model 
performance, however, with several species modeled with the 
highest AUC at a fine resolution of 1 m (Gottschalk et  al. 
2011). A recent investigation of marine predator habitat at 
six grain sizes ranging from 3 to 111 km found that finer 
resolution variables improved models unless data were 
missing due to cloud cover (Scales et al. 2017).

Effects of grain size on SDMs at a large spatial scale have 
also been investigated on plant species, with applications to 
climate change projections. Seo  et  al. (2009) analyzed the 
effect of increases in grain size (seven grains from 1 km to 
64 km) on SDMs of several tree species in California, and 

found that AUC declined while the predicted area of occur-
rence increased. A similar relationship was identified by 
Trivedi  et  al. (2008) in a comparison of similar SDMs on 
plants under climate change. They concluded that coarse 
models in rugged terrain likely overestimate the ability of 
species to persist under climate change. Another recent study 
likewise found that total predicted area of presence was greater 
at coarser grain sizes (4 km vs 800 m data), but important 
potential climate refugia were detected at a 90-m grain that 
were lost at the 4-km grain size (Franklin et al. 2013). 

This wide range in findings indicates a significant lack of 
consensus regarding the importance of grain size to SDMs. 
There is also a lack of research into the effects of grain size 
on models of species that utilize a narrow range of habitat 
conditions (specialists) vs species that utilize a wider range 
of habitat (generalists), and the effects of grain size on mod-
els of species in landscapes of varying heterogeneity. These 
questions are difficult to answer because the true habitat 
responses of any given species, and consequently the true 
suitability of an area to that species, cannot be known. 
Because of this, the simulation of virtual species across a 
landscape, using predefined responses to habitat variables, is 
increasingly being used to answer questions related to ecol-
ogy and the modeling of species distributions. Examples of 
previous research using this technique include simulation 
of species to compare different SDM modeling techniques 
(Elith and Graham 2009), effects of prevalence and sampling 
bias on SDMs (Jimenez-Valverde et al. 2009), and effects of 
different methods for selecting pseudo-absences on SDMs 
(Barbet-Massin et al. 2012). To investigate the effects of grain 
size and niche breadth on SDMs, we adapted this simulation 
approach to model habitat suitability for a set of four virtual 
species across two landscapes of contrasting heterogeneity. 
We hypothesized that the best models would be built at 
the grain size at which the species was simulated (defined 
in methods, hereafter referred to as ‘correct’ grain size). We 
predicted that small changes in grain size (1 aggregation, 
or doubling of grain size, i.e. 25 to 50 m) would not have 
significant effects on model performance, but larger changes 
(2 aggregations or greater, i.e. 25 to 100 m or more) would 
significantly deteriorate model accuracy. We also hypoth-
esized that changes in grain size would more greatly affect 
models of the narrow-niched (specialist) species as compared 
to the wide-niched (generalist) species.

Methods

We selected two landscapes of approximately 40  000  km2 
upon which to simulate our species. One encompasses the 
southeastern range of the Scandinavian Mountains in Norway 
and Sweden, while the other lies in southern Finland. We 
chose these areas because of the availability of environmen-
tal predictors with small grain size and large differences in 
variance of the included predictor variables between the 
two (one ‘homogenous’ landscape and one ‘heterogeneous’ 
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landscape). These predictor variables were elevation, aspect, 
and percent forest. In the heterogeneous landscape a random 
draw of 1  000  000 cells resulted in predictor values with 
standard deviations of 368.48, 109, and 33.96 for elevation, 
aspect, and percent forest, respectively, while the homoge-
nous landscape had corresponding values of 34.03, 113.54, 
and 27.35. Additionally, all pair-wise combinations of these 
three variables had Pearson’s correlation coefficient values of 
less than 0.3, suggesting that multi-collinearity was not an 
issue. (Dormann et al. 2013). The terrain model and a tree 
cover density raster, which we labeled percent forest for the 
simulation of our species, were obtained from the European 
Environment Agency’s Copernicus Land Monitoring Service 
(DEM resolution = 25 m, tree cover density = 20 m, EU 
2016). Elevation and aspect were derived from the EUDEM 
dataset, a digital elevation model produced by hybridiz-
ing data from the SRTM and GDEM missions through a 
weighted averaging approach. The tree cover density raster 
was resampled to 25-m resolution. We then aggregated the 
environmental variables to larger grain sizes by calculating 
the mean values within moving windows with sizes of 50, 
100, 200, 400, 800, and 1600 m. 

We created two virtual species whose environmental suit-
ability and ultimately presence on the landscape depended 
on these three variables (Fig. 1). Suitability responses were 
kept to normal distributions over the range of each variable. 
These were then combined in a simple multiplicative formula 
to come to a final suitability response for the species: percent 
forest  elevation  aspect. We then rescaled suitability val-
ues for each pixel between 0 and 1 for a final reference proba-
bilistic suitability map on which to later test models against. 
We created one species with a narrower range of suitability 
across each of the variables (hereafter referred to as special-
ist), and one species with a wider range (standard deviation 
of response distribution doubled) of suitability across each 
of these variables (hereafter referred to as generalist, Fig. 1). 
We built two species with each of these suitability responses, 
one from the environmental variables at a fine scale (grain 
size of 25 m) and the other from the environmental variables 
at a coarser scale (200 m). This was performed to investigate 
the effect of using grain sizes that are both smaller and larger 
than the ‘correct’ grain size at which a species responds. In the 
homogenous landscape, the suitable elevation values had to 
be decreased due to the large differences in elevation between 
the two landscapes, but otherwise the suitability responses 
were kept the same.

After calculating environmental suitability values for each 
species, we used a logistic curve of probability pivoting around 
a suitability threshold of 0.5 to generate presence and absence 
values throughout the study area. In this process, a cell with 
a suitability value of 0.7 is more likely to become a presence 
cell than a cell with a suitability value of 0.4, but the latter 
cell does have a chance to become a presence cell according 
to the probability derived from the logistic curve. We then 
randomly selected 2000 points across each landscape for both 
the generalist and specialist species to use as presence/absence 

data input for the SDMs, the results of which are summa-
rized in Table 1. 

We modeled species’ distributions using two different 
methods across all grain sizes. These were maximum entropy 
(MaxEnt) (Phillips et al. 2006) and generalized linear mod-
elling (GLM). Although MaxEnt has been argued to be 
equivalent to a Poisson point-process model and thus can be 
viewed as a type of regression (Renner and Warton 2013), 
these two techniques have been used extensively and produce 
distinct results (Elith and Graham 2009, Merow et al. 2013), 
warranting their inclusion and evaluation. We divided the 
presence data into training (80%) and validation (20%) sets 
using a k-fold partitioning design, with k = 5, and used the 
same method on the absence points for the GLMs.

MaxEnt – MaxEnt is a machine learning method that 
has gained wide popularity in species distribution model-
ing. It uses presence-only data and environmental predictor 
variables to come up with a distribution of probability that 
minimizes the relative entropy in the predicted suitability 
values at the presence vs background points (Elith  et  al. 
2011). We used the k-fold partitioned sets of presence 
points described above as input into the models of the 
species they corresponded to. We randomly selected an 
additional 10  000 random background points to serve as 
pseudo-absences. All other model parameters were left at 
their default values. In the MaxEnt models we calculated 
variable permutation importance at each grain size. This was 
determined by changing the values of each variable among 
the training presence and background points, and measur-
ing the loss in AUC. We did this for each variable separately, 
and the final values were normalized to percentages.

GLM – we used the k-fold partitioned presence and 
absence points from the generated presence absence map as 
input for our GLMs, which we built for each virtual species 
at each grain size. We included cubic, quadratic, and linear 
terms for each environmental variable in multiplicative and 
additive relationships and used the ‘step’ function to remove 
variables until the optimum model was reached based on 
AIC. The GLMs were fit with a ‘binomial’ family and the 
‘logit’ link function. 

We calculated the area under receiving operating 
characteristic curve (AUC), which measures the ability to dis-
criminate between observed presence and absence, for each 
model. We then randomly chose 10  000 points across the 
study area to extract model suitability predictions, and ran 
Pearson’s correlation tests between model predictions and the 
‘true’ suitability across the same points. To analyze the effects 
of grain size on predicted area of presence, we made presence/
absence range maps based on threshold at which the value of 
the true skill statistic (TSS) was maximized (Liu et al. 2013). 
The TSS measures model sensitivity and specificity and unlike 
kappa is independent of prevalence (Allouche  et  al. 2006). 
We calculated the area of presence predicted by each model 
based on this threshold and compared it to the true simulated 
presence area. Our reported results across all analyses are the 
average of all five training/evaluation runs for each model.
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In order to test for significant differences in model accu-
racy (measured by AUC) of both the MaxEnt models and 
GLMs separately at different grain sizes, we used a Van der 
Waerden normal scores test on the AUC outputs of each 
training/testing run. There were thus 5 AUC scores for each 

of 7 different models across 4 model/species combinations. 
The Van der Waerden test is an effective alternative to Tukey’s 
or analysis of variance (ANOVA) when data is not normally 
distributed (Conover 1999). If significance was found in this 
test we then performed pairwise comparisons using Van der 

Figure 1. Flowchart of steps to simulate virtual species presence on a landscape.



1274

Waerden normal score tests to look at individual compari-
sons of the different grain sizes in the virtual species being 
analyzed.

All analyses were conducted using the R software plat-
form (R Core team). We used the package ‘virtualspecies’ 
(Leroy et al. 2015) to create the virtual species, the ‘dismo’ 
package (Hijmans  et  al. 2011) for MaxEnt and model 
comparison analyses, the ‘glm’ function to build the GLMs, 
and the ‘PMCMR’ package to conduct the Van der Waerden 
tests.

Data deposition

Data available from the Dryad Digital Repository:  http://
dx.doi.org/10.5061/dryad.8mp74  (Connor et al. 2017).

Results

The performance of our models varied with grain size, 
with generally decreasing AUC values as grain size was var-
ied further from the correct grain size for the given species 
(Table 2, Fig. 2). These decreases in AUC were often sig-
nificant within 1 aggregation (i.e. 25 vs 50 m), and almost 
always significant at 2 aggregations or more (i.e. 25 vs  
100 m, Table 1). The major exception to this was the MaxEnt 
models of the coarse-scale habitat specialist, in which AUC 
values were significantly higher at 50 m and 100 m, com-
pared to the correct grain size of 200 m. AUC values were 
also higher in the heterogeneous landscape compared to the 
homogeneous landscape, higher in the habitat specialist com-
pared to the habitat generalist, and generally higher in the 
MaxEnt models compared to the GLMs (Fig. 2). Increasing 
grain size deteriorated model accuracy in the homogeneous 
landscape to a greater degree than in the heterogeneous land-
scape (Fig. 2).

The Pearson’s correlation coefficients between predicted 
suitability and true suitability in all the derived species were 
highest in the models built at the correct grain sizes, and 
decreased drastically as grain size increased and/or decreased 
from these optimum models (Table 2, Fig. 3). In the fine-
scale habitat specialist Pearson’s r decreased from a high of 
0.95 in the MaxEnt model built at the ‘correct’ grain size 
of 25 m to a low of 0.47 in the MaxEnt model built at the 
1600-m grain (Fig. 3). These decreases with changes in 
grain size were much less pronounced in the GLMs, but 

predictions from the GLMs of all four species had lower 
correlations with the true suitability values than the Max-
Ent models (Table 2). Similar to the AUC values, model 
predictions of the habitat specialist generally had higher cor-
relations with the true suitability than model predictions 
of the habitat generalist. Models of the generalist improved 
relative to the specialist as the distance from the optimum 
200-m grain increased, however, and often surpassed them in  
Pearson’s correlation coefficient at just one aggregation from 
the correct grain size (Table 2). 

The permutation importance of aspect, elevation, and 
percent forest to the MaxEnt models varied with grain 
size – in the fine-grain versions of both the generalist and 
specialist in the heterogeneous landscape the variable per-
cent importance was fairly even in the model at the correct 
(25-m) grain size. As grain size increased, the discrepancy 
between variables’ importance also increased, with elevation 
gaining importance and aspect losing importance (Fig. 4A, B). 
Although the variables were further spread apart in their 
permutation importance values in the coarse-grain general-
ist species, a similar pattern emerged with the model at the 
correct (200-m) grain size having a more even distribution. 
In the homogeneous landscape, the permutation impor-
tance of the predictor variables were substantially different, 
with elevation less important and aspect/percent forest more 
important to the models (Fig. 4C, D). However, the trend 
in which the importance of elevation went up at the expense 
of that of aspect with increasing grain size was consistent in 
both landscapes. 

The predicted area of presence based on the TSS was 
greater than the true presence area across all models of each 
species in each landscape (Fig. 5). The closest models to the 
truth were those at or close to the correct grain size, with 
increasingly severe over-predictions in models of increasing 
grain size. For example, the true presence area of the fine-scale 
generalist in the heterogeneous landscape was 3691 km2, and 
the 25-m MaxEnt model this species predicted 4591  km2 
(1.24 times more area) while the 1600-m Maxent model 
predicted 14 907 km2 (4.03 times more area, Fig. 5A, Fig. 6). 
The over prediction was even more pronounced in the spe-
cialist species, for which the true area of presence in the fine-
scale species was 527 km2. The closest model to the truth 
was the MaxEnt model at 50 m, which predicted 1116 km2 
(2.94 times more area), while the 1600-m MaxEnt model 
predicted 7260 km2 (13.77 times more area). These over 
predictions were even larger in most of the GLMs, though 

Table 1. The results of a random sampling of n = 2000 points across the 8 landscape/species combinations modeled.

Landscape/species Presence points Absence points Prevalence

Heterogeneous/fine-scale generalist 172 1828 0.09
Heterogeneous/coarse-scale generalist 220 1780 0.11
Heterogeneous/fine-scale specialist 31 1964 0.02
Heterogeneous/coarse-scale specialist 17 1983 0.01
Homogeneous/fine-scale generalist 503 1497 0.25
Homogeneous/coarse-scale generalist 646 1354 0.32
Homogeneous/fine-scale specialist 176 1824 0.09
Homogeneous/coarse-scale specialist 234 1766 0.12

http://dx.doi.org/10.5061/dryad.XXXXX﻿
http://dx.doi.org/10.5061/dryad.XXXXX﻿
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they improved relative to the MaxEnt models at very large 
grain sizes (Fig. 5).

Discussion

Our simulation of virtual species and subsequent testing of 
models of those species revealed complex effects of niche 
breadth and grain size on SDMs. Without considering grain 
size, our results show species are more accurately modeled 
across heterogeneous landscapes compared to homoge-
neous landscapes. This is likely due to the larger differences 
in the predictor variables that drive suitability in hetero-
geneous landscapes, meaning that it is easier for the mod-
els to delineate areas of high vs low suitability (and thus 
presence and absence on a landscape). Along similar lines, 
specialist species are more accurately modeled than more 
generalist species. This may be due to the fact that modeling 

algorithms should more easily differentiate between areas of 
higher suitability and areas of lower suitability when suit-
ability is more restricted. Higher accuracy in models of the 
specialist species was seen even though there were a seventh 
or less of the presence points in the specialist compared to 
the generalist species. Greater accuracy in modeling special-
ist compared to generalist species has also been found in 
empirical studies (Hernandez  et  al. 2006, McPherson and 
Jetz 2007, Tsoar et al. 2007, Evangelista et al. 2008), and the 
results of our simulation corroborate this.

Although our results have implications for the modeling 
of species with different niche breadths, they do not have 
direct applications to niche theory and modeling habitat 
specialization. This is because true habitat specialists will 
have evolved traits that make them more effective in cer-
tain environments compared to generalists, which is not 
captured in our virtual species. Examples of species that 
outperform others in a wide variety of environments are 

Table 2. Area under the receiver operating characteristic curve (AUC) and Pearson’s correlation coefficients between predicted and true 
suitabilities of models at increasing grain size of the simulated species. Different letters in the AUC columns indicate values that are 
significantly different from others in that species/model group (b is significantly different from a and c, but not another b).

MaxEnt GLM

 Fine-scale species Coarse-scale species Fine scale-species Coarse-scale species

Grain size (m) AUC Pearson’s r AUC Pearson’s r AUC Pearson’s r AUC Pearson’s r

(a) Heterogeneous landscape, habitat generalist.

25 0.95a 0.90 0.90a 0.77 0.93a 0.67 0.90a 0.71
50 0.94a,b 0.83 0.90a 0.79 0.92a 0.63 0.90a 0.73
100 0.93b 0.78 0.91a 0.84 0.91a,b 0.61 0.91a 0.77
200 0.91b,c 0.72 0.93b 0.90 0.90b,c 0.59 0.93b 0.81
400 0.89c 0.66 0.90a 0.82 0.89b,c 0.57 0.91b,c 0.78
800 0.86d 0.62 0.87c 0.76 0.87c 0.56 0.90a,c 0.74
1600 0.82e 0.58 0.84d 0.70 0.85c 0.56 0.89a 0.70

(b) Heterogeneous landscape, habitat specialist.

25 0.99a 0.97 0.96a,c 0.66 0.95a 0.55 0.91a 0.52
50 0.98a,b 0.87 0.99b 0.71 0.95a,b 0.53 0.91a 0.53
100 0.96b,c 0.78 0.99a 0.77 0.94b,c 0.51 0.94a 0.58
200 0.96c 0.68 0.96a 0.93 0.92b,c 0.47 0.96a 0.62
400 0.95c 0.58 0.96a,c 0.75 0.92c,d 0.45 0.94a 0.59
800 0.91d 0.52 0.95c,d 0.64 0.91c,d 0.43 0.93a 0.55
1600 0.90e 0.45 0.91d 0.54 0.91d 0.42 0.93a 0.52

(c) Homogeneous landscape, habitat generalist.
25 0.86a 0.94 0.74a,b 0.75 0.81a 0.65 0.79a 0.65
50 0.83b 0.85 0.76a 0.77 0.81a 0.63 0.79a 0.67
100 0.80c 0.76 0.75a 0.83 0.79a,b 0.59 0.79a 0.71
200 0.76d 0.64 0.81c 0.94 0.77b,c 0.54 0.84b 0.76
400 0.69e 0.53 0.73b 0.78 0.73c,d 0.49 0.79a 0.70
800 0.64f 0.45 0.68d 0.65 0.70d,r 0.44 0.75a 0.62
1600 0.61g 0.38 0.64e 0.53 0.66e 0.37 0.71c 0.53

(d) Homogeneous landscape, habitat specialist.
25 0.94a 0.92 0.84a 0.63 0.81a 0.46 0.84a 0.47
50 0.92b 0.84 0.85a 0.65 0.79a 0.45 0.85a 0.50
100 0.89b,c 0.73 0.86a 0.71 0.76b 0.44 0.86a 0.55
200 0.84c 0.59 0.93b 0.92 0.72b,c 0.39 0.90b 0.63
400 0.76d 0.45 0.84a 0.67 0.70c,d 0.36 0.85a 0.55
800 0.68e 0.33 0.77c 0.52 0.67d,e 0.31 0.80c 0.47
1600 0.65e 0.27 0.73d 0.42 0.65e 0.27 0.75c 0.40
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on the rise, however, particularly with the species invasion 
phenomenon. Invasive species often have much broader suc-
cess across landscapes and habitat conditions than native 
species (Richards et al. 2006). Predicting the spread of inva-
sive species is an increasingly important endeavor for ecologi-
cal research and conservation, and our results indicate that 
this will be challenging for successful invaders with broad 
niches. Our study kept suitability responses for each predic-
tor to normal distributions. We acknowledge that this is a 
simplification, and therefore additional research to investi-
gate different suitability response curves is necessary. This 

would more accurately simulate niche specialization and 
show its influence on the grain-size effects of the environ-
mental variables.

Considering grain size, our results suggest that using pre-
dictors at the scale at which a species responds (in our case 
the scale at which it was simulated) will generally maximize 
model accuracy. However, the extent of these differences in 
accuracy varied by landscape, model, and virtual species. The 
habitat specialist species built at a coarser grain (200 m) in 
the heterogeneous landscape, for example, was in fact better 
modeled at smaller grain resolutions (50 and 100 m) than 
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the one at which it was simulated. This suggests that in spe-
cies with a narrower niche, selecting a fine enough grain to 
capture more details in the variation of the environmental 

variables is important. On the other hand, the deterioration 
in model accuracy at larger grain sizes was greater in the habi-
tat generalist than in the habitat specialist. The deterioration 
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of model accuracy with increasing grain size was also higher 
in the homogeneous landscape than the heterogeneous land-
scape. This makes sense considering there is a smaller suitabil-
ity ‘signal’ embedded in the background landscape for both 
habitat generalists and species in homogeneous landscapes, 
and our results indicate that this signal becomes harder to 
capture when increasing the grain size of the environmental 
predictors. 

It is interesting to consider how variable importance 
changed with increasing grain size. The overwhelming 
importance of elevation in the heterogeneous landscape at 
the expense of aspect at larger grain sizes is likely because the 
average elevation value across a larger area is more meaningful 
than the average aspect value: consider the largest grain size of 
1600 m. The average elevation of the area around a mountain 
top will produce a decent approximation with meaning to the 

model, while the average aspect will be a poor representation 
of the range of suitable aspect values throughout that cell. In 
the homogeneous landscape, elevation was far less important 
due to the small variance in its values across the landscape, 
but followed a similar trend of increasing importance at the 
expense of aspect with increasing grain size. This has implica-
tions for any study system in which important variables lose 
meaning at coarser scales. 

An additional advantage of modeling a species at the 
correct grain size was that it generally resulted in the most 
accurate measure of total area of presence based on the TSS. 
Our results suggest that if producing binary distribution or 
habitat maps for presentation or downstream applications, 
modeling at an inappropriate grain size will vastly overes-
timate a species’ presence area. Models just 1 aggregation 
apart resulted in up to 3 times more predicted presence 
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area while models at the largest grain size of 1600 m pre-
dicted up to 14 times more area than the true presence 
area. Similar relationships in landscape modeling have been 
described regarding increasing erosion area (Schoorl  et  al. 
2000) and increasing predicted areas of landslide vulner-
ability (Claessens  et  al. 2005) with increasing grain size. 
Other ecological studies have likewise found an effect of 
larger predicted areas of presence from larger grain sizes 
(Seo et al. 2009), but ours is the first to measure the effect 
against the ‘truth’ known from a derived virtual species. This 
has large implications for conservation planning when vital 
decisions about areas to protect and manage must be made 
with as accurate information as possible. The fact that all 
models overestimated each species’ presence area is also an 
important point to keep in mind when making conserva-
tion decisions on a landscape – species are likely less widely 

distributed then even models at empirically accurate scales 
are predicting. 

Unfortunately, many of the climate data used as envi-
ronmental predictors in SDMs are only available at grain 
sizes of 1 km or greater, which are often interpolations from 
even coarser data (Hijmans  et  al. 2005). Although gener-
ally avoided in ecological studies, there is potential in using 
geostatistical interpolation methods to further disaggregate 
predictor variables at larger grain sizes to match ecologically 
important variables for the species in question at smaller ones. 
Methods of obtaining finer resolution land cover information 
have been advanced in remote sensing sciences using super-
resolution mapping (Atkinson  et  al. 2008), and textural 
analysis of remotely sensed imagery has recently been used 
to characterize sub-pixel habitat heterogeneity at global scales 
(Tuanmu and Jetz 2016). Further research should investigate 
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the best methods of disaggregation for SDM application and 
the effects of disaggregating predictor variables on SDMs. 

A lion most likely perceives habitat at a much larger 
scale than a shrew, and thus it makes more sense to model 
its habitat at larger grain sizes than those used to model a 
shrew’s habitat. In addition to this point, however, is the fact 
that any given species is likely respond to their environment 
at a variety of scales. It is important to consider this scale-
mismatch within a species distribution model. For example, 

the scale at which a species responds to water availability may 
be finer than that at which it responds to air temperature. 
The variation of response-scales across species is likely one 
reason that there has been a wide variety of findings with 
regards to the effects of grain size across studies. There is 
precedent in modeling species distributions with multiple 
scales of predictors in a single model (Bellamy et  al. 2013, 
Bradter et al. 2013), but research has also shown that includ-
ing multiple empirically-selected grain sizes for predictors 

Truth 25 m

50 m 100 m

200 m 400 m

800 m 1600 m

Figure 6. Presence maps of the fine-scale habitat generalist species simulated on the heterogeneous landscape produced by MaxEnt models 
of increasing grain size.
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does not necessarily improve model performance over sin-
gle-grain sized models (Martin and Fahrig 2012). The task 
becomes more complicated when considering model evalua-
tion and selection criteria, as even commonly used statistics 
like AUC have been criticized as inappropriate in some 
cases (Lobo  et  al. 2008). In evaluating models of real spe-
cies in which the true environmental suitability of an area 
is unknown, additional metrics such as explained deviance, 
AIC, BIC (for Bayesian models), and point biserial correla-
tion (Kraemer 2006) should be employed, depending on the 
modeling method and research goals.

In the face of these complications, our results suggest 
that model accuracy and presence area predictions can be 
improved by evaluating models at multiple grain sizes and 
selecting the most accurate one. We increased grain size 
using mean values from the smaller cells, as our simulated 
species responded simply to values of the variables within a 
cell. Different summary statistics (such as variance, median, 
minimum value, etc.) may better explain a species’ response 
to a given environmental variable when increasing grain size, 
depending on the study system. We recommend that every 
study modeling a species’ distribution or habitat suitability 
across a landscape explicitly perform an analysis of grain size 
to decide what scale to model their species, as even well-
founded expert opinion can be inaccurate (Peterman  et  al. 
2014). Considering our findings that grain sizes larger than 
those at which species respond distort model accuracy and 
predictions to a greater degree than smaller ones, if a full 
analysis of grain-size effects is not feasible for a given project 
it is likely better to use smaller grain sizes.

Funding – Funding received from Ministry of Science,Technology 
and Research, National Science Foundation, no. 1340812.
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