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Abstract

Context Human demands for ecosystem services

(ES) have tremendously changed the landscape and

led to degradation of ecosystems and associated

services. The resolving of current eco-environmental

problems calls for better understanding of the spa-

tially explicit ES interactions to guide targeted land-

use policy-making.

Objectives We propose a framework to map ES in

continuous time-series, based on which we further

quantify interactions among multiple ES.

Methods The supply of three key ES—soil conser-

vation (SC), net primary production (NPP) and water

yield (WY)—were quantified and mapped at fine-

resolution from 2000 to 2013 using easily-accessible

spatial data. Pairwise ES interactions were quantified

using a spatio-temporal statistical method.

Results Spatio-temporal analyses of ES dynamics

illustrated that the supply of the three ES increased

over the past 14 years in northern Shaanxi, where land

cover dramatically changed owing to the wide-range

ecological restoration projects. Our results also

revealed that ES interactions varied across locations

due to landscape heterogeneity and climate difference.

In the arid and semi-arid area, synergies among ES

(e.g., SC vs. WY) tended to dominate in grassland,

while in artificial lands ES were prone to show trade-

offs. In the semi-humid area, pairwise ES (e.g., NPP

vs. WY) in woodland tended to present synergies.

Conclusions The spatio-temporal variation of ES

and their interactions resulted from coupling effect of

human-induced climate and land-use change. In the

long-term, spatially explicit quantification of ES
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interactions can help identify spatial heterogeneity in

ES trade-offs and synergies, and inform regional

targeted land-use policy adjustment and sustainable

ecosystem management.

Keywords Multiple ecosystem services � Trade-off �
Synergy � Temporal dynamics � Spatial heterogeneity �
Partial correlation � LULC change � Loess Plateau

Introduction

Ecosystem services (ES), the benefits that humans

obtain from ecosystems, have been mainstreamed into

land-use planning and management (Daily et al. 2009;

de Groot et al. 2010; Hu et al. 2014). Generally, ES are

grouped into provisioning (e.g., food, fresh water,

fiber and fuel), regulating (e.g., climate regulation,

water purification), cultural (e.g., aesthetic, recreation)

and supporting (e.g., primary production) services

(MEA 2005). In recent years, the conflicts between the

ever-growing human demands and limited resources

have increasingly stood out. More directly, some ES

such as provisioning services are prioritized due to

their critical roles in the delivery of goods and services

to support the human society, while other services

such as regulating and cultural services are neglected

or unintentionally impaired (Bennett et al. 2009;

Haase et al. 2012; Deng et al. 2016). Therefore, it is

urgent to understand and manage relationships among

ES in order to protect multiple ES simultaneously and

meanwhile maximize the benefits (Li 2014). Rela-

tionships among ES can be manifested as trade-off or

synergy (Rodriguez et al. 2006). Trade-off occurs as

the supply of one service is enhanced at the cost of

reducing the supply of another, while synergy arises

when multiple services are enhanced simultaneously

(Rodriguez et al. 2006).

Significant progress has been made to quantify ES

interactions across broad regions by analyzing the

spatial overlap and relationships among multiple ES

(Qiu and Turner 2013; Su and Fu 2013; Tomscha and

Gergel 2016). The spatial overlap is often quantified

using correlation analysis. The correlation coefficient

as an ES interaction indicator for a region is calculated

using either aggregated ES data sequence for geo-

graphical units (e.g., sub-basins, counties, grids) or

random sampling points data across the whole region

(Anderson et al. 2009; Qin et al. 2015; Qiu and Turner

2015), and positively correlated ES are assumed to be

synergistic whereas negative correlations are consid-

ered as trade-offs (Tomscha and Gergel 2016). This

method can inform dominated relationships among

ES, but could mask the spatial heterogeneity in ES

interactions since the drivers (e.g., climate, LULC, and

etc.) of ES change are often heterogeneous across a

large landscape (Haase et al. 2012; Tomscha and

Gergel 2016). Thereby, the results may lead to

misinterpretation of ES interactions (Naidoo et al.

2008; Tomscha and Gergel 2016).

There are also other methods, such as multivariate

statistics (principal component analysis, cluster and

factor analysis) (Maes et al. 2012; Qiu and Turner

2013; Lee and Lautenbach 2016) and comparison in

flower or spider web diagrams (Foley et al. 2005;

Raudsepp-Hearne et al. 2010; Birkhofer et al. 2015;

Renard et al. 2015) that were frequently applied in the

analysis of ES interactions by identifying ES bundles

(i.e., ES that tend to occur together). In addition,

scenario analysis has also been proven as another

promising pathway to analyze ES trade-offs (Nelson

et al. 2009; Butler et al. 2013; Thompson et al. 2016).

By developing alternative land use scenarios and then

simulating plausible future conditions of ES, this

method can assist stakeholders to evaluate the ES

trade-offs as a result of management (Bennett 2017).

Though future scenarios can help improve the land-

use policy-making, understanding ES relationships

from historical perspective is also important, espe-

cially for informing mechanisms behind ES relation-

ships and also legacies persist over time. Moreover, a

growing number of research emphasizes that historical

perspective and time-series-based analyses to ES

management is essential, especially in fast changing

ecosystems (Dallimer et al. 2015). However, rarely

have historical dynamic (or temporal change) been

incorporated into understanding the ES interactions

(but see Haase et al. 2012; Renard et al. 2015;

Tomscha and Gergel 2016). Haase et al. (2012)

analyzed the ES interactions by checking ES change

over time (e.g., DES, the change of ES between the

year 1990 and 2006): both positive change of pairwise

ES is taken as synergy, and both negative change is

seen as loss; otherwise, trade-offs. Spatial map

approach is also used to identify and localize areas

of change in ES synergies and trade-offs (Su and Fu

2013; Renard et al. 2015), for example, using
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snapshots of ES supply at a single point in time (also

called a space-for-time approach, see Tomscha and

Gergel 2016) to reveal ES interactions over time. In

another example, Tomscha and Gergel (2016) com-

pared space-for-time approach and change-over-time

approach, and pointed out the space-for-time approach

may lead to contrasting characterizations of ES

interactions while the change-over-time approach that

incorporating long-term historical data and determin-

ing correlations in DES could better reveal ES

temporal relationships in addition to spatial relation-

ships. Nevertheless, the change-over-time approach

may not adequately capture complex ES interactions,

since it cannot identify spatially explicit ES relation-

ships (like Haase et al. 2012). Thus, this approach may

not be suitable for region characterized with hetero-

geneous landscapes. Moreover, the using of ES data at

only two time points or several intervals may lead to

some uncertainties. For example, extreme environ-

mental disturbance (e.g., rainfall) in one year may

contribute an extreme change in one certain service

(e.g., water yield) while just a moderate change in

another service (e.g., carbon sequestration) compared

with a normal year; consequently, this abrupt change

in one service will make the comparison of pairwise

ES change unrepresentative. Renard et al. (2015) and

Tomscha and Gergel (2016) also suggested that the

identification of ES interactions should include long-

term monitoring and baseline reconstructions of ES.

In other words, ES trade-offs and synergies can

occur spatially (across locations) or temporally (over

time) (Rodriguez et al. 2006), however, few studies

have taken spatial–temporal dynamics of ES into

analyzing ES interactions. In this study, we proposed

a spatio-temporal statistical method for quantifying

spatially explicit ES interactions. By integrating his-

torical, continuous spatial datasets and spatial statistics

into the analysis, this method may have the potential of

moderating the aforementioned issues. Furthermore,

this method would be particularly applicable to plan-

ning purposes at multiple-extent region (e.g., urban,

regional, national, and global) where undergone hetero-

geneous and rapid changes in social, economic and

environmental drivers of ES supply (Haase et al. 2012).

Spatially refined ES in a continuous time series was

estimated by synthesizing land use/land cover (LULC),

topography (i.e., DEM) and remote sensing data (e.g.,

NDVI). Spatially explicit ES interactions are quantified

using the spatial statistics method. Specifically, we

selected three key ES (i.e., soil conservation, net

primary production and water yield) of Shaanxi

province in central-western China as a case. Based on

the framework proposed (Fig. 1), we focused our

analysis at fine-scale to address three research ques-

tions: (1) How the ES change over time, and where are

areas of high and low supply of individual ES? (2)

Where on the landscape are the interactions among ES

located? (3) How the spatially explicit ES analyti-

cal framework can guide the ecosystem management

and land-use decision-making?

Methods

Study area

Shaanxi province lies in 105�290–110�150E, 31�420–
39�350N (Fig. 2), covers approximately 205,800 km2

and had a resident population of *38 million by the

end of 2015. Characterized by mainland monsoon

climate, the annual precipitation decreases from south

to north: in the Hanjiang River basin, the annual

precipitation is about 1000 mm, whereas in the Qinling

Mountain zone it reduces to 800 mm, and in sand-

windy plateau zone is only 400 mm. Shaanxi plays an

important eco-hydrological function role in China,

since it locates in the middle of both the Yellow River

basin (62.6% of Shaanxi’s area) and the Yangtze River

basin (35.4% of Shaanxi’s area). Besides, approxi-

mately 40% of Shaanxi is in the Loess Plateau (LP),

where intensive land use and degraded vegetation lead

this area the most severe soil erosion in China (Su et al.

2012). During the past decades, several ameliorative

actions, such as the Three-North Shelter Forest Program

(TNSFP) and the Grain-for-Green Program (GFG),

have been launched by Chinese government to restore

the vegetation and improve ecological environment. In

addition to the great contribution of vegetation restora-

tion and soil loss control, these ambitious and costly

national-scale programs also led to the decrease in

regional food production and water yield (Lü et al.

2012). In view of the distinct location and fragile eco-

environment, along with the warming and drying

climate over this semi-arid and arid region, it is

pressing to distinguish the trade-offs among water

(water yield), sediment (soil conservation) and carbon

sequestration (net primary production) in order to better

plan for further policy adjustment.
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Datasets sources

The data used in modeling ES are listed in Table 1.

The daily meteorological data (precipitation, temper-

ature and solar radiation) of 45 stations (Fig. 2) are

retrieved from National Meteorological Information

Center. Topographical parameters (i.e., DEM) are

derived from Shuttle Radar Topography Mission

(STRM) digital elevation data. The Chinese soil

dataset come from the Harmonized World Soil

Database version 1.1 (HWSD) (Fischer et al. 2008).

The 250-m MODIS NDVI data were acquired from

NASA’s Earth Observing System. The LULC data

are interpreted from the Landsat 5 TM based on the

classification methods of decision trees using ENVI

5.2 software, and the accuracy levels of land use

maps were above 94% and thus meet the accuracy

requirements of the ES mapping models (Wang et al.

2014). All the data are interpolated or resampled [all

using resampling algorithm of nearest neighbor

assignment, except the resampling of LULC, which

using the majority resampling algorithm (ESRI

2013)] into 250-m resolution before input them into

the models for further analysis (Fu et al. 2011; Zhang

et al. 2015).

Quantifying ecosystem services supply

The three ES (i.e., soil conservation, net primary

production and water yield) were quantified for

Shaanxi province using validated spatial models. All

services were mapped at 250-m spatial resolution from

Fig. 1 The framework for integrating spatially explicit ES interactions to land-use policy-making
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2000 to 2013. Below we briefly summarized the

approaches used for quantifying each service.

Soil conservation

Soil conservation (SC) is a critical regulating service

supplied by terrestrial ecosystems to prevent soil

erosion (Fu et al. 2011; Li et al. 2017). We apply the

Revised Universal Soil Loss Equation (RUSLE) (Wis-

chmeier and Smith 1965; Renard et al. 1997) to

quantify soil erosion, and the wind erosion is neglected

here since the Shaanxi province is dominated by water

erosion (Fu et al. 2011). The soil conservation service

can be estimated by the difference between potential

Fig. 2 The location of Shaanxi province in China (a); the geographical division and the LULC pattern (with area percent in 2013) of

Shaanxi province (b)

Table 1 The datasets used for mapping ES

Datasets Data type Spatial resolution Time scale Data sources

Meteorological data Point – 2000–2013 http://cdc.cma.gov.cn/

Soil properties Raster 1 km 2000 http://westdc.westgis.ac.cn/data/

DEM Raster 90 m 2009 http://www.gdem.aster.ersdac.or.jp/

LULC Polygon 30 m 2000, 2005, 2010, 2013 http://www.landcover.org/data/

MODIS NDVI Raster 250 m 2000–2013 http://ladsweb.nascom.nasa.gov/data/
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erosion (Ap) and real soil erosion (Ar). The formula is

defined as the following:

SC ¼ Ap�Ar ð1Þ

Ap ¼ R� K � L� S ð2Þ

Ar ¼ R� K � L� S� C � P ð3Þ

where SC is the amount of soil conservation (t hm-2 year-1);

R is rainfall erosivity factor (MJ mm hm-2 h-1�year-1);

K is soil erodibility factor (t ha h ha-1 MJ-1 mm-1);

L is the slope length factor; C is dimensionless crop and

management factor (Cai et al. 2000); P refers to

conservation practice factor (Lufafa et al. 2003; Fu

et al. 2011).

Net primary production

Terrestrial net primary production (NPP) quantifies

the amount of atmospheric carbon fixed by plants and

accumulated as biomass (Haberl et al. 2013). It is a

fundamental supporting service that represents a

measure of the solar energy captured by ecosystems

and driving the overall functioning of the ecosystems

(MEA 2005). It also governs the flow of many

provision and regulation services, like climate regu-

lation service and carbon sequestration (Costanza et al.

2007; Zurlini et al. 2014).

The NPP can be estimated by combining remote

sensing on the vegetation index, land-cover and climate

data across a relatively large spatial area. The terrestrial

Carnegie Ames-Stanford Approach (CASA) was used

to estimate the NPP of ecosystems (Potter et al. 1993).

NPP x; tð Þ ¼ APAR x; tð Þ � e x; tð Þ ð4Þ

where NPP(x, t) is the net primary production of

location x at month t, APAR(x, t) is the canopy-

absorbed incident solar radiation (MJ m-2), and e(x, t)
is the light utilization efficiency (g C MJ-1). For more

details on the parameters calculation refer to Potter

et al. (1993) and Zhu et al. (2006). Data needed for the

CASA model include land cover, NDVI, and climate

data (Table 1). The annual NPP (g C m-2 year-1) is

the sum of monthly NPP within one year.

Water yield

Water is the most sensitive and limiting natural

resource in semi-arid and arid region systems, and

changes in LULC and climate can substantially impact

the regional hydrological cycle by altering evapotran-

spiration processes (Zhang et al. 2001). In this study,

the water yield was selected as an indicator of

hydrological regulation ES (Lü et al. 2012; Jia et al.

2014; Sharp et al. 2016) that includes the maintenance

of natural irrigation and drainage, buffering of

extremes in discharge of rivers, and etc. (de Groot

et al. 2002). Regional annual water yield (WY) is

mostly determined by annual precipitation (PPT) and

actual evapotranspiration (ET) (Budyko 1974; Feng

et al. 2012) with the assumption that the soil water

storage change (DS) is negligible at regional and long-

time scales (Zhang et al. 2004). Annual actual ET was

estimated by using by Zhang et al. (2001)’s empirical

model. This model was calibrated using hydrologic

data from over 250 watersheds worldwide across a

wide range of climatic zones and biomes (Zhang et al.

2001; Sun et al. 2006), and has been validated in many

case studies to be reliable to evaluate regional water

yield over a long time period (Zhang et al. 2012, 2015;

Lu et al. 2013). The water yield is calculated using the

following formulas:

WY ¼ PPT � ET � DS ð5Þ

ET ¼
1 þ w PET

PPT

1 þ w PET
PPT

þ PPT
PET

� PPT ð6Þ

where PET represents annual potential evapotranspi-

ration (mm), which was calculated using daily mete-

orological data and Hamon PET method (Hamon

1963); w is the plant-available water coefficient and it

represents the relative difference in the way plants use

soil water for transpiration (Zhang et al. 2001).

According to the published literatures in China (Sun

et al. 2005; Zhao et al. 2012; Lu et al. 2013; Zhang

et al. 2015), the w parameter values (see Table 2) were

assigned as 2.0 for high-cover woodland (where forest

cover [30%), 1.0 for low-cover woodland (where

forest cover \30%), 1.0 for shrubland, 0.5 for

grassland and cropland, and 0.1 for artificial and

barren land. ET for water body was defined as the

minimum of P and PET, i.e., ET = Min (P, PET) (Lu

et al. 2013). For the limited LULC data (in 2000, 2005,

2010 and 2013), we used the LULC data in 2000 to

model the WY for the initial year of 2000, LULC data

in 2005 to model the WY during 2001 to 2005, LULC

data in 2010 to model the WY during 2006 to 2010,
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and LULC data in 2013 to model the WY during 2011

to 2013. This assignment is based the assumption that

the changes in LULC during the five-year intervals are

small, because the major land use change was regular

in line with the Five-Year Plan of China (Liu et al.

2014).

Analyzing ecosystem services interactions

The quantification of interactions among pairwise ES

was based on the overlay analysis (Fig. 3a). To avoid

the cross-influence of other confounding factors (e.g.,

the synchronous change of climate and LULC; and in

this study, we chose two surrogate factors, i.e., r3—

annual precipitation and r4—annual NDVI), we

employed the partial correlation analysis to measure

the correlativity between pairwise ES. The calculation

was performed by MATLAB 8.1 programming, and

the corresponding formulas are defined as the

following:

r12�34ðijÞ ¼
r12�3ðijÞ � r14�3ðijÞr24�3ðijÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � r2
14�3ðijÞ

� �

1 � r2
24�3ðijÞ

� �

r ð7Þ

r12ðijÞ¼
Pn

n¼1 ES1nðijÞ�ES1ðijÞ
� �

ES2n�ðijÞ�ES2ðijÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
n¼1 ES1n�ðijÞ�ES1ðijÞ

� �2Pn
n¼1 ES2n�ðijÞ�ES2ðijÞ

� �2
q

ð8Þ

where r12�34(ij) is the partial correlation coefficient

between ES1 and ES2 under the condition that r3

(annual precipitation) and r4 (annual NDVI) are

controlled for grid cell ij; n is the year and i, j the

grid cell for certain ES in one year, for example,

ES11�(13) represents the grid cell whose value is 8 in

Fig. 3a; Similarly, other parameters like r12�3(ij) is the

partial correlation coefficient between ES1 and ES2 by

controlling r3 for the grid cell ij; the r12(ij) is the

correlation coefficient between ES1n�ij and ES2n�ij.

This method can quantify and map the magnitude

and spatial patterns of ES interactions with a more

visualized understanding of ES interactions comparing

with conventional methods (see examples in Fig. 3b, c).

Comparison of the methods for ecosystem services

interactions

We compared the existing methods of quantifying ES

interactions (Table 3). For the spatio-temporal statistical

Table 2 The empirical parameter of the plant-available water coefficient (w) frequently adopted in different case study

Land cover Worldwide

(Zhang et al. 2001)

Southeastern USA

(Sun et al. 2005)

In northern

China (Zhao

et al. 2012)

In mid-eastern

China (Lu

et al. 2013)

In central-

western

China (This

paper)

Wood land 2.0 Conifer, deciduous and

hardwood

2.8 2.8 High-

cover

2.0 High-

cover

2.8

Mixed 2.0 Low-

cover

1.0 Low-

cover

2.0

Shrub land – – 1.0 1.0 1.0

Grassland 0.5 2.0 1.5 0.5 1.5

Crop land 0.5 – 1.5 0.5 1.5

Artificial or urban

land

– 0.0 0 0.1 0.0

Barren land \0.5 – 0 0.1 0.0

Wetland or water

bodies

– ET = min (PPT, PET)

Note: 1.0 for mixed

vegetation

Validation H H H H
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method, we merged the identified ES interactions at

different significance levels into three categories (i.e.,

trade-off, synergy and no relationship) to test the

agreement among the results mapped from other spatially

explicit methods (i.e., methods m5 and m6 described in

Table 3) by calculating Cohen’s Kappa coefficients

(Landis and Koch 1977; Schröter and Remme 2016).

Results

Spatio-temporal variations of ecosystem services

The annual total soil conservation (SC) and net

primary production (NPP) of Shaanxi province both

increased as a whole, while annual total water yield

(WY) of this area decreased from 2000 to 2013

(Fig. 4). Apart from the steady and significant

(P\ 0.05) increase of SC, there were evident inter-

annual fluctuations in the variation of both NPP and

WY. Consequently, the relationships among ES may

not be stable in each year (Renard et al. 2015). For

example, from 2009 to 2010, SC increased signifi-

cantly, NPP showed little change, while WY showed a

dramatic decrease; however, from 2010 to 2011, SC

and NPP both presented a small increase, while the

WY showed a dramatic increase.

Production of all the three ES varied geographically

(Fig. 5), and services were spatially aggregated rather

than randomly distributed on the landscape

Fig. 3 Schematic diagram of the methods for analyzing ES

interactions: a Spatio-temporal statistical method for quantify-

ing ES interactions at fine spatio-temporal scale; b overall (or

sampled) subregion-by-subregion (or cell-by-cell) correlation

analysis between two services (in static manner), for example,

negative correlation between ES1 and ES2 for the year of T1

indicates trade-off between ES1 and ES2 (the red solid line); c a

spider web diagram shows the relationships among multiple ES

[adapted from (Ungaro et al. 2014), also in static manner]; d an

temporal integration method using a change detection of

pairwise ES interactions (e.g. biodiversity vs. carbon storage)

of two time periods (i.e., the year of T1–T2) [adapted from

(Haase et al. 2012)]
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(P\ 0.001). The spatial patterns of SC, NPP and WY

were similar with higher values in the south as

compared to the north of Shaanxi province. The

distinct boundary for this spatial pattern is the Qinling

Mountains, due to the significant differentiation in

regional climatic, hydrothermal conditions and vege-

tation cover at its two sides of the mountains. Besides,

the most significant change in the three ES occurred in

Table 3 Comparison of methods for ES interactions

No. Temporal

dynamic

Spatial units in

calculation

Methods Apply

spatial scale

Examples Spatially

explicit

I Static (1 year) Sub-region (e.g.

counties,

municipalities)

or sub-

watershed

m1Space-for-time approach: Overall

subregion-by-subregion

correlation (e.g., Fig. 3b)

Small

watershed

or local

scale

Extensively used No

m2Identify ES bundles or compare

the relative magnitude of multiple

ES supply (e.g., Fig. 3c)

Both small

scale and

broad

scale

Foley et al. (2005),

Raudsepp-Hearne

et al. (2010),

Ungaro et al.

(2014)

Yes

Grid cell m1 Space-for-time approach: Overall

(or sampled) cell-by-cell

correlation

Small

watershed

or local

scale

Jia et al. (2014) No

m3 Multivariate statistics (e.g.,

principal component analysis,

cluster and factor analysis) on the

basis of sampled random grid cell

Watershed Qiu and Turner

(2013)

Yes

II Semi-static (two

time points)

Sub-region (e.g.

counties,

municipalities)

or sub-

watershed

m4Change-over-time approach:

Overall subregion-by-subregion

correlations between pairwise ES

map differences (i.e., DES from

two time points)

Small

watershed

or local

scale

Tomscha and

Gergel (2016)

No

Grid cell (ł)m5Test the consistency of

pairwise ES change direction for

two time points (e.g., Fig. 3d)

No

limitation

This paper (Haase

et al. 2012)

Yes

III Dynamic (at

several time

intervals or a

continuous

time series)

Sub-region (e.g.

counties,

municipalities)

or sub-

watershed

m1Space-for-time approach:

Spearman correlation among each

pair of ES for each time step to

assess changes of the ES

interactions over time

Reginal

scale

Renard et al. (2015) No

Grid cell (ł)m6Test the consistency of the

change trend direction of pairwise

ES

No

limitation

This paper Yes

Grid cell (ł)m7Spatio-temporal statistical

method: (Partial) Correlations

between pairwise ES changing

over time (e.g., Fig. 3a)

No

limitation

This paper Yes

Methods m1, m4, m5, m6 and m7 were selected to conduct comparison test in this study. Especially, methods marked with ‘‘(ł)’’

could delineate spatially explicit ES interactions (i.e., visualized maps of ES interactions) in addition to considering temporal

dynamic in ES

m5: both of the ES showing positive change indicates synergy; one showing positive change and the other negative change indicates

trade-off

m6: the change trend for each ES was calculated in the least square method, and both of the ES showing positive change trend

indicates synergy; one showing positive change and the other negative change indicates trade-off

m7: pairwise ES showing positive correlation over time indicates synergy, otherwise trade-off. See Fig. 3a for details about this

method

Landscape Ecol (2017) 32:1181–1199 1189

123



the northern Yan River basin (i.e., the northern Loess

Plateau in Shaanxi province). The SC and NPP of this

area were much higher than the surrounding regions,

and also undergone a significant increase over the past

14 years (Fig. 5). However, the WY in the same area

showed an inverse spatial pattern compared with SC

and NPP, that is, WY in the middle of Yan River basin

was higher than the west and east (Fig. 5c). Interest-

ingly, in the west-south of Shaanxi province, SC and

WY both showed a significant increase trend, while

the NPP here decreased significantly (P\ 0.05).

Thereby, the interactions among ES may differ across

geographical locations or different landscapes (Ro-

driguez et al. 2006; Goldstein et al. 2012; Haase et al.

2012; Qiu and Turner 2013).

Spatial heterogeneity in ecosystem services

interactions

Our spatio-temporal statistical method revealed that

ES interactions varied across different locations

(Fig. 6). For SC and NPP, strong synergies spatially

aggregated in the northern LP, accounting for 2.12%

of the landscapes, while strong trade-offs spatially

occurred in the south of LP and Daba Mountains (DM)

region, totally accounting for 3.49% of the landscapes.

Spatial patterns of the interactions between SC and

WY were similar to the SC and NPP interaction. The

most pronounced distinction was that, in the LP

region, strong synergies between SC and WY

accounted for 11.55% of landscapes (Fig. 6b). For

the interactions between NPP and WY, the strong

synergies also spatially aggregated in the northern LP,

whereas the strong trade-offs occurred in the Guanz-

hong basin (GB), where covered by the most inten-

sively managed croplands and most urban impervious

surface (Figs. 2, 6c). Overall, synergies among the

three ES mostly presented in the northern LP (vege-

tation-dominated landscapes, e.g., woodland and

grassland), while trade-offs mostly occurred in the

southern LP and GB (human-dominated landscapes,

e.g., farmland and built-up land).

Ecosystem services interactions differ by land

use/land cover types

To further detect whether the ES interactions have

certain relations with LULC types, we calculated the

proportions of each ES interactions type in each LULC

type (Fig. 7). The results showed that ES interactions

in grassland were prone to present synergies (more

than 70% of the total grassland), while built-up land

tended to show trade-offs (more than 60% of the built-

up land) among all three pairwise ES. Other LULC

types, such as woodland, water body, in which SC

versus NPP and SC versus WY interactions tended to

be trade-offs, but the NPP versus WY interrelation

tended to be synergies in these LULC types. Thus, ES

interactions differ by certain LULC types.

Comparison of the different methods for ES

interactions analysis

Our brief review of methods indicated that static

approaches (i.e., methods m1, m2 and m3 described in

Table 3) used to detect ES interactions usually assume

the spatio-temporal variability of ES is comparable

(Tomscha and Gergel 2016). Therefore, they usually

concluded a definite or dominated relationship

between pairwise ES. For example, employing meth-

ods m1 and m2 in our study showed that only strong

synergies existed in the three ES (see Appendix 1,

Table A1). However, the spatially explicit approaches

(i.e., methods m5, m6 and m7 described in Table 3) all

revealed pronounced spatial heterogeneity in ES

interactions. For instance, across the Shaanxi
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R² = 0.2526

R² = 0.1335
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Fig. 4 The temporal dynamic of the three ES in Shaanxi

province, China. We normalized the annual soil conservation

(SC), net primary production (NPP) and water yield (WY) to

0–1 (the points), and plotted their change trend from 2000 to

2013 (solid lines). SC and NPP showed increase trend, while

WY presented decrease trend as a whole
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Fig. 5 Spatial patterns of the three ES’ mean values, change trend and the significance level (P\ 0.05) from 2000 to 2013; a soil

conservation (SC), b net primary production (NPP) and c water yield (WY)
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Fig. 6 The spatial patterns

of pairwise ES interactions

(the left maps), and the

proportions of each ES

interaction in each

landscape (the right bar

charts). The quantitative

relationships between

pairwise ES is based on

partial correlation analysis

using MATLAB

programming. *P\ 0.1;

**P\ 0.05. The

abbreviation of each

landscape is showed below

(in the order of north-to-

south): Sand-windy Plateau

(SWP), Loess Plateau (LP),

Guanzhong Basin (GB),

Qinling Mountains region

(QM), Hanzhong-Ankang

Hilly region (HAH), Daba

Mountains region (DM)
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province, method m7 detected that 3.37% of the

landscapes presented strong synergies, while 5.63% of

the landscapes showed significant trade-offs between

SC and NPP (see Fig. 6; Appendix 2, Fig. A1). In

addition, the areas where weak synergies and trade-

offs between these two ES accounted for 46.38% and

44.39% of the landscapes respectively.

We further compared the three spatially explicit

approaches (i.e., methods m5, m6 and m7) using

Kappa statistic (see Appendix 2, Fig. A2; Table 4).

Kappa values close to 1 would indicate almost perfect

agreement (Schröter and Remme 2016). Pairwise

comparisons showed that fair agreement was observed

between methods m6 and m7 for the interactions

between SC versus NPP, SC versus WY. Specially, for

SC versus NPP interaction, the methods m6 and m7

that using longer-term ES data showed moderate

agreement (K = 0.44).

Discussion

Spatio-temporal variation in the ecosystem

services and their drivers

Our study examined fine-scale spatial and temporal

dynamics of three ecosystem service (ES), i.e., soil

conservation (SC), net primary production (NPP) and

Fig. 7 The area proportion

of ES interactions in each

LULC type. *P\ 0.1;

**P\ 0.05
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water yield (WY), from 2000 to 2013 in the Shaanxi

province, China. The increase of SC and NPP in

northern Shaanxi was mostly attributed to the large-

scale ecological construction projects, such as the

Three-North Shelter Forest Program (TNSFP) and the

Grain-for-Green Program (GFG). Especially, in the

Yan River basin, the most extensive vegetation

restoration projects have greatly helped enhance the

soil conservation and boosted the increase of NPP (Xie

et al. 2009; Su et al. 2012; Wang et al. 2015). Our

results also showed that the WY across the whole

region decreased, which is consistent with previous

studies in the LP (Sun et al. 2006; Lü et al. 2012). The

decrease likely resulted from the vegetation restora-

tion projects (e.g., TNSFP, GFG and etc.), which

increased the evapotranspiration, and consequently

led to water shortage (Jackson et al. 2005), especially

in the LP region. However, few studies revealed the

spatial heterogeneity in regional WY. In our results,

conversely, the WY in the northwestern LP increased

over the past decade. This may owe to the significant

increase of precipitation (PPT) in this region (see

Appendix 2, Fig. A3), where although the evapotran-

spiration (ET) increased, the magnitude of its change

did not exceed the increases in PPT. Furthermore, a

majority of climate models are projecting an increase

of PPT over the Yan River catchment (Wang et al.

2015). Nevertheless, further analysis is needed since

recent growing literatures has been arguing that the

variation of WY is not totally decided by the LULC

change, but dominated by regional climate change and

human activities (such as landscape engineering,

terracing and the construction of check dams and

reservoirs) (Feng et al. 2012; Wang et al. 2015).

Quantifying ecosystem services and their

interactions at fine spatial and temporal scale

benefits for management purposes

Our results demonstrated that trade-offs and synergies

among ES are characterized with distinct spatial

heterogeneity, instead of a fixed relationship. This is

partly because scale plays an important role in

estimating ES and analyzing their interactions (Gret-

Regamey et al. 2014). For example, the space-for-time

approach only revealed highly significant synergies

among all the three ES in our study (see Appendix 1,

Table 4 Cohen’s Kappa (K) agreement test for ES interactions identified by different methods

SC
 v

s.
 N

P
P

 

m5 

Methods m5 m6 m7

0.039 0.333

m6 0.442 

m7 

SC
 v

s.
 W

Y
 

m5 0.196 0.197

m6 0.229 

m7 

N
P

P
 v

s.
 W

Y
 

m5 0.367 0.206

m6 0.023 

m7 

0 B K B 0.20 indicates slight agreement, 0.20 B K B 0.40 indicates fair agreement, 0.41–0.60 as moderate agreement, 0.61–0.80 as

substantial agreement, and 0.81–1.00 almost perfect agreement (Landis and Koch 1977; Schröter and Remme 2016)
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Table A1). However, spatially explicit methods (i.e.,

methods m5, m6 and m7 described in Table 3) all

revealed that ES interactions varied across locations or

landscapes. This is not surprising because static

methods at coarse scale (e.g., methods m1 and m2

described in Table 3) for inferring ES interactions

often do not account for temporal and spatial vari-

ability in local drivers, such as political policies, socio-

economic decisions and the spatial distribution of

physical geographic conditions (Renard et al. 2015;

Hein et al. 2016; Tomscha and Gergel 2016). Conse-

quently, ES pattern and interactions observed at the

smaller scale may be hidden at larger scale (Raudsepp-

Hearne and Peterson 2016). Haase et al. (2012)

compared interactions between ES at different spatial

scales and pointed out that for planning purpose, only

analysis at the grid scale is meaningful. We suggest

that the static methods are suitable for small watershed

and local scales, where landscapes are homogeneous;

but can lead to misunderstanding at regional- and

macro-scale. Though some other semi-static or semi-

dynamic approaches incorporated landscape history

into understanding ES interactions (e.g., m4 and m5

described in Table 3) (Haase et al. 2012; Tomscha and

Gergel 2016), some of them may ignore the uncer-

tainty in the changes of ES within a short time span.

For instance, the change in modeled ES at two time

points may very likely be dominated or overwhelmed

by external environment (e.g., abrupt climate in one

year). Consequently, an improper trade-off or syn-

ergy may be detected by applying these approaches.

Thereby, apart from considering spatial variability to

detect spatially explicit ES interactions, temporal

variability over a longer-term is necessary to be

considered in the analysis (Hein et al. 2016).

Additionally, by comparing our method with other

spatially explicit methods, we found moderate

differences in spatial configuration of ES interac-

tions depending on the method applied (see

Appendix 2, Fig. A2). Kappa statistics for pairwise

agreement of spatialized ES interactions showed

mostly fair to moderate agreement. As discussed

above, method m5 may ignore the possibility of

abrupt and incomparable change in pairwise ES, and

may consequently lead to misinterpretation of ES

interactions. In addition, method m6 considered

longer-term time series, and its result was similar to

that in the spatio-temporal statistical method. How-

ever, the latter has the advantage of identifying ES

interactions with different degrees (e.g., strong

trade-offs, weak trade-offs, etc.), which would be

helpful for decision-makers to prioritize land-use

planning to optimize management outcomes.

Our analyses revealed that in grasslands in the

arid and semi-arid area, relationships between ES

tended to be synergies, while in artificial lands (e.g.,

built-up land and farmland) ES relationships tended

to be trade-offs. Surprisingly, we found that ES in

woodland were not likely present synergies. These

results are of concern because emerging research

revealed that extensive reforestation in the arid and

semi-arid areas can lead to serious water shortage

and create potential conflicting demands for water

between the ecosystem and humans (Feng et al.

2016). This information may prompt us to rethink

the rationality of planning trees for vegetation

restoration in this arid and semi-arid area (Haslett

et al. 2010; Goldstein et al. 2012; Fu et al. 2015).

Besides, we found that in the LP, most LULC

transition (from 2000 to 2013) were transferred into

grassland (80.24%, see Appendix 2, Fig. A4),

instead of woodland (13.44%). This information

may also help overturn the claim that reforestation

led to WY decrease in the northern LP since there

was far less afforestation than expected, thereby

supported our result regarding WY.

Opportunities and challenges in improving

understanding of ES interactions

Our research highlights the need of integrating fine

spatial scale and temporal dynamics of longer time

frames in both ES and their drivers to better under-

stand the trade-offs and synergies among multiple ES,

especially in the regions where frequent and drastic

change in LULC and climate occurred. The first

reason is to avoid uncertainty or arbitrariness in

analyzing ES change and their interactions at limited

time points or over a short-term. As previously stated,

abrupt climate in one certain year may lead to

abnormal evaluation of ES. However, when modeling

ES over a long-time series combining with statistical

test, it would be robust to identify the change trend of

each ES. Secondly, we argue that analysis over longer

time series may help detect threshold or lag effect in

the ES interactions. We know that some systems and

processes are initially insensitive to environmental or

human disturbance (such as climate change, LULC
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change, intensity of farming, and etc.), but after a

certain threshold an ecosystem may change abruptly;

other systems, may respond quickly to the disturbance

without lagging (Fig. 8) (Fisher et al. 2009; Raudsepp-

Hearne et al. 2010). Studies toward this topic are rare,

and our framework may benefit for detecting the

possible threshold in ES interactions. Thirdly, analyz-

ing ES and their interactions over long time series

benefits from the increasing availability of spatial data

(e.g., remote sensing and regular social-economic

statistic data) and quantitative ES models. The remote

sensing provides abundant spatio-temporal datasets

covering large regions can make up for the lack of data

in field observation/surveys (Ouyang et al. 2016), and

thereby make it possible for ES change analysis at

multiple spatio-temporal scales.

However, challenges still exist. The first challenge

is the data quality (i.e., availability, completeness,

uniformity). Non-uniform historical data may make

the comparison difficult (Raudsepp-Hearne et al.

2010; Dallimer et al. 2015; Hein et al. 2016). For

instance, the MODIS NDVI is important parameter for

modeling NPP and WY in this text, but these datasets

are only available since 2000. This means if we want

to reconstruct earlier historical NDVI datasets, it is

necessary to carefully choose proper spatial resolution

and guarantee the precision when seeking alternative

remote sensing data. The second is that it would be

difficult to model and spatialize some ES, for example,

the cultural services. This difficulty is also partly

because the spatial data for modeling these services

are often unavailable.

Besides, our approach for modeling ES has several

limitations. Though the models adopted in this study

were all carefully chosen to be suitable for the study

area, there are some inherent uncertainty regarding

parameters input during the process of ES modeling.

For example, the most important empirical parameter

of the plant-available water coefficient (w) in the

Zhang et al’s (2001) water yield model was assigned

by the difference in ET among LULC types, which

was based on their ability of extracting soil water. The

model has been widely used and verified to be

effective for the evaluation of annual WY (Brown

et al. 2005; Lu et al. 2013; Zhang et al. 2015), but the

calibration of w for regional WY is still difficult.

Meanwhile, we used substitution LULC data (LULC

data in 2000, 2005, 2010, 2013) to model annual WY

from 2000 to 2013 because of the limited dataset,

which may make the temporal change of WY inap-

parently. Ideally, it would be perfect if annual LULC

data were available. Besides, this WY model does not

account for other key factors, such as vegetation

characteristics, soil properties and topography, which

may lead to underestimation of the ET and overesti-

mation the annual WY (Zhang et al. 2008; Feng et al.

2012). Another limitation of this research lies in the

interpretation on driving mechanism of ES interac-

tions. Though we could identify the spatial patterns of

ES interactions, it is still hard to explicitly figure out

the causality among ES and their drivers (e.g., LULC

change, climate change and regional hydrological

condition, etc.). This information would be of impor-

tance for taking targeted engineering or conservation

measures towards avoiding trade-offs in ES.

Conclusions

In summary, our study provides an integrative and

spatially explicit method for assessing the interactions

(i.e., trade-offs and synergies) among multiple ecosys-

tem services (ES) by taking spatial and temporal

dynamics simultaneously. Our results demonstrate

that ES trade-offs and synergies vary across landscape,

and differ among LULC types. Our study also

highlights the importance of incorporating spatial

statistics and long-term perspectives of ES in under-

standing ES interactions. Results from our research

ES

Tt1t0

ES2

ES1

t2

Fig. 8 Threshold in the process of ecosystem services interac-

tions. The ES data chosen at different stages may outcome

different results of ES interactions. For example, ES1 and ES2

may present synergy during t0 - t1, while trade-off after t1
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provide crucial information for decision-makers to

determine priorities for the land-use planning or

ecological restoration at broad scale to gain global

optimizing results. This research also contributes to

providing a framework for other researchers to

conduct similar spatially explicit quantification of

interactions among multiple ES in different contexts

that aims to inform targeted land-use policy-making in

regional ecosystem management.
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