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ABSTRACT. Payments for ecosystem services (PES) have increasingly been implemented to protect and restore ecosystems worldwide.
The effectiveness of conservation investments in PES may differ under alternative policy scenarios and may not be sustainable because
of uncertainties in human responses to policies and dynamic human-nature interactions. To assess the impacts of these interactions
on the effectiveness of PES programs, we developed a spatially explicit agent-based model: human and natural interactions under
policies (HANIP). We used HANIP to study the effectiveness of China’s Natural Forest Conservation Program (NFCP) and alternative
policy scenarios in a coupled human-nature system, China’s Wolong Nature Reserve, where indigenous people’s use of fuelwood affects
forests. We estimated the effects of the current NFCP, which provides a cash payment, and an alternative payment scenario that provides
an electricity payment by comparing forest dynamics under these policies to forest dynamics under a scenario in which no payment is
provided. In 2007, there were 337 km² of forests in the study area of 515 km². Under the baseline projection in which no payment is
provided, the forest area is expected to be 234 km² in 2030. Under the current NFCP, there are likely to be 379 km² of forests in 2030,
or an increase of 145 km² of forests to the baseline projection. If  the cash payment is replaced with an electricity payment, there are
likely to be 435 km² of forests in 2030, or an increase of 201 km² of forests to the baseline projection. However, the effectiveness of the
NFCP may be threatened by the behavior of newly formed households if  they are not included in the payment scheme. In addition,
the effects of socio-demographic factors on forests will also differ under different policy scenarios. Human and natural interactions
under policies (HANIP) and its modeling framework may also be used to assess the effectiveness of many other PES programs around
the world.
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INTRODUCTION
Humans have exerted substantial and growing impacts on the
Earth’s ecosystems (Millennium Ecosystem Assessment 2005)
resulting in biodiversity loss and ecosystem degradation
worldwide (Wackernagel et al. 2002, Luck et al. 2004). Human
alteration of Earth is not limited to human-dominated
landscapes, but is also common in many protected areas around
the world (Liu et al. 2001, Curran et al. 2004). To counter this
trend, conservation efforts, including payments for ecosystem
services (PES), have been undertaken by governments, private
sectors, and conservation-oriented nongovernment organizations
(OECD 1997, Ferraro and Kiss 2002). Payments for ecosystem
services programs provide incentives directly to ecosystem
services providers to undertake actions for desired environmental
benefits; an approach that promises improved effectiveness of
conservation investments (Ferraro and Kiss 2002, Wunder 2007).
Because PES programs aim at reducing human impacts through
shaping human actions (Smith 1995, Zbinden and Lee 2005,
Wunder 2008), their effectiveness depends on program design as
well as human actions in response to these programs. 

The effectiveness of conservation investments has been a great
concern to conservation practitioners (James et al. 1999, Ferraro
and Kiss 2002). Previous studies suggested that PES programs
have reduced soil and wind erosions (Osborn et al. 1993), restored
deteriorated ecosystems (Dunn et al. 1993, Sierra and Russman
2006), and provided habitat to wildlife (Johnson and Schwartz
1993, McMaster and Davis 2001, Asquith et al. 2008). Most
evaluations of the effectiveness of conservation investments rely
on comparisons of aggregated environmental outcomes with and

without conservation interventions (Salafsky and Margoluis
1999, Cullen et al. 2001, Viña et al. 2007), without taking
heterogeneous human decision making into consideration. A few
cost-effective analyses of conservation investments that
incorporate individual-level characteristics (Siikamäki and
Layton 2007, Chen et al. 2010) often neglect how dynamics of
these characteristics interact and result in macrolevel
environmental outcomes. These knowledge gaps are largely
because of a lack of integration of dynamic human-nature
interactions into the evaluation of conservation investments. 

Although the importance of human-nature interactions has long
been recognized (Foley et al. 2005, MEA 2005), complex processes
and emergent patterns in these interactions have not been well
understood. This is largely because social and ecological sciences
have traditionally developed separately (Rosa and Dietz 1998).
Humans and nature interact in coupled human and natural
systems (CHANS; Liu et al. 2007a, b). Concepts similar to
CHANS include social-ecological systems (Ostrom 2009) and
coupled human-environment systems (Turner et al. 2007). From
the perspective of systems theory (Von Bertalanffy 1968, Warren
et al. 1998), complexity features in human-nature interactions can
be demonstrated in many forms, including heterogeneous
components, nonlinear relationships, stochasticity, uncertainty,
and multiple interactions, e.g., learning and feedback, among
different components (Arthur 1999, Axelrod and Cohen 1999,
Crawford et al. 2005). Previous studies have revealed the
importance of complexity features in human-nature interactions
(An et al. 2005, Malanson et al. 2006, Liu et al. 2007a, Walsh et
al. 2008). The understanding of complex human-nature
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interactions relies on the integration of cross-scale and cross-
disciplinary data and methods for which traditional approaches
are often inadequate (Parker et al. 2003, An et al. 2005, Liu et al.
2013). 

Originating in artificial intelligence and paralleling individual-
based modeling in ecology, agent-based modeling (ABM) is a
bottom-up method that simulates actions of individual ‘agents,’
e.g., persons or households, and their interactions with the
environment to produce aggregated macrolevel patterns and
processes (Parker et al. 2003, An et al. 2005). Agents have
autonomous actions and are capable of interacting with other
agents and the environment. Because of these features, ABM has
been successfully applied in ecological studies, such as those for
land use/cover changes, to understand driving processes of
environmental changes and explore plausible future trajectories
and policy implications (Deadman et al. 2004, Matthews et al.
2007). Agent-based modeling is also an excellent tool for
understanding responses of human activities to institutional
transitions and the resulting macrolevel environmental and social
outcomes (Manson and Evans 2007, Chen et al. 2012a). 

We demonstrate the evaluation of conservation investments in
PES by integrating environmental outcomes with human actions
in a spatially explicit agent-based model, human and natural
interactions under policies (HANIP). Our model was built
through integration of cross-disciplinary methods and
parameterized with cross-scale data, in which household survey
and population census data were used to characterize human
actions and model dynamics in population and households, and
satellite imagery was used to model dynamics in environmental
outcomes. Through simulation experiments, HANIP can be used
to evaluate the effectiveness of a PES program and possible
scenarios by comparing environmental outcomes under
alternative policy interventions. In addition, HANIP can be used
to explore dynamics in the effectiveness of a PES program because
of uncertainties in human responses to policy interventions and
complex human-nature interactions. Human and natural
interactions under policies (HANIP) was parameterized to
evaluate the effectiveness of China’s Natural Forest Conservation
Program (NFCP) and alternative policy scenarios in Wolong
Nature Reserve in which incentives are provided for local residents
to reduce fuelwood use that affects natural forests.

China’s Natural Forest Conservation Program
Over the past three decades, China’s economy has grown faster
than that of any other major nation, fueling unprecedented
ecosystem degradation that has caused devastating socioeconomic
impacts (Liu and Raven 2010). For instance, the severe droughts
in 1997 and the major floods in 1998 were partially the result of
excessive deforestation (World Bank 2001). To mitigate the
impacts of its degraded ecosystems, China has been implementing
several PES programs (Liu and Diamond 2005, Liu 2010). Among
these programs is the Natural Forest Conservation Program
(NFCP), also referred to as the Natural Forest Protection
Program, which is one of the largest PES programs in the world
(Xu et al. 2006a, Liu et al. 2008). The NFCP conserves natural
forests through logging bans and afforestation by providing
incentives to forest enterprises and rural communities (Xu et al.
2006b). 

The NFCP started as a pilot program in 1998 and has been fully
implemented since 2001. The aims of the NFCP are to: (1) protect

and restore natural forests in the upper reaches of the Yangtze river
basin and the middle-upper reaches of the Yellow river basin and
through reduction in harvesting elsewhere; (2) construct plantation
forests through aerial seeding and artificial planting to increase the
capacity for timber harvesting from plantation forests; and (3)
create alternative employment for traditional forest enterprises
(Zuo 2002, Liu et al. 2008). The NFCP has been implemented
through such means as logging bans and shifting forest enterprises
from timber harvesting to tree plantations and forest management.
Creators of this program planned to reduce timber harvests in
natural forests from 32 million m³ in 1997 to 12 million m³ in 2003
and afforest 31 million ha by 2010. Conservation payments to
stakeholders are provided for 10 years. By the end of 2005, about
61 billion yuan had been invested through the NFCP (Liu et al.
2008). Specific implementations of the NFCP in different regions
in China are different. The NFCP has been recognized as an
especially important tool for avoiding deforestation and restoring
degraded ecosystems in many biologically significant regions such
as nature reserves (Loucks et al. 2001, Liu et al. 2008).

METHODS

Study area
Wolong Nature Reserve (Fig. 1) is located in China’s southwest
Sichuan province and within one of the top 25 global biodiversity
hotspots (Myers et al. 2000). It is one of the largest reserves for the
protection of the world-famous endangered giant pandas
(Ailuropoda melanoleuca). In addition to providing habitat for
about 10% of wild giant pandas and more than 6000 plant and
animal species, Wolong is also home to about 4500 indigenous

Fig. 1. Locations and elevations of Wolong Nature Reserve and
indigenous households in the reserve.

http://www.ecologyandsociety.org/vol19/iss1/art7/


Ecology and Society 19(1): 7
http://www.ecologyandsociety.org/vol19/iss1/art7/

Fig. 2. Conceptual framework of the model.

human residents (Liu et al. 2007a). People in the reserve engage
in diverse economic activities such as fuelwood collection,
deforestation for agricultural land, grazing, and support for
tourism (He et al. 2008). Previous studies in this reserve have
demonstrated rapid degradation in panda habitat because of
these human impacts, including fuelwood collection and
deforestation for agricultural land (An et al. 2005, Viña et al.
2007). Moreover, the rapidly growing human population and the
even more rapid rise in the number of households have produced
increasing human impacts on the ecosystem in the reserve (Liu et
al. 2003). 

Although enormous amounts of time and effort are needed for
fuelwood collection because of the extremely rugged terrain and
increasing difficulty of fuelwood collection as a result of the
reduction in forested areas (He et al. 2009), indigenous people in
the reserve still rely on fuelwood for much of their cooking and
heating energy requirements. The reserve administration had
limited the amount and location of fuelwood collection since 1984
(Wolong Nature Reserve 2000); however, it was difficult for the
administration to monitor and enforce collection regulations
because of the complex terrain and broad spatial extent of the
reserve (Fig. 1). Electricity, as an alternative to fuelwood, was
available in Wolong, but it had been used mainly for lighting and
some electronic appliances, e.g., TV, because electricity was
expensive for residents, and the voltage and stability of electricity
were not reliable (An et al. 2002). To encourage the use of
electricity as a replacement for fuelwood, the electricity networks
in Wolong were reconstructed by the government in 2001, and
this has resulted in greatly improved voltage and stability for all
the residents within the reserve. However, these conservation
policies and efforts were not effective without conservation
payments to indigenous people or substantial investments in
monitoring (Liu et al. 2007a). 

The NFCP enrollment took place in Wolong Nature Reserve in
2001. All households that existed in 2001 were enrolled in the

NFCP for 10 years. No additional enrollment in NFCP has been
offered since 2001, and new households, i.e., households formed
after 2001, were not included in the program. Under the NFCP
contract, every household or group of 2-16 households have been
allocated a natural forest parcel, which is monitored to prevent
illegal harvesting (Yang et al. 2013). Each participating household
is provided an annual payment of about 850 yuan, which comprised
14% of the average 2001 annual income of Wolong households (He
2008). If  illegal timber harvesting is found in a forest parcel, the
monitoring households will lose part or all of their NFCP payment
for the year, depending on the degree of harvest activity in the
parcel. Illegal harvesters, if  caught, lose their NFCP contracts.
Participating households are encouraged to use the payment to
purchase electricity to replace fuelwood.

Model summary
The conceptual framework of HANIP (Fig. 2) was implemented
in three submodels. In the demographic submodel, human
dynamics, including population and household processes, were
modeled by simulating individual people’s life histories. Young
adults may form new households after they get married, and newly
formed households are geographically distributed around their
parental households, i.e., households in which new households are
separated from, depending on the environmental conditions.
Household fuelwood use was modeled in the policy submodel (Fig.
2) as functions of both household characteristics, local
environmental conditions, and conservation policy. Both
household fuelwood use and deforestation for housing and farming
of new households affect dynamics in forest cover, which was
modeled in the landscape submodel (Fig. 2). Changes in forest cover
also depend on environmental conditions. We focused on a 6-km
buffer region surrounding all households in the reserve. We
employed this buffer size because almost all fuelwood collection
and deforestation for housing and farming occurred within 6 km
of the households (Linderman et al. 2005). This region covered 515
km² (Fig. 1), including 337 km² of forests in 2007 (Viña et al. 2011).
Comparisons of cumulative forest area under different policy
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scenarios allowed detection of the effectiveness of conservation
investments. Human and natural interactions under policies
(HANIP) was developed using the Java programming language
(JDK 1.4.2, Sun Microsystems) and was parameterized using data
from different sources, including population and agricultural
censuses, household interviews, and environmental conditions. 

We used an agent-based modeling approach because it allowed
us to take the heterogeneous human and environmental
characteristics into consideration. Agents are capable of ‘sensing’
other agents’ conditions when making decisions such as getting
married and creating new households. Dynamics in agents’
characteristics lead to dynamics in human activities, which result
in changes in the environment. Dynamic environmental
conditions also affect human decisions such as the location of
new households. Simulation of interactions between human
agents and the environment on aggregate can produce emergent
properties such as the nonlinear effects of conservation policies.
In addition, agent-based modeling allowed us to incorporate
many stochastic processes in human-environment interactions.
Our agent-based model, HANIP, was used as a ‘laboratory’ for
exploring the effects of alternative policy scenarios.

Demographic submodel
We obtained characteristics of every household in the reserve and
of each of its corresponding household members from three
government census datasets: the 1996 agricultural census, 4053
residents in 892 households, the 2000 population census, 4375
residents in 969 households, and the 2006 household registration,
4504 residents in 1197 households. These characteristics included
age, gender, and marital status of each household member,
kinship relations among household members, and amount of
cropland of each household. In addition, we measured the
geographic locations and elevations of all households in the
summer of 2006 using differentially corrected Global Positioning
System (GPS) receivers. 

Our demographic submodel was largely adopted from previous
studies in the reserve (An et al. 2001, 2003, 2005). Population
dynamics were modeled by simulating individual people’s life
histories at one-year increments. Major events of person agents
included birth, out-migration by students moving to colleges and
technical schools, marriage, migration into and out of the reserve
through marriage, aging by one year increments, and death. We
only considered migration through marriage and education
because other types of permanent migration have been rare
because of the hukou system of permanent residency (An and
Liu 2010). Events of person agents were modeled as stochastic
processes based on person agent attributes that included age,
gender, kinship relation, and marital status (An et al. 2005).
Attributes of household agents included location and elevation
of households, amount of cropland, household size, and presence
of senior people, i.e., > 60 years old. When young adults get
married, a new household may be formed, which was modeled as
a stochastic process depending on the gender of the young adult,
whether the young adult had siblings, the age of the young adult
compared to siblings, and the young adult’s intention of forming
a new household. The intention of young adults to form new
households was modeled using a random probability, separate
home intention, which represents the probability for young adults
to form a new household when they get married. The default value

of separate home intention was 0.42 (An et al. 2005). Major events
of household agents also included change in household size,
which depended on the life history of each household member,
and the dissolution of a household, which occurred when there
were no members left in the household. 

Based on information from existing households (An et al. 2005),
newly formed households were stochastically located in areas with
slopes < 37 degrees. A parameter, max new-parental households
distance, was used to specify the maximum possible distance
between a new household and its parental household, with a
default value of 800 m. The distance between each new household
and its parental household was a stochastic value between zero
and the max new-parental households distance. On the basis of
previous studies in this area (An et al. 2005), farmlands developed
by new households were located immediately around their
corresponding households. Therefore, we modeled the
development of farmlands by new households indirectly in the
way that farmland and buildings of each household were located
within the same pixel, 90 m by 90 m, in HANIP. A 90 m by 90 m
pixel size was chosen based on the availability of environmental
data and to maintain manageable computational complexity. We
updated the young adult’s probability of moving out of the reserve
by going to college and technical schools, which was modeled
using a random probability, college/technical school entrance
rate, based on the 2006 household registration data. The college/
technical school entrance rate represents the probability of
eligible young adults, most of them between 16 and 20 years old,
who go to college and technical school each year, and the default
value was 0.055.

Policy submodel
We used three policy scenarios in HANIP: no payment, cash
payment under the current NFCP, and electricity payment that
substitutes cash payment at the same cost. To understand
household fuelwood use patterns under the cash payment and
electricity payment, we randomly chose 321 households from a
total of 1197 households for in-person interviews, resulting in 305
valid interviews and a 95% response rate, in the summer of 2006.
We chose household heads or their spouses as interviewees
because they were usually the decision makers of household
affairs. We asked about the average amount of daily fuelwood
consumption in the previous year (2005) for both the winter
season when more fuelwood was consumed and the summer
season when less fuelwood was consumed. Household fuelwood
use was measured as a summation of daily consumption across
the year. We also asked about the amount of fuelwood that each
household would demand if  the cash payment of the NFCP (850
yuan) was substituted with electricity payment at the price in 2006
(0.18 yuan/kW*h), which leads to an electricity payment of 14
kW*h per day. 

Because all households were enrolled in the NFCP in 2001, we
did not have a control group of households in which the NFCP
was not implemented. Therefore, accurate evaluation of the effect
of the NFCP on fuelwood use was not feasible. Under the no-
payment scenario, household fuelwood use was assumed to follow
the fuelwood use pattern prior to the NFCP because there was a
drastic reduction in fuelwood use from 1999 to 2005 and an abrupt
change in forest cover from rapid deforestation to rapid forest
regeneration since 2001. The NFCP was the major reason for this
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change (Viña et al. 2011). Household fuelwood use pattern prior
to the NFCP was measured according to a previous study that
modeled fuelwood use on the basis of household size, presence
or absence of senior people in the household, and farmland area
(An et al. 2001). Prior to the NFCP, the mean household fuelwood
use per year was 15 m³. Although many other factors, for which
we do not have data for the whole population, may have also
affected fuelwood use under the no-payment scenario, these
factors are also likely to have similar effects on fuelwood use under
the cash payment and the electricity payment, therefore less likely
to have a major impact on the differences in environmental
outcomes among different policy scenarios. 

Interviews with 305 households showed an average household
fuelwood consumption of approximately 9 m³ per year under the
current NFCP with cash payment. Compared to fuelwood use in
1999 (An et al. 2001), there was approximately a 40% reduction
in fuelwood use. Major human activities that involve the use of
fuelwood or electricity included cooking human food, and heating
and cooking pig fodder. In 1999, only a small proportion of
households used electricity for these activities (An et al. 2002). In
2005, 44.3% of households used electricity exclusively for cooking
human food, and 54.4% of households used both electricity and
fuelwood for cooking human food. For heating, 23.9% of
households used electricity exclusively, and 52.1% of households
used both electricity and fuelwood. Almost all households relied
on fuelwood for cooking pig fodder in 2005. 

The total electricity expenses of households accounted for only
73% of the NFCP payment on average in 2006, suggesting that
only part of the conservation payment was used to replace
fuelwood. If  the cash payment of the NFCP was substituted with
an electricity payment of 14 kW*h per day, the average household
fuelwood demand would be 5.9 m³ per year. We pooled household
fuelwood consumption under the cash payment and household
fuelwood demand under the electricity payment, and used pooled
ordinary least squares (OLS) to estimate the effects of electricity
payment and household characteristics available from all the
households in the reserve. Because of the correlation in fuelwood
use under the cash payment and under the electricity payment for
the same households, pooling household fuelwood use under
different payment scenarios may result in heteroscedasticity in the
regression. We used Huber’s variance correction to obtain
heteroscedasticity-robust standard errors (Wooldridge 2002). 

Household fuelwood use was significantly positively correlated
to household size because more people in a household usually
required more fuelwood for cooking and heating (Table 1). The
farmland area of households was significantly positively
correlated to household fuelwood use because households with
more cropland usually grew more crops to feed more pigs, and
fuelwood for cooking pig fodder was an important part of
household fuelwood use. Elevation of households was also
significantly positively correlated to fuelwood use because
households at higher elevations usually needed more fuelwood
for heating in winters than those at lower elevations because of
differences in microclimate. If  the cash payment was substituted
with electricity payment, household fuelwood use would be
reduced by 3.1 m³ per year on average (Table 1). We then applied
the regression (Table 1) to estimate the fuelwood consumption of
all the households in the reserve under the cash payment and the
electricity payment.

Table 1. Pooled Ordinary Least Squares of fuelwood use pattern
(m3).

 Independent variables Parameters Robust SE

Household size 0.441* 0.241
Farmland (ha) 5.742** 2.522
Elevation (100 m) 0.746**** 0.154
Electricity payment (dummy) -3.097**** 0.267
Constant -8.164*** 3.074
R-squared 0.12

Observations: 610.
Significance: * p < = 0.1; ** p < = 0.05; *** p < = 0.01; **** p < =
0.001.

In the policy submodel, the magnitude of reduction in fuelwood
use by substituting the cash payment with the electricity payment
was modeled using a random parameter, electricity payment effect,
with a default mean value of 3.1 m³ per year (Table 1). Electricity
payment was more efficient than cash payment in reducing
fuelwood use because all of the electricity payment would be used
for energy requirements to reduce fuelwood use whereas not all the
cash payment may be used for electricity. In contrast to An et al.
(2001), availability of senior people in the households was not
significantly correlated to fuelwood use. This is probably because
extra fuelwood use by seniors for heating before the NFCP was a
relatively easy part in the reduction of fuelwood use under the
NFCP. Although new households were not included in the NFCP,
we did not find significantly more fuelwood use in these new
households compared to other households. In addition to the
increased monitoring efforts by households who participated in the
NFCP, similar fuelwood use between new households and other
households may also be because fuelwood use of new households
can be substantially influenced by the fuelwood use pattern of most
of the households in the reserve who are enrolled in the NFCP,
including their parental households. This type of phenomenon of
normative impact has been found in previous studies in this area
and elsewhere (Goldstein et al. 2008, Chen et al. 2009). Moreover,
these new households had smaller household sizes (mean = 2.8)
than those which were enrolled in the NFCP (mean = 4.0), leading
to comparable fuelwood use even though new households were not
included in the NFCP. 

Because the number of new households increases and the size of
new households changes, their fuelwood use pattern may be
uncertain if  they continue to be excluded from the NFCP. We
explored this uncertainty by parameterizing the fuelwood use of
new households under three different scenarios: all the new
households follow the fuelwood use pattern under the current
NFCP; half  of the new households follow the fuelwood use pattern
prior to the NFCP, i.e., no payment, and the other half  of the new
households follow the fuelwood use pattern under the current
NFCP; and all of new households follow the fuelwood use pattern
prior to the NFCP.

Landscape submodel
The dynamics of forest cover in Wolong were obtained from the
classification of remotely sensed imagery (Landsat Thematic
Mapper) acquired on June 26, 1994, June 13, 2001, and September
18, 2007. We used an unsupervised classification based on the
ISODATA technique, which is an iterative process for
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nonhierarchical pixel classification (Jensen 1996). A maximum of
1000 iterations were used for classification and produced an
output of 100 spectral classes. We then applied a postclassification
sorting method and merged the 100 spectral classes into four
information classes: forest, nonforest, clouds, and cloud shadows
through a combination of visual interpretation of these images
and information on land cover obtained from high spatial
resolution multispectral imagery, i.e., four IKONOS multispectral
scenes (4 x 4 m / pixel), acquired on August 31, October 3, and
November 8 and 16 of 2000, respectively, and a Quickbird
multispectral scene (2.4 x 2.4 m / pixel) acquired on November
23, 2007. A few areas under cloud and cloud shadows were
excluded from further analysis. The accuracy of classification was
assessed using ground truth points collected during the summers
of 1998 (209 points), 2000 (83 points), 2001 (83 points), and 2007
(593 points) that were measured using GPS receivers in real-time
and differentially corrected since 2000. The overall accuracies of
classified forest distributions were 79.2%, 78.2%, and 82.6% for
the 1994, 2001, and 2007 imagery, respectively. 

From 1994 to 2001, there was 20.1% forest loss and 12.0% forest
recovery, resulting in 8.6% net deforestation. From 2001 to 2007,
there was 12.4% forest loss and 22.7% forest recovery, resulting
in 10.3% net forest regeneration. To analyze forest dynamics, i.e.,
forest loss and forest recovery, at pixel level, we randomly selected
4500 pixels, in which two-thirds of the data, i.e., 3000 pixels, were
used for model calibration, and one-third of the data were used
for model validation. The 3000 pixels that were used for model
calibration corresponded to 1982 forest pixels and 1018 nonforest
pixels in 1994, and 1797 forest pixels and 1203 nonforest pixels in
2001 (Table 2). We compared these 3000 pixels between 1994 and
2001 to characterize forest loss and recovery during this period.
Similarly, to characterize forest loss and recovery in the 2001-2007
period, we compared these pixels between 2001 and 2007. We
pooled forest pixels in 1994 and 2001 for a total of 3779 forest
pixels, and pooled nonforest pixels in 1994 and 2001 for a total
of 2221 nonforest pixels. We modeled forest loss in 1994-2001 and
2001-2007 with the pooled forest pixels and forest recovery in
1994-2001 and 2001-2007 with the pooled nonforest pixels (Table
2) using two logistic regression models. We corrected for
dependencies between pixels that represented both 1994-2001 and
2001-2007 periods with Huber’s variance correction (Wooldridge
2002).

Table 2. Summary of data for the calibration and validation of
forest loss and recovery models.

 Year of
data

Model calibration (3000
pixels)

Model validation (1500
pixels)

Forest
pixels

Nonforest
pixels

Forest
pixels

Nonforest
pixels

1994 1982 1018 976 524
2001 1797 1203 892 608
Pooled
1994 and
2001

3779 2221 1868 1132

In the logistic regression models, we used biophysical variables
that were used in previous studies of forest dynamics (Geoghegan
et al. 2001, Nagendra et al. 2003, Viña et al. 2011). These variables

included elevation, slope, aspect, which was converted into soil
moisture classes (Parker 1982), and distance to the forest edge
(Tables 3, 4). In addition, we used a fuelwood impact variable that
was measured as: 

(1)

in which fuelwood_impacti represents fuelwood impact on the ith
pixel, fuelwood_consumptionj represents the fuelwood consumption
of the jth household located within 6 km of the ith pixel, and
distanceij represents the distance between the ith pixel and the jth
household. The fuelwood impact is, therefore, an inverse-distance
weighted aggregation of the fuelwood consumption of all eligible
households, i.e., households within 6-km buffer from the pixel, on
each pixel. This metric reflects the fact that forests closer to
households are more likely to be degraded or logged (He et al. 2009).
We also used a total fuelwood variable that measured the total
amount of fuelwood consumption by all households in the reserve
as an explanatory variable (Tables 3, 4). Fuelwood consumption
prior to the NFCP (An et al. 2001) was applied to those pixels that
were used to characterize forest loss and recovery between 1994 and
2001, and fuelwood consumption under the current NFCP (Table
1) was applied to those pixels that were used to characterize forest
loss and recovery between 2001 and 2007.

Table 3. Pooled logit estimation of forest loss.

 Independent variables Parameters Robust SE

Elevation (100 m) -0.008 0.014
Slope (degree) 0.001 0.006
Aspect (Parker scale) -0.054*** 0.008
Distance to forest edge (m) -0.019*** 0.001
Fuelwood impact (m³/m) 0.031*** 0.008
Total fuelwood (1000 m³) 0.020*** 0.003
Constant -1.667*** 0.502
Chi-square 347.46***

Observations: 3779.
Significance: *** p < = 0.001.

Table 4. Pooled logit estimation of forest recovery.

 Independent variables Parameters Robust SE

Elevation -0.008 0.011
Slope -0.009 0.006
Aspect 0.064*** 0.010
Distance to forest edge -0.014*** 0.001
Fuelwood impact -0.009 0.008
Total fuelwood -0.023*** 0.003
Constant 1.792*** 0.399
Chi-square 263.70***

Observations: 2221.
Significance: *** p < = 0.001.
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We then applied the logistic regression models for forest loss and
recovery to all the pixels in the landscape submodel. The duration
of forest dynamics between 1994 and 2001 was seven years.
Because the NFCP enrollment took place in 2001, we assumed
the deforestation trend before the NFCP was due to human
impacts in the first six years (1994-2000). The duration of forest
dynamics between 2001 and 2007 was also six years. Because
HANIP was built on a yearly basis, we approximated the annual
dynamics in each pixel by dividing the estimated probabilities of
forest loss and forest recovery from logistic regression models
(Tables 3, 4) by six years. Although the values of topographic
variables, i.e., elevation, slope, and aspect, of each pixel do not
change over time in HANIP, distance to forest edge changes yearly
as forest cover changes. In addition, both fuelwood impact and
total fuelwood variables (Tables 3, 4) change in each year
depending on population and households, which change annually.
We estimated the probability of forest loss for each forest pixel
and the probability of forest recovery for each nonforest pixel in
each year in HANIP and determined annual forest dynamics of
each pixel with a Bernoulli trial. The rate parameters of the
Bernoulli distributions were the probability of forest loss or forest
recovery.

Model validation and sensitivity analysis
Because of limits in data availability, the demographic submodel
and the landscape submodel started in different years. For model
validation, the demographic submodel started in 2000 using 2000
population census data, and the landscape submodel started in
2001 using 2001 land-cover data. Our model validation refers to
the comparison of simulation results with empirical data. We
evaluated the landscape submodel by testing regression models
for forest loss and forest recovery using a receiver operating
characteristic (ROC) curve (Hanley and Mcneil 1982). ROC curve
demonstrates the performance of a binary classifier as its
discrimination threshold is varied. The ROC curve is a plot of the
sensitivity values, i.e., true positive fraction, versus their
equivalent 1-specificity values, i.e., false positive fraction, for all
possible probability thresholds. The area under the ROC curve
(AUC) is a measure of model accuracy, with AUC values ranging
from 0 to 1, where a score of 1 indicates perfect discrimination,
a score of 0.5 implies a classification that is not better than
random, and a score that is lower than 0.5 implies a worse than
random classification. We used the validation data set (Table 2)
for deriving the AUC values to evaluate the performance of
logistic regression models for classifying forest loss and forest
recovery. We also compared the observed forest area in 2007 to
the mean of predicted forest areas in 2007 from 30 simulation
runs. 

For the demographic submodel, we compared the observed
population size and the number of households in 2006 to the
simulation results. Although validation of the effects of policy
scenarios on forest area was not feasible, measurement of the
impact of the current cash payment relied on the validation of
the landscape submodel and the fuelwood use pattern under the
scenario in which no payment was provided and validated in a
previous study (An et al. 2001). 

Finally, we conducted a sensitivity analysis to evaluate how
variable our model results were to small changes in the electricity
payment effect and three key socio-demographic factors, i.e,

college/technical school entrance rate, separate home intention,
and max new-parental households distance, that were identified
in previous studies (An et al. 2001, 2003, 2005). The sensitivity
index is defined as Sx = (DY/Y0)/(DX/X0), where X0 is the initial
value of a model parameter, DX is a small change in X, Y0 is the
initial outcome, and DY is the corresponding change in Y because
of the change in X (Haefner 1997). Small sensitivity values suggest
robustness of the outcome to small changes in parameters. We
also used two-sample t-tests to evaluate the magnitude of the
differences in simulation results because of changes in these
parameters.

Simulation experiments
We used 2006 household registration data as the starting point
for the demographic submodel, 2007 land-cover data as the
starting point for the landscape submodel, and ran simulations
through 2030. To demonstrate the effectiveness of the NFCP and
the electricity payment scenario, we also used household fuelwood
use patterns prior to the NFCP (An et al. 2001) to parameterize
the scenario in which no payments were provided as a comparison.
We demonstrated the complex interactive effects of socio-
demographic conditions and conservation policies on forest area
by running simulations under different configurations of three
key socio-demographic factors, i.e., college/technical school
entrance rate, separate home intention, and max new-parental
households distance, and distinct policy scenarios. Because of
stochastic processes, the HANIP model was run 30 times using
each of the parameter settings and policy scenarios to facilitate
relatively robust relations between model parameters and
simulation results. Results from 50 simulation runs were very
similar to results from 30 simulation runs, and we report the mean
values of results from 30 runs.

RESULTS

Forest dynamics under different simulation experiments
Simulations showed that forests varied under different payment
scenarios over time (Fig. 3). In 2007, there were 336.82 km² of
forests in the study area. Under the baseline projection in which
no payment is provided, the forest area is expected to be 233.65
km² in 2030. Under the cash payment of the NFCP, there are
likely to be 379.47 km² of forests in 2030 (Fig. 4). If  the cash
payment is replaced with an electricity payment, there are likely
to be 435.00 km² of forests in 2030. The effects of the cash payment
and the electricity payment relative to the baseline projection with
no payment increase over time (Fig. 4). By 2020, there are likely
to be 368.63 km² and 406.50 km² of forests, or an increase of 88.58
km² and 126.45 km² of forests to the baseline projection (280.05
km²), and by 2030, there are likely to be an increase of 145.82 km²
and 201.34 km² of forests to the baseline projection (233.65 km²)
through cash payment and electricity payment, respectively. The
increase in forest area is nonlinear. From 2011 to 2015, the average
yearly increase in forest area is 2.49 km² under the cash payment,
while from 2026 to 2030 the average yearly increase rate reduced
to 0.91 km². This nonlinearity occurs in response to increases in
population and households. From 2006 to 2030, the model
predicts increases of about 12.7% in population, to about 5075
people, and of about 26.7% in the number of households, to about
1517 households.
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Fig. 3. Distribution of forests and human residence observed in
2007 (a), and predicted changes in 2020 (b) and 2030 (c) under
no-payment scenario, 2020 (d) and 2030 (e) under cash
payment scenario, and 2020 (f) and 2030 (g) under electricity
payment scenario. Note that these maps are made based on
results from one run only, although the number of replicates is
30 for all simulation experiments.

Fig. 4. Predicted forest area under cash payment,
electricity payment, and no payment scenarios. We did
not draw confidence intervals because standard
deviations from 30 runs are small.

Dynamics in forests also depend on the behavior of newly formed
households, i.e., households formed after 2001. The more the new
households follow the fuelwood use pattern prior to the NFCP,
the less forests will be gained from the conservation payment (Fig.
5). Compared to the baseline projection in which no payment is
provided (Fig. 4), there are projected to be an increase of 135.12
km² and 125.32 km² of forests in 2030 under the cash payment of
the NFCP if  half  and all of new households follow the fuelwood
use pattern prior to the NFCP, respectively (Fig. 5). However,
forest area will start decreasing by 2023 if  all new households
follow the fuelwood use pattern prior to the NFCP.

Fig. 5. Predicted forest area under different fuelwood use
patterns followed by new households, i.e., households formed
after 2001.

Interactive effects of three key socio-demographic factors, i.e.,
college/technical school entrance rate, separate home intention,
and max new-parental households distance, and conservation
policies on forests are shown in Figure 6. Increases in college/
technical school entrance rate, decreases in separate home
intention, and decreases in max new-parental households
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Table 5. Comparison of model predictions of forest area, population size, and household number to observed values.

 Factors Observed value Observed mean
yearly change

Model mean Difference between model mean
and observed value

|Difference| < observed mean
yearly change

Forests in 2007
(km²)

336.82 5.16 339.24 2.42 Yes

Population in 2006 4504 21 4520 16 Yes
Households in 2006 1197 38 1141 -56 No

distance will all result in increases in forests (Fig. 6). Increases in
college/technical school entrance rate and decreases in separate
home intention will result in reduced population size and number
of households. Decreases in distances between new and parental
households will reduce the possibility of converting forests to
residential land and corresponding farmland because forests that
were closer to households were more likely degraded or removed
through previous human impacts (He et al. 2009). 

The effects of these three socio-demographic factors on forests
are different under different policy scenarios. A 50% increase in
college/technical school entrance rate will result in 6.56 (Fig. 6a),
4.16 (Fig. 6d), and 2.12 (Fig. 6g) km² increases in forests by 2030
under no payment, cash payment, and electricity payment,
respectively. A 50% decrease in separate home intention will result
in 12.56 (Fig. 6b), 8.84 (Fig. 6e), and 4.44 (Fig. 6h) km² increases
in forests by 2030 under no payment, cash payment, and electricity
payment, respectively. Decreases in the effects of college/technical
school entrance rate and separate home intention on forests
occurred because of a reduction in per unit, i.e., person and
household, fuelwood consumption when policy changes from no
payment to electricity payment. 

By comparison, a 50% decrease in max new-parental households
distance will result in 0.96 (Fig. 6c), 3.76 (Fig. 6f), and 2.94 (Fig.
6i) km² increases in forests by 2030 under no payment, cash
payment, and electricity payment, respectively. The effect of new-
parental households distance on forests was nonlinear as policy
changed. This is partly because there is not much forested area
around households if  no payment is provided, resulting in the
conversion of nonforest area into housing and farming use for
many new households, and the effect of new-parental households
distance will be small. The effect of new-parental households
distance increased as forests recovered under cash payment.
However, as forests further recover under electricity payment,
many new households will be formed through the conversion of
forested area, and the effect of new-parental households distance
will be smaller.

Results of model validation and sensitivity analysis
Both forest loss and forest recovery models exhibited moderately
high accuracy with AUC values of 0.775 and 0.773, respectively.
Comparisons of model predictions and observed values showed
that predicted mean forest area in 2007 was 339.24 km², which
was close to the observed value (Table 5). The difference between
the mean predicted forest area and the observed forest area was
2.42 km², which was less than the observed mean yearly change
in forests (5.16 km²) from 2001 to 2007. The difference between
the mean predicted human population and observed human
population in 2006 was 16, which was also less than the mean
yearly population change (21) from 2000 to 2006. The observed

number of households in 2006 was 1197, 56 more than the mean
predicted households. The difference in the number of households
was mainly because an unexpectedly large number of new
households were formed in 2001, following the implementation of
the NFCP, to more effectively capture conservation subsidies that
are distributed on the household basis (Liu et al. 2007a). 

Sensitivity analyses (Table 6) showed that a 10% decrease in the
effect of electricity payment, i.e., the average amount of fuelwood
that can be saved by replacing the cash payment with an electricity
payment, decreased mean forest area by 2.04 km² (Sx = -0.057). A
t-test suggested that the decrease in mean forest area was significant
(p < 0.001). Significant decrease in mean forest area because of a
decrease in the effect of electricity payment was expected because
change in fuelwood use was directly related to forest dynamics in
our model. Forest area was insensitive to small changes in all three
socio-demographic factors (Table 6). A 10% increase in students’
college/technical school entrance rate resulted in a 0.20 km² increase
in mean forest area (Sx = 0.006), although a 10% increase in young
adult’s intention of forming a new household resulted in 0.23 km²
decrease in mean forest area (Sx = -0.007). A 10% increase in the
maximum distance between a newly formed household and its
parental household decreased mean forest area by 0.17 km² (Sx 
= -0.005). Statistical tests showed that perturbations in these
parameters did not result in significant differences in mean forest
area (Table 6).

DISCUSSION
Past conservation policies in Wolong Nature Reserve aimed to limit
the amount and location of fuelwood collection. However,
monitoring and enforcement of conservation policies were difficult
(Liu et al. 2007a), resulting in rapid deforestation (Liu et al. 2001,
Viña et al. 2007). Although the abrupt change in forest cover from
rapid deforestation in 1994-2001 to rapid forest regeneration in
2001-2007 could arise from multiple factors, such as the
improvement in electricity supply, the Natural Forest Conservation
Program (NFCP) appears to have played a major role. Under this
program, local households receive a significant amount of
conservation payment for monitoring forest parcels. As a result,
household fuelwood use has been drastically reduced. Although
the NFCP has been successful in conserving forests, its effectiveness
may be improved under alternative policy arrangements. In
addition, there can be uncertainties in the effectiveness of such
conservation investments because of complex interactions between
human actions and their environmental repercussions (Liu et al.
2007a). 

We developed a spatially explicit simulation model, HANIP, to
study human and natural interactions under policy scenarios.
Simulation experiments using HANIP enabled us to measure the
effectiveness of conservation under different policies. By 2030,
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Fig. 6. Effects of socio-demographic factors on forests under no payment (a, b, c), cash payment (d, e, f), and electricity payment (g,
h, i) scenarios.
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Table 6. Sensitivity tests for selected model parameters.

 Parameters Default
value

Perturbation Change in forest area
(km²)

t statistic for differences in forest
area (p-value)

Sensitivity

Electricity payment effect 3.1 m³ -0.31 
(10%)

-2.04 -11.18 (< 0.001) -0.057

College/technical school
entrance rate

0.055 +0.0055 
(10%)

0.20 1.22 (0.231) 0.006

Separate home intention 0.42 +0.042 
(10%)

-0.23 -1.61 (0.119) -0.007

Max new-parental
households distance

800 m +80 
(10%)

-0.17 -0.87 (0.391) -0.005

145.82 and 201.34 km² of forests in the study area can be gained
through prevented deforestation and forest recovery using cash
payment and electricity payment mechanisms, respectively.
Compared to cash payment, conservation payment in the form
of electricity is a more direct approach of paying people to reduce
their negative impacts by replacing fuelwood with electricity.
Therefore, electricity payment may improve the efficiency of
conservation investments, which is important as current
conservation investments are far below the requirements for
conserving ecosystems globally (James et al. 1999, 2001). We
recognize that there are potential negative environmental impacts
from electricity generation, such as landslides, water and air
pollution, greenhouse gas emissions, soil erosion, and biodiversity
losses (Liu and Diamond 2005), which should also be considered
for policy implementation. 

Through modeling dynamics of population and households,
HANIP can also detect changes in the impacts of policy
interventions on forests over time. Nonlinear increases in forests
under policy interventions suggested that conservation gains from
PES programs may largely depend on population and household
dynamics in indigenous communities. The effectiveness of
conservation investments may not be sustainable because of
uncertain human responses to policy interventions. Similar
fuelwood use between NFCP participating households and new
households reflected the increased forest monitoring and
potential normative effects. As the number of newly formed
households increases, the effectiveness of conservation payment
may be threatened by the behavior of new households if  they are
not included in the program. 

We also explored the effects of socio-demographic factors on
forests by using three different values for each of three key socio-
demographic factors. We found that the effects of these socio-
demographic factors on forests differed under different policy
scenarios, suggesting the presence of interactive effects of policy
interventions and socio-demographic factors on forests. In the
real world, however, these factors may not be constant over 20
years. Long-term research in this area may provide information
about changes in these factors that can be used to further explain
the impacts of dynamic socio-demographic conditions on forests. 

As forests recover through conservation payments, the habitat of
many wildlife species may be restored. However, the effects of
conservation policy implementation on wildlife habitat may lag
behind because it usually takes a few decades for the habitat of
wildlife species, such as the giant pandas, to fully recover after

forest recovery (Bearer et al. 2008). This suggests that
conservation investments should be continued for relatively long
periods of time to restore the habitat of wildlife species. 

In the parameterization of HANIP, we approximated the effects
of conservation policies by comparing the fuelwood use under
the current NFCP payment and under an alternative electricity
payment to the fuelwood use prior to the NFCP. Although many
factors may have contributed to the fuelwood use and its
corresponding dynamics in forests, field observations suggest that
the NFCP has played a major role in forest dynamics in Wolong.
Accurate evaluation of conservation policies requires the
comparison of outcomes between treatment groups, i.e., areas in
which policies are implemented, with control groups, i.e., areas in
which policies are not implemented, through advanced program
evaluation approaches such as propensity score matching
(Ferraro and Pattanayak 2006, Alix-Garcia et al. 2008, Andam
et al. 2008, Joppa and Pfaff  2011, Arriagada et al. 2012, Chen et
al. 2012b). Future studies on the evaluation of the NFCP may
compare forest dynamics between Wolong and its neighboring
areas in which the NFCP may not have been fully implemented. 

Because demographic information in 2006 was not used in the
calibration of the demographic submodel, validation of the
demographic submodel was conducted by comparing population
size and the number of households between simulated and
observed values in 2006. For the landscape submodel, forest cover
change between 1994 and 2001 was used to characterize dynamics
in forest cover prior to the NFCP implementation, and forest
cover change between 2001 and 2007 was used to characterize
dynamics in forest cover after the implementation of the NFCP.
Because forest cover data in 1994, 2001, and 2007 were all used
for model calibration, we used a receiver operating characteristics
(ROC) curve to evaluate the regression models for forest loss and
recovery. As independent forest cover data become available,
further validation of the landscape submodel at the pixel level
based on approaches such as those developed by Pontius and
coauthors (Pontius and Pacheco 2004, Pontius et al. 2004, Pontius
and Malanson 2005) can be helpful. In addition, classification
errors of forest cover in 1994, 2001, and 2007 may compromise
the performance of the model at the pixel level, but are unlikely
to have significant impact on the magnitude of policy effects
because classification errors were random rather than systematic,
thus unlikely to be biased. 

Interactions among components in coupled human and natural
systems (CHANS) are complex (Liu et al. 2007a). Accurate
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prediction of these interactions is difficult. For instance, our
model for estimating household fuelwood consumption (Table 1)
does not have a high prediction power, although the variables on
the basis of the estimated fuelwood consumption from this model
were significant predictors in forest loss/recovery models (Tables
3, 4), which have moderate levels of prediction power. Therefore,
like all other models, our model (HANIP) is a simplified
representation of human-nature interactions under policies in the
real world. Nevertheless, modeling some of the key dynamic
interactions using HANIP is important for understanding the
long-term effectiveness of conservation investments that may
involve complexity, e.g., nonlinearity, and uncertainty. The
modeling framework of HANIP may also be used to study the
dynamics of key interactions, as well as long-term effectiveness
of conservation policies in many other coupled human-nature
systems around the world.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/5578
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