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Abstract
The study of wildlife activity patterns is an effective approach to understanding fun-
damental ecological and evolutionary processes. However, traditional statistical ap-
proaches used to conduct quantitative analysis have thus far had limited success in 
revealing underlying mechanisms driving activity patterns. Here, we combine wavelet 
analysis, a type of frequency-based time-series analysis, with high-resolution activity 
data from accelerometers embedded in GPS collars to explore the effects of internal 
states (e.g., pregnancy) and external factors (e.g., seasonal dynamics of resources and 
weather) on activity patterns of the endangered giant panda (Ailuropoda melanoleuca). 
Giant pandas exhibited higher frequency cycles during the winter when resources 
(e.g., water and forage) were relatively poor, as well as during spring, which includes 
the giant panda’s mating season. During the summer and autumn when resources 
were abundant, pandas exhibited a regular activity pattern with activity peaks every 
24 hr. A pregnant individual showed distinct differences in her activity pattern from 
other giant pandas for several months following parturition. These results indicate that 
animals adjust activity cycles to adapt to seasonal variation of the resources and 
unique physiological periods. Wavelet coherency analysis also verified the synchroni-
zation of giant panda activity level with air temperature and solar radiation at the 24-
hr band. Our study also shows that wavelet analysis is an effective tool for analyzing 
high-resolution activity pattern data and its relationship to internal and external states, 
an approach that has the potential to inform wildlife conservation and management 
across species.
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1  | INTRODUCTION

The study of wildlife activity patterns provides insights into evolution-
ary adaptations, bioenergetics, foraging strategies, and physiological 
responses to environmental cues (Aschoff, 1966). Activity patterns 
have been studied across diverse taxa including mammals, birds, am-
phibians, reptiles, fishes, and insects (Aschoff, 1966). A wealth of in-
formation has been learned on topics such as animal competition and 
temporal niche differentiation, phylogenetic constraints on the time, 
ecological forces and endogenous factors driving the evolution of ac-
tivity patterns, and the adjustment of temporal activity in response to 
human disturbance (Aschoff, 1966; Carter, Shrestha, Karki, Pradhan, 
& Liu, 2012; Pianka, 1973; Presley, Willig, Castro-Arellano, & Weaver, 
2009; Roll, Dayan, & Kronfeld-Schor, 2006).

However, current research on wildlife activity patterns suffers from 
several shortcomings. First, most studies tend to focus on a daily scale 
driven by environmental variables (e.g., daily light and temperature 
cycles), with animals categorized as crepuscular, diurnal, or noctur-
nal (Aschoff, 1966; Lee, Larsen, Flinders, & Eggett, 2010). Limitations 
of monitoring technologies and analysis techniques have prevented 
finer scales from being examined. Yet almost all activity patterns ap-
pear nonlinear and irregular (Polansky, Wittemyer, Cross, Tambling, & 
Getz, 2010; Wittemyer, Polansky, Douglas-Hamilton, & Getz, 2008), 
as many wildlife species face complex environmental variation and 
physiological requirements that cannot be accurately described on a 
daily scale (Alados, Escos, & Emlen, 1996; Escos, Alados, & Emlen, 
1995; Kembro, Perillo, Pury, Satterlee, & Marin, 2009; Wittemyer, 
Polansky, et al., 2008). Second, traditional statistical approaches used 
in wildlife activity research, such as taking the mean or median value 
of activity rate or level at a broad temporal resolution and over a short 
duration, cannot accurately detect the activity characteristics across 
multitemporal scales, such as hourly, daily, monthly, and yearly (Lee 
et al., 2010; Polansky et al., 2010; Zhang et al., 2015). Third, tradi-
tional approaches have also been limited by the logistical challenge of 
the inability to control for high autocorrelation inherent in the cyclical 
activity patterns of wildlife (Loe et al., 2007). General additive mod-
els (GAM) and general additive mixed models (GAMM) with smooth-
ing functions have been developed to control for autocorrelation by 
smoothing temporal variables (e.g., hours or days) (Mandel, Bildstein, 
Bohrer, & Winkler, 2008; Ryan, Whisson, Holland, & Arnould, 2013; 
Zhang et al., 2015), but employing smoothing functions often leads 
to a loss of interpretability (Ryan et al., 2013; Zhang et al., 2015). 
Furthermore, traditional regression approaches also cannot deter-
mine which temporal and spatial scale is optimal for analyzing the 
relationship between two autocorrelated factors (Ryan et al., 2013; 
Zhang et al., 2015).

With the advancement of tracking technology, the dynamic mo-
tion (e.g., flight, walking, or swimming) of animals can be measured 
and recorded through animal-borne data accelerometers (Broell, 
Taylor, Litvak, Bezanson, & Taggart, 2016; Nakamura, Watanabe, 
Papastamatiou, Sato, & Meyer, 2011; Sakamoto et al., 2009; Whitney, 
Pratt, Pratt, & Carrier, 2010). This affords the opportunity to ana-
lyze activity patterns using more complex statistical approaches on 

a finer spatiotemporal scale and also over longer durations of time. 
One example is time-series analysis (Sakamoto et al., 2009), a power-
ful tool used to examine nonlinear and dynamic ecological processes 
such as population dynamics and ecosystem variation at multiple tem-
poral scales (Bjørnstad & Grenfell, 2001; Cazelles et al., 2008; Rouyer 
et al., 2008). More recently, time-series approaches such as Fourier 
and wavelet analysis have been applied to understand cyclical behav-
ioral properties of individual animals using movement data (Polansky 
et al., 2010; Wittemyer, Polansky, et al., 2008). These approaches in-
volve analysis of the frequency domain of time-series data and char-
acterization of dynamics in temporal autocorrelation patterns. Such 
approaches have helped overcome fundamental challenges related 
to analyzing highly temporally autocorrelated data and also provided 
new insights into the periodicity of animal movement and its variation 
across individuals and seasons. The cyclical switching of movement 
modes can also reveal strategies that animals use to cope with envi-
ronmental change (Getz & Saltz, 2008; Nathan et al., 2008; Polansky 
et al., 2010; Wittemyer, Polansky, et al., 2008). With the increasing 
availability of high-resolution activity data, there is now great potential 
to extend these powerful methods into a new realm of animal behav-
ior to examine animal activity patterns at varied temporal scales. Such 
an approach would provide new insights into how animals shift their 
activity patterns on the mean hourly scale over seasons as internal and 
external conditions change.

Here, we demonstrate the potential of this technique for the first 
time by applying time-series analysis methods to analyze activity pat-
terns (e.g., foraging and resting) of five wild giant pandas (Ailuropoda 
melanoleuca) monitored using GPS collars. We sought to identify cy-
clical activity patterns associated with individual internal states (e.g., 
pregnancy) and external forcing (e.g., seasonal resource availability 
and weather). In addition to being a national treasure to China and a 
flagship species for global environmental conservation, giant pandas 
are also an ideal study species to test broad ecological hypotheses 
using telemetry data. Giant panda follow relatively simple behavioral 
habits, which limits the number of confounding factors that would 
otherwise hamper the ability to draw inferences. They feed almost ex-
clusively on bamboo, which they digest with low efficiency. Because 
of this, pandas spend approximate 55% of their time foraging on bam-
boo, while almost all their remaining time is spent resting (Schaller, 
Hu, Pan, & Zhu, 1985). Additionally, giant pandas are generally soli-
tary, have relatively stable home ranges, and do not partake in pred-
ator–prey interactions (Hull et al., 2015; Schaller et al., 1985; Zhang 
et al., 2014, 2015). It is also difficult to measure activity patterns by 
direct observation in this species as the dense forest habitat offers 
low visibility and pandas avoid humans, making the data all the more 
valuable (Schaller et al., 1985). In this study, we explored the relation-
ship between the behavior of repetitive cycles between foraging and 
resting of giant pandas and resource abundance/availability in differ-
ent seasons (Swets, 1988; Wittemyer, Polansky, et al., 2008). We also 
tested the relationship between reproductive behaviors and activity 
cycles of giant pandas, and the relationship between cyclic weather 
patterns (e.g., air temperature and solar radiation) and panda activity 
patterns on a daily scale.
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2  | MATERIALS AND METHODS

2.1 | Data collection

Our study site was located near the Hetaoping Research Base in the 
northeastern portion of the Wolong Nature Reserve in Sichuan, China 
(102°52′–103°24′E, 30°45′–31°25′N). Wolong Nature Reserve 
covers an area of about 2,000 km2 and harbors over 100 wild giant 
pandas(Sichuan Provincial Forestry Department 2015), while our 
study site encompasses 40–50 km2, with an elevation range of ap-
proximately 1,800 to 3,400 m. Individual identification through DNA 
analysis of panda fecal samples collected from May 2012 to November 
2013 showed that the Hetaoping area accommodates 22 wild pandas 
(Huang et al., 2015). There are four forest types—evergreen broad-
leaved forest, deciduous broad-leaved forest, mixed coniferous and 
deciduous broad-leaved forest, and subalpine coniferous forest. 
Pandas mainly forage on three species of understory bamboo: arrow 
(Bashania fangiana) (above 2,600 m elevation), umbrella (Fargesia ro-
busta) (below 2,600 m), and Yushan (Yushania bravipaniculata) (1,800–
3,400 m) (Li, Zhou, Xiao, Chen, & Tian, 1992).

We fitted GPS collars on five giant pandas (four females and one 
male) from 2010 to 2011 (Table 1). Veterinarians tranquilized pandas 
using a compressed-air gun loaded with 5 mg ketamine/kg of animal 
weight. GPS collars were then fitted before pandas resumed their 
normal activities. Data were downloaded periodically via a remote 
receiver. Licensed veterinarians from the China Conservation and 
Research Center for the Giant Panda (CCRCGP) assured animal safety. 
These methods were approved by State Forestry Administration, 
China, CCRCGP, and The Institutional Animal Care and Use Committee 
of Michigan State University, USA.

We used 12-channel Lotek GPS_4400 M GPS Collars equipped 
with dual-axis activity accelerometers that measured the pandas’ ac-
tivity levels in vertical and horizontal directions (Lotek Engineering Inc., 
Newmarket, Ontario, Canada). Both directions had a cylinder contain-
ing a small sphere. Collars recorded the number of times the spheres hit 
the cylinder edges in each consecutive 5-min time interval. Data were 
recorded on a unitless scale ranging from 0 (no activity) to 255 (highest 
activity). Vertical and horizontal activity counts were positively cor-
related (Pearson correlation: all R2 > .90, p < .001). As previous studies 
showed that accuracy is higher in the vertical than in the horizontal 
sensor (Coulombe, Massé, & Côté, 2006), we only used activity counts 
from the vertical sensor in our analysis. We computed the mean hourly 
activity level to serve as our unit of analysis. We chose this unit of 

analysis because it was comparable with previous research on giant 
panda activity patterns that were conducted using mean hourly inter-
vals (Schaller et al., 1985; Zhang et al., 2015). The time span of data 
collection ranged from 6 months to 2 years per collar (see Table 1). The 
data were divided into three distinct seasons based on giant panda 
seasonal foraging strategies (spring—April to June, summer–autumn—
July to October, and winter—November to March). For details on the 
justification of these divisions, see Supporting Information text.

A pilot study that we conducted earlier on one GPS-collared, cap-
tive adult female panda who was also observed using a video monitor-
ing system demonstrated a significant relationship between GPS collar 
activity counts and panda behavior (Zhang et al., 2015). The activity 
counts recorded by the GPS collar for inactive behavior (including 
sleeping, lying, and stationary standing) were significantly lower than 
activity counts associated with feeding and movement (Zhang et al., 
2015). This result supports the validity of the activity count data for 
representing realized behaviors for this species. For further details on 
this study, see Zhang et al. (2015).

We monitored air temperature (°C) and solar radiation (W/m2) at 
5-min intervals from June 2010 to September 2011 using a meteo-
rological station (HOBO® Microstation with RG3 Rain Gauge, Onset 
Computer Corporation, Pocasset, MA, USA). This station was located 
at the Hetaoping Research Base. The distance to the farthest studied 
panda’s activity region was <10 km from the station. Although GPS col-
lars also recorded temperature every 5 min, we did not use this variable 
for the analysis because previous research has shown that these data 
are biased by the animals’ posture, activity, and pelage type (Maier, 
Maier, & White, 1996; Schwartz, Podruzny, Cain, & Cherry, 2009).

2.2 | Time-series analysis

Wavelet analysis detects the periodic pattern of a time series in both 
time and frequency domains while handling periodic components, 
noise, transient dynamics, and intermittent oscillations at a fine reso-
lution (Lau & Weng, 1995; Torrence & Compo, 1998). Because the 
activity data are typical nonstationary time series, wavelet trans-
form is more suitable than other spectrum analysis techniques (e.g., 
Fourier transform). Furthermore, wavelet coherence can be used to 
analyze temporal correlations at different frequencies between two 
time series (Grinsted, Moore, & Jevrejeva, 2004; Torrence & Compo, 
1998). Continuous wavelet transforms (CWT) are one of two types 
of wavelet transforms and the more appropriate method for extract-
ing features from large signal datasets whose scales are linked to 

Panda Age Sex Duration of tracking
Duration of overlap between 
tracking and weather data

Mei Meia Adult F 04/04/2010–03/29/2012 06/12/2010–09/26/2011

Pan Pan Adult F 04/17/2010–11/26/2010 06/12/2010–11/26/2010

Zhong Zhong Adult F 03/23/2011–04/03/2012 03/23/2011–09/26/2011

Chuan Chuan Adult M 04/06/2011–03/27/2012 04/06/2011–09/26/2011

Long Long Subadult F 04/10/2011–10/11/2011 04/10/2011–09/26/2011

aMei Mei was pregnant around March 2010 and then birthed a cub in August 2010.

TABLE  1 Summary of GPS-collared 
pandas in Wolong Nature Reserve, China, 
and the duration of overlap between 
tracking and weather data
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frequencies. CWT is frequently applied to tests on the relationship 
between two time series on a given temporal scale (Grinsted et al., 
2004). We used CWT (Morlet wavelet) to extract common features 
from wavelike activity signals. We tested for statistical significance 
against red noise backgrounds using a Monte Carlo method, as theo-
retical studies have shown that it models a first order autoregressive 
(AR1) process well (Grinsted et al., 2004). We applied the CWT on 
each panda’s individual time series, with the sampling interval set at 
∆t = 1 hr. To better examine the effect of physiology, we conducted 
CWT on the data from one adult female panda (Mei Mei) in the year 
of her pregnancy (from April 2010 to March 2011) and the next year 

when she took care of her cub (from April 2011 to March 2012), re-
spectively. We then used wavelet coherence (WTC) to analyze the 
correlation between panda activity and weather (temperature and 
solar radiation), and tested for significance of the coherence using 
Monte Carlo methods. We did not transform the y-axis of CWTs from 
period (hour) to frequency (cycles/day) like previous studies (Polansky 
et al., 2010; Wittemyer, Polansky, et al., 2008), because period-hour 
more intuitively reflected the temporal band characteristics of panda 
activity cycles. All computations were run using the cross-wavelet and 
wavelet coherence toolbox for the MATLAB software package devel-
oped by Grinsted et al. (2004).

F IGURE  1 Continuous wavelet power spectrum depicting hourly activity level of five pandas (a: Mei Mei(2010-2011), b: Mei Mei(2010-
2011), c:Pan Pan, d: Zhong Zhong, e:Chuan Chuan, f: Long Long) monitored using GPS collars (left side of each panel). Black contours designate 
the 5% significance level against red noise; a large solid line shows the cone of influence outside of which values are impacted by zero padding 
and should be disregarded. The vertical dashed line represents the estimated date of transition from spring to summer–autumn and winter 
(spring is from April to June, summer–autumn from July to October, and winter from November to March of the following year). Mei Mei’s data 
were divided into two subsets that were from April 2010 to March 2011, and from April 2011 to March 2012, respectively. The x-axis indicates 
the date, while the y-axis indicates the time scale in hours. Global wavelet spectrums are shown on the right side of each panel
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3  | RESULTS

Wavelet analysis showed that pandas had multiple activity cycles in 
the spring and winter, with two, three, or more activity peaks per day 
with periodic scales of 12, 8 hr, and <8-hr time intervals. This pattern 
is exemplified by a significant peak in the less than half day band which 
was more than the theoretical mean red noise spectrum (Figure 1). 
Activity patterns differed during summer–autumn when pandas were 
diurnal. For all individuals, a common wavelet power spectrum oc-
curred in the 24-hr band across all seasons (Figure 1). The median 
value of total active counts also indicated a diurnal activity pattern, 
with more activity cycles (alternating active peaks and rest periods) 
during spring–winter than summer–autumn (Figure 2). Across sea-
sons, the dominant activity peak occurred in the daytime reflecting 
increased activity, with a higher proportion of rest at nighttime (activ-
ity count in nighttime vs. daytime: Z = −29.039, p < .001) (Figure 2).

There was distinction between four normal individuals and a partic-
ular physiological period of the individual Mei Mei when she was preg-
nant and until she birthed a cub around August 2010. Mei Mei’s activity 
level was significantly higher during the spring (April–June 2010) she 
was pregnant compared to the same period the following year (April–
June 2011) (Z = −7.079, p < .001) (Figure 3). After June, this disparity 
in activity level between years began to decrease, and the pattern re-
versed from August to the following March (lower activity level in the 
year she was pregnant, Figure 3). Correspondingly, the periodic char-
acteristics of activity patterns also changed during the year. Along with 
the other studied pandas, Mei Mei had multiple activity cycles before 
July 2010, but she did not exhibit multiple cyclical features from July to 
December 2010. The periodogram peak at the 1-day band was weak 
in Mei Mei throughout this year, and almost all cyclical characteristics 
in activity disappeared from the end of August to early October 2010 
(Figure 1). After December 2010, her activity periodic cycles began to 
trend back to normal, similar to other individuals (Figure 1). The peri-
odicity in activity properties of the other four studied pandas was fairly 
consistent apart from seasonal changes (Figure 1).

There were in-phase (positive) coherencies at the 24-hr band be-
tween activity level and air temperature across each season (Figure 4). 
The average coherency was 0.61 ± 0.07 and ranged from 0.56 to 0.73, 
with an average time lag of 15.03 ± 7.18 hr (Table 2). The relationship 
between solar radiation and panda activity level was similar and also ex-
hibited in-phase coherencies (Figure 5). The average coherency in this 
relationship was 0.64 ± 0.04 and ranged from 0.62 to 0.71, with an av-
erage time lag of 17.73 ± 7.23 hr (Table 2). The coherency within a single 
individual (Mei Mei) was similar in different years, and the time lag was 
similar as well (Table 1). But responses to weather varied across pandas.

4  | DISCUSSION

In this study, we applied continuous wavelet transforms (CWT) and 
wavelet coherency analysis to identify the activity patterns of wild-
life. While there have been successful applications of this method to 

F IGURE  2 Box plots of average activity level across five giant 
pandas by time of day during spring, summer–autumn, and winter. 
The middle line denotes the median value, the box extends from the 
25th to the 75th percentiles, and the solid dots denote the values 
of the 5th and 95th percentiles. We excluded the data of Mei Mei 
from April 2010 to March 2011, as her activity pattern was abnormal 
because of pregnancy and parturition in this period

F IGURE  3 Comparison of Mei Mei’s activity level between the 
year she was pregnant and gave birth (2010–2011) and the following 
year (2011–2012). She became pregnant in the spring (March or 
April) of 2010 and gave birth in August of that year. The box plots 
show average hourly activity level by time of day, where the middle 
line denotes the median value, the box extends from the 25th to 
the 75th percentiles, and the solid dots denote the 5th and 95th 
percentiles
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understand similar processes using animal movement data (Polansky 
et al., 2010; Wittemyer, Polansky, et al., 2008), extending the ap-
proach into a new dimension of animal activity data opened up new 
avenues of inquiry (Sakamoto et al., 2009). Time-series analysis of 
activity patterns may more accurately reflect the mechanisms of en-
ergy cost and maintenance than traditional methods in movement 
ecology. Both processes allow for inference to be made on an ani-
mal’s survival status, physiological state, and adaptive response to 
environmental stimuli. But activity pattern data overcome the large 
error in turning angles (Zollner & Lima, 1999) and the gross under-
estimation of movement distances from successive GPS locations 
(Mandel et al., 2008).

The autocorrelation properties of animal activity patterns are in-
teresting to study because they may reflect differences in physiolog-
ical states of animals and their responses to environmental factors in 
new ways (MacIntosh, Alados, & Huffman, 2011; MacIntosh, Pelletier, 
Chiaradia, Kato, & Ropert-Coudert, 2013). For example, some studies 
have shown that physiological stressors (e.g., clinically impaired health, 
reproductive activities) or other challenges (e.g., low dominance sta-
tus) are associated with less stochasticity, that is, increasing periodicity 
or stereotypy (Alados & Weber, 1999; Alados et al., 1996; Motohashi, 
Miyazaki, & Takano, 1993; Rutherford, Haskell, Glasbey, & Lawrence, 
2006; Seuront & Cribb, 2011). In contrast, individuals show increased 
complexity of behavioral patterns when they explore resources in 

F IGURE  4 Wavelet coherency between activity level of five giant pandas (a: Mei Mei(2010-2011), b: Mei Mei(2010-2011), c:Pan Pan, d: 
Zhong Zhong, e:Chuan Chuan, f: Long Long) monitored using GPS collars and temperature. The 5% significance level against red noise is shown 
as a black contour, the color bar indicates strength of correlation, and the direction of the arrow indicates phase information or the type of 
correlation (right directed—”in phase or positive”; left directed—”antiphase or negative”; down—X leading Y by 90°; up—Y leading X by 90°). The 
x-axis indicates the date, while the y-axis indicates the timescale in hours. Mei Mei’s data were divided into two subsets which were from April 
2010 to March 2011, and from April 2011 to March 2012, respectively
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novel environments, which in turn may increase foraging success rates 
(Alados et al., 1996; Escos et al., 1995; Kembro et al., 2009; MacIntosh 
et al., 2011; Shimada, Minesaki, & Hara, 1995). Most previous studies 
mainly use fractal analysis on binary datasets (e.g., stationary vs. non-
stationary data) to analyze autocorrelation of animals’ activity patterns 
associating with endogenous and exogenous factors (MacIntosh et al., 
2011, 2013). However, such approaches cannot assess variation in au-
tocorrelation properties along continuous, high-resolution time scales 
that may be more sensitive for picking up nuances in responses to 
internal and external stimuli (MacIntosh et al., 2011, 2013). Our appli-
cation of wavelet analysis provided a more robust statistical approach 
to analyzing autocorrelation of activity pattern data on a continuous 
scale across context-specific physiological and environmental factors 
(MacIntosh et al., 2013; Wittemyer, Polansky, et al., 2008).

Our study also revealed new insights into activity patterns of the 
endangered giant panda. Previous studies have been carried out on 
activity patterns in pandas, but they have been limited to traditional 
approaches (Schaller et al., 1985; Zhang et al., 2015). Our findings 
expand upon this research by demonstrating variation not only in 
panda activity levels but also pandas’ frequency-based cyclical activity 
modes. For example, earlier studies showed that giant pandas exhibit 
an activity valley during summer–autumn, likely relating to the high 
quality food and easy access to water (Nie, Speakman, et al., 2015; 
Schaller et al., 1985; Zhang et al., 2015). This season was also distinct 
in our study in that it was the only season in which we found a di-
urnal activity cycle. Pandas perhaps displayed more frequent cycles 
during spring due to the demands of mating activities and in winter 
due to declines in food and water quality and/or availability relative 
to summer–autumn. During spring, pandas move from high to low 
elevation areas to forage on umbrella bamboo shoots which contain 
high nutrition (Table S1) (Nie, Zhang, et al., 2015), and need to make 
long-distance movements (more energy expenditure) to pursue new 
bamboo shoots (Schaller et al., 1985; Zhang et al., 2015). Moreover, 
spring is the mating season for pandas—male pandas roam an exten-
sive range to encounter females and fight for mating rights. During 
winter, pandas need to spend more time foraging for food and water 

resources. In our field observation and previous studies, pandas vis-
ited a few permanent water sites more often in winter as temporary 
pool sites disappeared and most streams froze (Schaller et al., 1985; 
Zhang et al., 2014). The food available during this season (stems and 
old shoots) is also less nutritious than other times of year. In addition, 
a recent study showed that pandas’ net energy assimilation (NEA) and 
associated metabolic rate was negatively related to daily shade tem-
perature, another potential reason for the lower activity and less fre-
quent activity cycling in summer and autumn than other seasons (Nie, 
Speakman, et al., 2015). Similar behavioral strategies were also found 
in movement studies on other species—energy budgeting associated 
with diet and water resources are major explaining factors of shifts 
in animal behavioral (e.g., forage or movement) cycles across seasons 
(Wittemyer, Polansky, et al., 2008; Zollner & Lima, 1999).

Reproduction is a cyclic behavior influenced by predictable phe-
nomena such as circadian light and temperature (Prendergast, Nelson, 
& Zucker, 2002). However, the change in cyclical behavior patterns 
relating to breeding activity has rarely been investigated due to the 
lack of long-term empirical datasets (Wittemyer, Polansky, et al., 
2008). A pregnant female (Mei Mei) in this study provided a rare op-
portunity to test hypotheses concerning cyclical activity patterns in 
the breeding period. The near disappearance of the diurnal band in 
her data during summer–autumn 2010 suggests that mother pandas 
follow abnormal activity patterns for around 5 months after parturi-
tion (Figure 1). This result is consistent with previous field observa-
tions in the Qinling mountains, where cubs start walking around in 
the forest after the age of 5 months and mothers begin to recover to 
normal activity levels(Pan et al., 2014). It makes sense that Mei Mei’s 
activity level was significantly higher during the spring she was preg-
nant than the same period in the next year, as she had to build up a 
storage of energy during the pregnancy (Figure 3). Pregnant females 
need to forage more bamboo shoots that emerge during the spring 
season to satisfy breeding requirements (Zhang et al., 2015). Shoots 
have high 6-methoxy-2-benzoxazolinone (6-MBOA) content, which 
is advantageous for embryonic development and the survival of off-
spring (Nelson, 1991; Rosenfeld & Shelby, 2004).

Panda

Temperature activity Solar activity

Mean coherence Time lag (hours) Mean coherence Time lag (hours)

Mei Mei 
(2010–2011)

0.56 18.03 0.64 21.19

Mei Mei 
(2011–2012)

0.56 18.00 0.64 21.20

Pan Pan 0.73 0.43 0.71 2.66

Zhong Zhong 0.61 17.87 0.62 19.81

Chuan Chuan 0.64 18.81 0.64 20.05

Long Long 0.58 17.09 0.58 19.01

Mean ± SD 0.61 ± 0.07 15.03 ± 7.18 0.64 ± 0.04 17.32 ± 7.23

Results are extracted from the red areas corresponding to the daily scale in the wavelet coherence 
analysis of Figures 4 and 5.
A positive time lag means that the response of the first variable is before, by x number of hours, the 
response of the second variable.

TABLE  2 Relationship between activity 
level of GPS-collared giant pandas and 
weather (temperature and solar radiation). 
Mean coherence and time lag were 
measured on a daily scale (24 hr)
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Even considering the multiple-cycles/day activity pattern of pandas 
during spring and winter, pandas still displayed a common diurnal cycle 
across seasons (the only exception being Mei Mei in her first month 
after parturition) (Figure 1). Although we cannot infer causality from 
our results, the coherency at the 24-hr band scale between activity 
level and temperature/solar radiation across all pandas throughout the 
study period (Figures 4, 5 and Table 2) suggests that there may be a re-
lationship between weather cycles and panda activity. This hypothesis 
is supported by previous analysis of this same dataset using GAMM did 
not detect a significant effect of temperature on panda activity, but did 
find a significantly positive correction between solar radiation and ac-
tivity level for four (out of 5) of the studied pandas (Zhang et al., 2015).

The giant panda’s simple behavioral habits make the species an 
ideal study subject for wavelet analysis, but this is also a constraint 
for expanding the approach to other wildlife that may have more com-
plex behavior patterns that encompass a greater number of behavior 
categories. Further research is needed to better classify ethograms of 
wildlife with larger numbers of behavioral categories, such as birds and 
fish in a way that would allow for integration with wavelet analysis 
(Broell et al., 2016; Nakamura et al., 2011; Sakamoto et al., 2009). 
And more empirical studies with high-resolution and long-term data 
also are still required to fully explore relationships between cycles in 
animal behavior and concurrent cycles in environmental characteris-
tics (Wittemyer, Polansky, et al., 2008). We also suggest that research 

F IGURE  5 Wavelet coherency between activity level of five giant pandas (a: Mei Mei (2010-2011), b: Mei Mei(2010-2011), c:Pan Pan, d: 
Zhong Zhong, e: Chuan Chuan, f: Long Long) monitored using GPS collars and solar radiation. The 5% significance level against red noise is 
shown as a black contour, the color bar indicates the strength of correlation, and the direction of the arrow indicates phase information or the 
type of correlation (right directed—”in-phase or positive”; left directed—”antiphase or negative,”; down—X leading Y by 90°; up—”Y leading X by 
90°). The x-axis indicates the date, while the y-axis indicates the timescale in hours. Mei Mei’s data were divided into two subsets which were 
from April 2010 to March 2011, and from April 2011 to March 2012, respectively
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into the relationship between physiological strategies and phase dif-
ferences between rhythmic activity modes (e.g., daily and seasonal 
activity, breeding cycles) should be extended to more empirical stud-
ies. Future studies could also integrate activity data together with 
movement data to draw stronger conclusions about changes in animal 
behavior under varying internal and external conditions. Additional re-
search should consider the influence of periodic human activities (e.g., 
seasonal resource collection) on animals’ behavior, as the competition 
over resources and space between humans and wildlife is increasingly 
intense in today’s human-dominated world (Wittemyer, Elsen, Bean, 
Burton, & Brashares, 2008; Woodroffe, Thirgood, & Rabinowitz, 2005).
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