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Abstract
The	study	of	wildlife	activity	patterns	is	an	effective	approach	to	understanding	fun-
damental	ecological	and	evolutionary	processes.	However,	 traditional	 statistical	ap-
proaches	used	to	conduct	quantitative	analysis	have	thus	far	had	limited	success	 in	
revealing	underlying	mechanisms	driving	activity	patterns.	Here,	we	combine	wavelet	
analysis,	a	type	of	frequency-	based	time-	series	analysis,	with	high-	resolution	activity	
data	from	accelerometers	embedded	in	GPS	collars	to	explore	the	effects	of	internal	
states	(e.g.,	pregnancy)	and	external	factors	(e.g.,	seasonal	dynamics	of	resources	and	
weather)	on	activity	patterns	of	the	endangered	giant	panda	(Ailuropoda melanoleuca).	
Giant	 pandas	 exhibited	 higher	 frequency	 cycles	 during	 the	winter	when	 resources	
(e.g.,	water	and	forage)	were	relatively	poor,	as	well	as	during	spring,	which	includes	
the	 giant	 panda’s	mating	 season.	During	 the	 summer	 and	 autumn	when	 resources	
were	abundant,	pandas	exhibited	a	regular	activity	pattern	with	activity	peaks	every	
24	hr.	A	pregnant	individual	showed	distinct	differences	in	her	activity	pattern	from	
other	giant	pandas	for	several	months	following	parturition.	These	results	indicate	that	
animals	 adjust	 activity	 cycles	 to	 adapt	 to	 seasonal	 variation	 of	 the	 resources	 and	
unique	physiological	periods.	Wavelet	coherency	analysis	also	verified	the	synchroni-
zation	of	giant	panda	activity	level	with	air	temperature	and	solar	radiation	at	the	24-	
hr	band.	Our	study	also	shows	that	wavelet	analysis	is	an	effective	tool	for	analyzing	
high-	resolution	activity	pattern	data	and	its	relationship	to	internal	and	external	states,	
an	approach	that	has	the	potential	to	inform	wildlife	conservation	and	management	
across	species.
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1  | INTRODUCTION

The	study	of	wildlife	activity	patterns	provides	insights	into	evolution-
ary	adaptations,	bioenergetics,	 foraging	 strategies,	 and	physiological	
responses	 to	 environmental	 cues	 (Aschoff,	 1966).	 Activity	 patterns	
have	been	studied	across	diverse	taxa	including	mammals,	birds,	am-
phibians,	reptiles,	fishes,	and	insects	(Aschoff,	1966).	A	wealth	of	in-
formation	has	been	learned	on	topics	such	as	animal	competition	and	
temporal	niche	differentiation,	phylogenetic	constraints	on	the	time,	
ecological	forces	and	endogenous	factors	driving	the	evolution	of	ac-
tivity	patterns,	and	the	adjustment	of	temporal	activity	in	response	to	
human	disturbance	(Aschoff,	1966;	Carter,	Shrestha,	Karki,	Pradhan,	
&	Liu,	2012;	Pianka,	1973;	Presley,	Willig,	Castro-	Arellano,	&	Weaver,	
2009;	Roll,	Dayan,	&	Kronfeld-	Schor,	2006).

However,	current	research	on	wildlife	activity	patterns	suffers	from	
several	shortcomings.	First,	most	studies	tend	to	focus	on	a	daily	scale	
driven	 by	 environmental	 variables	 (e.g.,	 daily	 light	 and	 temperature	
cycles),	with	 animals	 categorized	 as	 crepuscular,	 diurnal,	 or	 noctur-
nal	(Aschoff,	1966;	Lee,	Larsen,	Flinders,	&	Eggett,	2010).	Limitations	
of	monitoring	 technologies	and	analysis	 techniques	have	prevented	
finer	scales	from	being	examined.	Yet	almost	all	activity	patterns	ap-
pear	nonlinear	and	irregular	(Polansky,	Wittemyer,	Cross,	Tambling,	&	
Getz,	2010;	Wittemyer,	Polansky,	Douglas-	Hamilton,	&	Getz,	2008),	
as	many	wildlife	 species	 face	 complex	 environmental	 variation	 and	
physiological	requirements	that	cannot	be	accurately	described	on	a	
daily	 scale	 (Alados,	 Escos,	 &	 Emlen,	 1996;	 Escos,	Alados,	 &	 Emlen,	
1995;	 Kembro,	 Perillo,	 Pury,	 Satterlee,	 &	 Marin,	 2009;	Wittemyer,	
Polansky,	et	al.,	2008).	Second,	traditional	statistical	approaches	used	
in	wildlife	activity	research,	such	as	taking	the	mean	or	median	value	
of	activity	rate	or	level	at	a	broad	temporal	resolution	and	over	a	short	
duration,	cannot	accurately	detect	the	activity	characteristics	across	
multitemporal	scales,	such	as	hourly,	daily,	monthly,	and	yearly	 (Lee	
et	al.,	 2010;	 Polansky	 et	al.,	 2010;	 Zhang	 et	al.,	 2015).	Third,	 tradi-
tional	approaches	have	also	been	limited	by	the	logistical	challenge	of	
the	inability	to	control	for	high	autocorrelation	inherent	in	the	cyclical	
activity	patterns	of	wildlife	(Loe	et	al.,	2007).	General	additive	mod-
els	(GAM)	and	general	additive	mixed	models	(GAMM)	with	smooth-
ing	functions	have	been	developed	to	control	for	autocorrelation	by	
smoothing	temporal	variables	(e.g.,	hours	or	days)	(Mandel,	Bildstein,	
Bohrer,	&	Winkler,	2008;	Ryan,	Whisson,	Holland,	&	Arnould,	2013;	
Zhang	et	al.,	2015),	but	employing	smoothing	 functions	often	 leads	
to	 a	 loss	 of	 interpretability	 (Ryan	 et	al.,	 2013;	 Zhang	 et	al.,	 2015).	
Furthermore,	 traditional	 regression	 approaches	 also	 cannot	 deter-
mine	which	 temporal	 and	 spatial	 scale	 is	 optimal	 for	 analyzing	 the	
relationship	between	 two	autocorrelated	 factors	 (Ryan	et	al.,	 2013;	
Zhang	et	al.,	2015).

With	the	advancement	of	 tracking	technology,	 the	dynamic	mo-
tion	 (e.g.,	 flight,	walking,	 or	 swimming)	 of	 animals	 can	 be	measured	
and	 recorded	 through	 animal-	borne	 data	 accelerometers	 (Broell,	
Taylor,	 Litvak,	 Bezanson,	 &	 Taggart,	 2016;	 Nakamura,	 Watanabe,	
Papastamatiou,	Sato,	&	Meyer,	2011;	Sakamoto	et	al.,	2009;	Whitney,	
Pratt,	 Pratt,	 &	 Carrier,	 2010).	 This	 affords	 the	 opportunity	 to	 ana-
lyze	 activity	 patterns	 using	more	 complex	 statistical	 approaches	 on	

a	 finer	 spatiotemporal	 scale	 and	 also	over	 longer	durations	of	 time.	
One		example	is	time-	series	analysis	(Sakamoto	et	al.,	2009),	a	power-
ful	tool	used	to	examine	nonlinear	and	dynamic	ecological	processes	
such	as	population	dynamics	and	ecosystem	variation	at	multiple	tem-
poral	scales	(Bjørnstad	&	Grenfell,	2001;	Cazelles	et	al.,	2008;	Rouyer	
et	al.,	 2008).	More	 recently,	 time-	series	 approaches	 such	 as	 Fourier	
and	wavelet	analysis	have	been	applied	to	understand	cyclical	behav-
ioral	properties	of	individual	animals	using	movement	data	(Polansky	
et	al.,	2010;	Wittemyer,	Polansky,	et	al.,	2008).	These	approaches	in-
volve	analysis	of	the	frequency	domain	of	time-	series	data	and	char-
acterization	 of	 dynamics	 in	 temporal	 autocorrelation	 patterns.	 Such	
approaches	 have	 helped	 overcome	 fundamental	 challenges	 related	
to	analyzing	highly	temporally	autocorrelated	data	and	also	provided	
new	insights	into	the	periodicity	of	animal	movement	and	its	variation	
across	 individuals	 and	 seasons.	The	 cyclical	 switching	 of	movement	
modes	can	also	reveal	strategies	that	animals	use	to	cope	with	envi-
ronmental	change	(Getz	&	Saltz,	2008;	Nathan	et	al.,	2008;	Polansky	
et	al.,	 2010;	Wittemyer,	 Polansky,	 et	al.,	 2008).	With	 the	 increasing	
availability	of	high-	resolution	activity	data,	there	is	now	great	potential	
to	extend	these	powerful	methods	into	a	new	realm	of	animal	behav-
ior	to	examine	animal	activity	patterns	at	varied	temporal	scales.	Such	
an	approach	would	provide	new	insights	into	how	animals	shift	their	
activity	patterns	on	the	mean	hourly	scale	over	seasons	as	internal	and	
external	conditions	change.

Here,	we	demonstrate	the	potential	of	this	technique	for	the	first	
time	by	applying	time-	series	analysis	methods	to	analyze	activity	pat-
terns	(e.g.,	foraging	and	resting)	of	five	wild	giant	pandas	(Ailuropoda 
melanoleuca)	monitored	using	GPS	collars.	We	sought	to	identify	cy-
clical	activity	patterns	associated	with	individual	internal	states	(e.g.,	
pregnancy)	 and	 external	 forcing	 (e.g.,	 seasonal	 resource	 availability	
and	weather).	In	addition	to	being	a	national	treasure	to	China	and	a	
flagship	species	for	global	environmental	conservation,	giant	pandas	
are	 also	 an	 ideal	 study	 species	 to	 test	 broad	ecological	 hypotheses	
using	telemetry	data.	Giant	panda	follow	relatively	simple	behavioral	
habits,	which	 limits	 the	 number	 of	 confounding	 factors	 that	would	
otherwise	hamper	the	ability	to	draw	inferences.	They	feed	almost	ex-
clusively	on	bamboo,	which	they	digest	with	low	efficiency.	Because	
of	this,	pandas	spend	approximate	55%	of	their	time	foraging	on	bam-
boo,	while	almost	 all	 their	 remaining	 time	 is	 spent	 resting	 (Schaller,	
Hu,	Pan,	&	Zhu,	1985).	Additionally,	giant	pandas	are	generally	soli-
tary,	have	relatively	stable	home	ranges,	and	do	not	partake	in	pred-
ator–prey	interactions	(Hull	et	al.,	2015;	Schaller	et	al.,	1985;	Zhang	
et	al.,	2014,	2015).	It	is	also	difficult	to	measure	activity	patterns	by	
direct	observation	 in	 this	 species	as	 the	dense	 forest	habitat	offers	
low	visibility	and	pandas	avoid	humans,	making	the	data	all	the	more	
valuable	(Schaller	et	al.,	1985).	In	this	study,	we	explored	the	relation-
ship	between	the	behavior	of	repetitive	cycles	between	foraging	and	
resting	of	giant	pandas	and	resource	abundance/availability	in	differ-
ent	seasons	(Swets,	1988;	Wittemyer,	Polansky,	et	al.,	2008).	We	also	
tested	the	relationship	between	reproductive	behaviors	and	activity	
cycles	of	giant	pandas,	and	the	relationship	between	cyclic	weather	
patterns	(e.g.,	air	temperature	and	solar	radiation)	and	panda	activity	
patterns	on	a	daily	scale.
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2  | MATERIALS AND METHODS

2.1 | Data collection

Our	study	site	was	located	near	the	Hetaoping	Research	Base	in	the	
northeastern	portion	of	the	Wolong	Nature	Reserve	in	Sichuan,	China	
(102°52′–103°24′E,	 30°45′–31°25′N).	 Wolong	 Nature	 Reserve	
covers	an	area	of	about	2,000	km2	and	harbors	over	100	wild	giant	
pandas(Sichuan	 Provincial	 Forestry	 Department	 2015),	 while	 our	
study	 site	 encompasses	 40–50	km2,	with	 an	 elevation	 range	 of	 ap-
proximately	1,800	to	3,400	m.	Individual	identification	through	DNA	
analysis	of	panda	fecal	samples	collected	from	May	2012	to	November	
2013	showed	that	the	Hetaoping	area	accommodates	22	wild	pandas	
(Huang	et	al.,	 2015).	 There	 are	 four	 forest	 types—evergreen	broad-	
leaved	 forest,	 deciduous	broad-	leaved	 forest,	mixed	coniferous	and	
deciduous	 broad-	leaved	 forest,	 and	 subalpine	 coniferous	 forest.	
Pandas	mainly	forage	on	three	species	of	understory	bamboo:	arrow	
(Bashania fangiana)	 (above	2,600	m	elevation),	umbrella	 (Fargesia ro-
busta)	(below	2,600	m),	and	Yushan	(Yushania bravipaniculata)	(1,800–
3,400	m)	(Li,	Zhou,	Xiao,	Chen,	&	Tian,	1992).

We	fitted	GPS	collars	on	five	giant	pandas	(four	females	and	one	
male)	from	2010	to	2011	(Table	1).	Veterinarians	tranquilized	pandas	
using	a	compressed-	air	gun	loaded	with	5	mg	ketamine/kg	of	animal	
weight.	 GPS	 collars	 were	 then	 fitted	 before	 pandas	 resumed	 their	
normal	 activities.	 Data	 were	 downloaded	 periodically	 via	 a	 remote	
receiver.	 Licensed	 veterinarians	 from	 the	 China	 Conservation	 and	
Research	Center	for	the	Giant	Panda	(CCRCGP)	assured	animal	safety.	
These	 methods	 were	 approved	 by	 State	 Forestry	 Administration,	
China,	CCRCGP,	and	The	Institutional	Animal	Care	and	Use	Committee	
of	Michigan	State	University,	USA.

We	 used	 12-	channel	 Lotek	 GPS_4400	M	GPS	 Collars	 equipped	
with	dual-	axis	activity	accelerometers	that	measured	the	pandas’	ac-
tivity	levels	in	vertical	and	horizontal	directions	(Lotek	Engineering	Inc.,	
Newmarket,	Ontario,	Canada).	Both	directions	had	a	cylinder	contain-
ing	a	small	sphere.	Collars	recorded	the	number	of	times	the	spheres	hit	
the	cylinder	edges	in	each	consecutive	5-	min	time	interval.	Data	were	
recorded	on	a	unitless	scale	ranging	from	0	(no	activity)	to	255	(highest	
activity).	Vertical	 and	 horizontal	 activity	 counts	were	 positively	 cor-
related	(Pearson	correlation:	all	R2	>	.90,	p < .001).	As	previous	studies	
showed	that	accuracy	 is	higher	 in	the	vertical	 than	 in	the	horizontal	
sensor	(Coulombe,	Massé,	&	Côté,	2006),	we	only	used	activity	counts	
from	the	vertical	sensor	in	our	analysis.	We	computed	the	mean	hourly	
activity	 level	 to	 serve	as	our	unit	of	 analysis.	We	chose	 this	unit	of	

analysis	because	 it	was	comparable	with	previous	 research	on	giant	
panda	activity	patterns	that	were	conducted	using	mean	hourly	inter-
vals	(Schaller	et	al.,	1985;	Zhang	et	al.,	2015).	The	time	span	of	data	
collection	ranged	from	6	months	to	2	years	per	collar	(see	Table	1).	The	
data	were	divided	 into	 three	distinct	 seasons	based	on	giant	panda	
seasonal	foraging	strategies	(spring—April	to	June,	summer–autumn—
July	to	October,	and	winter—November	to	March).	For	details	on	the	
justification	of	these	divisions,	see	Supporting	Information	text.

A	pilot	study	that	we	conducted	earlier	on	one	GPS-	collared,	cap-
tive	adult	female	panda	who	was	also	observed	using	a	video	monitor-
ing	system	demonstrated	a	significant	relationship	between	GPS	collar	
activity	counts	and	panda	behavior	 (Zhang	et	al.,	2015).	The	activity	
counts	 recorded	 by	 the	 GPS	 collar	 for	 inactive	 behavior	 (including	
sleeping,	lying,	and	stationary	standing)	were	significantly	lower	than	
activity	counts	associated	with	feeding	and	movement	 (Zhang	et	al.,	
2015).	This	result	supports	the	validity	of	the	activity	count	data	for	
representing	realized	behaviors	for	this	species.	For	further	details	on	
this	study,	see	Zhang	et	al.	(2015).

We	monitored	air	temperature	 (°C)	and	solar	radiation	(W/m2)	at	
5-	min	 intervals	 from	June	2010	 to	September	2011	using	a	meteo-
rological	 station	 (HOBO®	Microstation	with	RG3	Rain	Gauge,	Onset	
Computer	Corporation,	Pocasset,	MA,	USA).	This	station	was	located	
at	the	Hetaoping	Research	Base.	The	distance	to	the	farthest	studied	
panda’s	activity	region	was	<10	km	from	the	station.	Although	GPS	col-
lars	also	recorded	temperature	every	5	min,	we	did	not	use	this	variable	
for	the	analysis	because	previous	research	has	shown	that	these	data	
are	 biased	 by	 the	 animals’	 posture,	 activity,	 and	 pelage	 type	 (Maier,	
Maier,	&	White,	1996;	Schwartz,	Podruzny,	Cain,	&	Cherry,	2009).

2.2 | Time- series analysis

Wavelet	analysis	detects	the	periodic	pattern	of	a	time	series	in	both	
time	 and	 frequency	 domains	 while	 handling	 periodic	 components,	
noise,	transient	dynamics,	and	intermittent	oscillations	at	a	fine	reso-
lution	 (Lau	&	Weng,	1995;	Torrence	&	Compo,	1998).	Because	 the	
activity	 data	 are	 typical	 nonstationary	 time	 series,	 wavelet	 trans-
form	 is	more	suitable	than	other	spectrum	analysis	 techniques	 (e.g.,	
Fourier	 transform).	Furthermore,	wavelet	coherence	can	be	used	to	
analyze	 temporal	correlations	at	different	 frequencies	between	 two	
time	series	(Grinsted,	Moore,	&	Jevrejeva,	2004;	Torrence	&	Compo,	
1998).	Continuous	wavelet	 transforms	 (CWT)	are	one	of	 two	 types	
of	wavelet	transforms	and	the	more	appropriate	method	for	extract-
ing	 features	 from	 large	 signal	 datasets	 whose	 scales	 are	 linked	 to	

Panda Age Sex Duration of tracking
Duration of overlap between 
tracking and weather data

Mei	Meia Adult F 04/04/2010–03/29/2012 06/12/2010–09/26/2011

Pan	Pan Adult F 04/17/2010–11/26/2010 06/12/2010–11/26/2010

Zhong	Zhong Adult F 03/23/2011–04/03/2012 03/23/2011–09/26/2011

Chuan	Chuan Adult M 04/06/2011–03/27/2012 04/06/2011–09/26/2011

Long	Long Subadult F 04/10/2011–10/11/2011 04/10/2011–09/26/2011

aMei	Mei	was	pregnant	around	March	2010	and	then	birthed	a	cub	in	August	2010.

TABLE  1 Summary	of	GPS-	collared	
pandas	in	Wolong	Nature	Reserve,	China,	
and	the	duration	of	overlap	between	
tracking	and	weather	data
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frequencies.	CWT	 is	 frequently	 applied	 to	 tests	 on	 the	 relationship	
between	 two	 time	 series	on	a	 given	 temporal	 scale	 (Grinsted	et	al.,	
2004).	We	used	CWT	(Morlet	wavelet)	 to	extract	common	features	
from	wavelike	 activity	 signals.	We	 tested	 for	 statistical	 significance	
against	red	noise	backgrounds	using	a	Monte	Carlo	method,	as	theo-
retical	studies	have	shown	that	it	models	a	first	order	autoregressive	
(AR1)	 process	well	 (Grinsted	 et	al.,	 2004).	We	 applied	 the	CWT	on	
each	panda’s	individual	time	series,	with	the	sampling	interval	set	at	
∆t =	1	hr.	To	better	examine	the	effect	of	physiology,	we	conducted	
CWT	on	the	data	from	one	adult	female	panda	(Mei	Mei)	in	the	year	
of	her	pregnancy	(from	April	2010	to	March	2011)	and	the	next	year	

when	she	took	care	of	her	cub	(from	April	2011	to	March	2012),	re-
spectively.	We	 then	used	wavelet	 coherence	 (WTC)	 to	 analyze	 the	
correlation	 between	 panda	 activity	 and	 weather	 (temperature	 and	
solar	 radiation),	 and	 tested	 for	 significance	 of	 the	 coherence	 using	
Monte	Carlo	methods.	We	did	not	transform	the	y-	axis	of	CWTs	from	
period	(hour)	to	frequency	(cycles/day)	like	previous	studies	(Polansky	
et	al.,	2010;	Wittemyer,	Polansky,	et	al.,	2008),	because	period-	hour	
more	intuitively	reflected	the	temporal	band	characteristics	of	panda	
activity	cycles.	All	computations	were	run	using	the	cross-	wavelet	and	
wavelet	coherence	toolbox	for	the	MATLAB	software	package	devel-
oped	by	Grinsted	et	al.	(2004).

F IGURE  1 Continuous	wavelet	power	spectrum	depicting	hourly	activity	level	of	five	pandas	(a:	Mei	Mei(2010-2011),	b:	Mei	Mei(2010-
2011),	c:Pan	Pan,	d:	Zhong	Zhong,	e:Chuan	Chuan,	f:	Long	Long)	monitored	using	GPS	collars	(left	side	of	each	panel).	Black	contours	designate	
the	5%	significance	level	against	red	noise;	a	large	solid	line	shows	the	cone	of	influence	outside	of	which	values	are	impacted	by	zero	padding	
and	should	be	disregarded.	The	vertical	dashed	line	represents	the	estimated	date	of	transition	from	spring	to	summer–autumn	and	winter	
(spring	is	from	April	to	June,	summer–autumn	from	July	to	October,	and	winter	from	November	to	March	of	the	following	year).	Mei	Mei’s	data	
were	divided	into	two	subsets	that	were	from	April	2010	to	March	2011,	and	from	April	2011	to	March	2012,	respectively.	The	x-	axis	indicates	
the	date,	while	the	y-	axis	indicates	the	time	scale	in	hours.	Global	wavelet	spectrums	are	shown	on	the	right	side	of	each	panel
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3  | RESULTS

Wavelet	analysis	showed	that	pandas	had	multiple	activity	cycles	 in	
the	spring	and	winter,	with	two,	three,	or	more	activity	peaks	per	day	
with	periodic	scales	of	12,	8	hr,	and	<8-	hr	time	intervals.	This	pattern	
is	exemplified	by	a	significant	peak	in	the	less	than	half	day	band	which	
was	more	 than	 the	 theoretical	mean	 red	 noise	 spectrum	 (Figure	1).	
Activity	patterns	differed	during	summer–autumn	when	pandas	were	
diurnal.	 For	 all	 individuals,	 a	 common	wavelet	 power	 spectrum	 oc-
curred	 in	 the	 24-	hr	 band	 across	 all	 seasons	 (Figure	1).	 The	median	
value	of	 total	active	counts	also	 indicated	a	diurnal	activity	pattern,	
with	more	activity	cycles	 (alternating	active	peaks	and	 rest	periods)	
during	 spring–winter	 than	 summer–autumn	 (Figure	2).	 Across	 sea-
sons,	 the	dominant	activity	peak	occurred	 in	 the	daytime	 reflecting	
increased	activity,	with	a	higher	proportion	of	rest	at	nighttime	(activ-
ity	count	in	nighttime	vs.	daytime:	Z =	−29.039,	p < .001)	(Figure	2).

There	was	distinction	between	four	normal	individuals	and	a	partic-
ular	physiological	period	of	the	individual	Mei	Mei	when	she	was	preg-
nant	and	until	she	birthed	a	cub	around	August	2010.	Mei	Mei’s	activity	
level	was	significantly	higher	during	the	spring	(April–June	2010)	she	
was	pregnant	compared	to	the	same	period	the	following	year	(April–
June	2011)	 (Z =	−7.079,	p < .001)	 (Figure	3).	After	June,	 this	disparity	
in	activity	level	between	years	began	to	decrease,	and	the	pattern	re-
versed	from	August	to	the	following	March	(lower	activity	level	in	the	
year	she	was	pregnant,	Figure	3).	Correspondingly,	the	periodic	char-
acteristics	of	activity	patterns	also	changed	during	the	year.	Along	with	
the	other	studied	pandas,	Mei	Mei	had	multiple	activity	cycles	before	
July	2010,	but	she	did	not	exhibit	multiple	cyclical	features	from	July	to	
December	2010.	The	periodogram	peak	at	the	1-	day	band	was	weak	
in	Mei	Mei	throughout	this	year,	and	almost	all	cyclical	characteristics	
in	activity	disappeared	from	the	end	of	August	to	early	October	2010	
(Figure	1).	After	December	2010,	her	activity	periodic	cycles	began	to	
trend	back	to	normal,	similar	to	other	individuals	(Figure	1).	The	peri-
odicity	in	activity	properties	of	the	other	four	studied	pandas	was	fairly	
consistent	apart	from	seasonal	changes	(Figure	1).

There	were	 in-	phase	 (positive)	 coherencies	at	 the	24-	hr	band	be-
tween	activity	level	and	air	temperature	across	each	season	(Figure	4).	
The	average	coherency	was	0.61	±	0.07	and	ranged	from	0.56	to	0.73,	
with	an	average	time	 lag	of	15.03	±	7.18	hr	 (Table	2).	The	relationship	
between	solar	radiation	and	panda	activity	level	was	similar	and	also	ex-
hibited	in-	phase	coherencies	(Figure	5).	The	average	coherency	in	this	
relationship	was	0.64	±	0.04	and	ranged	from	0.62	to	0.71,	with	an	av-
erage	time	lag	of	17.73	±	7.23	hr	(Table	2).	The	coherency	within	a	single	
individual	(Mei	Mei)	was	similar	in	different	years,	and	the	time	lag	was	
similar	as	well	(Table	1).	But	responses	to	weather	varied	across	pandas.

4  | DISCUSSION

In	this	study,	we	applied	continuous	wavelet	transforms	(CWT)	and	
wavelet	coherency	analysis	to	identify	the	activity	patterns	of	wild-
life.	While	there	have	been	successful	applications	of	this	method	to	

F IGURE  2 Box	plots	of	average	activity	level	across	five	giant	
pandas	by	time	of	day	during	spring,	summer–autumn,	and	winter.	
The	middle	line	denotes	the	median	value,	the	box	extends	from	the	
25th	to	the	75th	percentiles,	and	the	solid	dots	denote	the	values	
of	the	5th	and	95th	percentiles.	We	excluded	the	data	of	Mei	Mei	
from	April	2010	to	March	2011,	as	her	activity	pattern	was	abnormal	
because	of	pregnancy	and	parturition	in	this	period

F IGURE  3 Comparison	of	Mei	Mei’s	activity	level	between	the	
year	she	was	pregnant	and	gave	birth	(2010–2011)	and	the	following	
year	(2011–2012).	She	became	pregnant	in	the	spring	(March	or	
April)	of	2010	and	gave	birth	in	August	of	that	year.	The	box	plots	
show	average	hourly	activity	level	by	time	of	day,	where	the	middle	
line	denotes	the	median	value,	the	box	extends	from	the	25th	to	
the	75th	percentiles,	and	the	solid	dots	denote	the	5th	and	95th	
percentiles
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understand	similar	processes	using	animal	movement	data	(Polansky	
et	al.,	 2010;	Wittemyer,	 Polansky,	 et	al.,	 2008),	 extending	 the	 ap-
proach	into	a	new	dimension	of	animal	activity	data	opened	up	new	
avenues	of	 inquiry	 (Sakamoto	et	al.,	 2009).	Time-	series	 analysis	of	
activity	patterns	may	more	accurately	reflect	the	mechanisms	of	en-
ergy	 cost	 and	maintenance	 than	 traditional	methods	 in	movement	
ecology.	Both	processes	allow	for	 inference	to	be	made	on	an	ani-
mal’s	 survival	 status,	 physiological	 state,	 and	adaptive	 response	 to	
environmental	stimuli.	But	activity	pattern	data	overcome	the	large	
error	in	turning	angles	(Zollner	&	Lima,	1999)	and	the	gross	under-
estimation	 of	 movement	 distances	 from	 successive	 GPS	 locations	
(Mandel	et	al.,	2008).

The	autocorrelation	properties	of	animal	activity	patterns	are	 in-
teresting	to	study	because	they	may	reflect	differences	in	physiolog-
ical	states	of	animals	and	their	responses	to	environmental	factors	in	
new	ways	(MacIntosh,	Alados,	&	Huffman,	2011;	MacIntosh,	Pelletier,	
Chiaradia,	Kato,	&	Ropert-	Coudert,	2013).	For	example,	some	studies	
have	shown	that	physiological	stressors	(e.g.,	clinically	impaired	health,	
reproductive	activities)	or	other	challenges	 (e.g.,	 low	dominance	sta-
tus)	are	associated	with	less	stochasticity,	that	is,	increasing	periodicity	
or	stereotypy	(Alados	&	Weber,	1999;	Alados	et	al.,	1996;	Motohashi,	
Miyazaki,	&	Takano,	1993;	Rutherford,	Haskell,	Glasbey,	&	Lawrence,	
2006;	Seuront	&	Cribb,	2011).	In	contrast,	individuals	show	increased	
complexity	 of	 behavioral	 patterns	 when	 they	 explore	 resources	 in	

F IGURE  4 Wavelet	coherency	between	activity	level	of	five	giant	pandas	(a:	Mei	Mei(2010-2011),	b:	Mei	Mei(2010-2011),	c:Pan	Pan,	d:	
Zhong	Zhong,	e:Chuan	Chuan,	f:	Long	Long)	monitored	using	GPS	collars	and	temperature.	The	5%	significance	level	against	red	noise	is	shown	
as	a	black	contour,	the	color	bar	indicates	strength	of	correlation,	and	the	direction	of	the	arrow	indicates	phase	information	or	the	type	of	
correlation	(right	directed—”in	phase	or	positive”;	left	directed—”antiphase	or	negative”;	down—X	leading	Y	by	90°;	up—Y	leading	X	by	90°).	The	
x-	axis	indicates	the	date,	while	the	y-	axis	indicates	the	timescale	in	hours.	Mei	Mei’s	data	were	divided	into	two	subsets	which	were	from	April	
2010	to	March	2011,	and	from	April	2011	to	March	2012,	respectively
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novel	environments,	which	in	turn	may	increase	foraging	success	rates	
(Alados	et	al.,	1996;	Escos	et	al.,	1995;	Kembro	et	al.,	2009;	MacIntosh	
et	al.,	2011;	Shimada,	Minesaki,	&	Hara,	1995).	Most	previous	studies	
mainly	use	fractal	analysis	on	binary	datasets	(e.g.,	stationary	vs.	non-
stationary	data)	to	analyze	autocorrelation	of	animals’	activity	patterns	
associating	with	endogenous	and	exogenous	factors	(MacIntosh	et	al.,	
2011,	2013).	However,	such	approaches	cannot	assess	variation	in	au-
tocorrelation	properties	along	continuous,	high-	resolution	time	scales	
that	may	 be	more	 sensitive	 for	 picking	 up	 nuances	 in	 responses	 to	
internal	and	external	stimuli	(MacIntosh	et	al.,	2011,	2013).	Our	appli-
cation	of	wavelet	analysis	provided	a	more	robust	statistical	approach	
to	analyzing	autocorrelation	of	activity	pattern	data	on	a	continuous	
scale	across	context-	specific	physiological	and	environmental	factors	
(MacIntosh	et	al.,	2013;	Wittemyer,	Polansky,	et	al.,	2008).

Our	study	also	revealed	new	insights	into	activity	patterns	of	the	
endangered	giant	panda.	Previous	studies	have	been	carried	out	on	
activity	patterns	in	pandas,	but	they	have	been	limited	to	traditional	
approaches	 (Schaller	 et	al.,	 1985;	 Zhang	 et	al.,	 2015).	 Our	 findings	
expand	 upon	 this	 research	 by	 demonstrating	 variation	 not	 only	 in	
panda	activity	levels	but	also	pandas’	frequency-	based	cyclical	activity	
modes.	For	example,	earlier	studies	showed	that	giant	pandas	exhibit	
an	 activity	valley	during	 summer–autumn,	 likely	 relating	 to	 the	high	
quality	 food	 and	 easy	 access	 to	water	 (Nie,	 Speakman,	 et	al.,	 2015;	
Schaller	et	al.,	1985;	Zhang	et	al.,	2015).	This	season	was	also	distinct	
in	our	 study	 in	 that	 it	was	 the	only	 season	 in	which	we	 found	a	di-
urnal	 activity	 cycle.	Pandas	perhaps	displayed	more	 frequent	 cycles	
during	spring	due	to	the	demands	of	mating	activities	and	 in	winter	
due	to	declines	 in	 food	and	water	quality	and/or	availability	 relative	
to	 summer–autumn.	 During	 spring,	 pandas	move	 from	 high	 to	 low	
elevation	areas	to	forage	on	umbrella	bamboo	shoots	which	contain	
high	nutrition	(Table	S1)	(Nie,	Zhang,	et	al.,	2015),	and	need	to	make	
long-	distance	movements	 (more	energy	expenditure)	 to	pursue	new	
bamboo	shoots	 (Schaller	et	al.,	1985;	Zhang	et	al.,	2015).	Moreover,	
spring	is	the	mating	season	for	pandas—male	pandas	roam	an	exten-
sive	 range	 to	 encounter	 females	 and	 fight	 for	mating	 rights.	During	
winter,	pandas	need	to	spend	more	time	foraging	for	food	and	water	

resources.	 In	our	field	observation	and	previous	studies,	pandas	vis-
ited	a	few	permanent	water	sites	more	often	in	winter	as	temporary	
pool	sites	disappeared	and	most	streams	froze	(Schaller	et	al.,	1985;	
Zhang	et	al.,	2014).	The	food	available	during	this	season	(stems	and	
old	shoots)	is	also	less	nutritious	than	other	times	of	year.	In	addition,	
a	recent	study	showed	that	pandas’	net	energy	assimilation	(NEA)	and	
associated	metabolic	rate	was	negatively	related	to	daily	shade	tem-
perature,	another	potential	reason	for	the	lower	activity	and	less	fre-
quent	activity	cycling	in	summer	and	autumn	than	other	seasons	(Nie,	
Speakman,	et	al.,	2015).	Similar	behavioral	strategies	were	also	found	
in	movement	studies	on	other	species—energy	budgeting	associated	
with	diet	 and	water	 resources	 are	major	 explaining	 factors	of	 shifts	
in	animal	behavioral	(e.g.,	forage	or	movement)	cycles	across	seasons	
(Wittemyer,	Polansky,	et	al.,	2008;	Zollner	&	Lima,	1999).

Reproduction	 is	a	cyclic	behavior	 influenced	by	predictable	phe-
nomena	such	as	circadian	light	and	temperature	(Prendergast,	Nelson,	
&	Zucker,	 2002).	However,	 the	 change	 in	 cyclical	 behavior	 patterns	
relating	 to	breeding	activity	has	 rarely	been	 investigated	due	 to	 the	
lack	 of	 long-	term	 empirical	 datasets	 (Wittemyer,	 Polansky,	 et	al.,	
2008).	A	pregnant	female	(Mei	Mei)	in	this	study	provided	a	rare	op-
portunity	 to	 test	 hypotheses	 concerning	 cyclical	 activity	patterns	 in	
the	breeding	period.	The	near	disappearance	of	 the	diurnal	 band	 in	
her	data	during	summer–autumn	2010	suggests	that	mother	pandas	
follow	abnormal	activity	patterns	 for	around	5	months	after	parturi-
tion	 (Figure	1).	This	 result	 is	 consistent	with	previous	 field	observa-
tions	 in	 the	Qinling	mountains,	where	 cubs	 start	walking	 around	 in	
the	forest	after	the	age	of	5	months	and	mothers	begin	to	recover	to	
normal	activity	levels(Pan	et	al.,	2014).	It	makes	sense	that	Mei	Mei’s	
activity	level	was	significantly	higher	during	the	spring	she	was	preg-
nant	than	the	same	period	in	the	next	year,	as	she	had	to	build	up	a	
storage	of	energy	during	the	pregnancy	(Figure	3).	Pregnant	females	
need	 to	 forage	more	bamboo	shoots	 that	emerge	during	 the	 spring	
season	to	satisfy	breeding	requirements	 (Zhang	et	al.,	2015).	Shoots	
have	 high	 6-	methoxy-	2-	benzoxazolinone	 (6-	MBOA)	 content,	 which	
is	advantageous	for	embryonic	development	and	the	survival	of	off-
spring	(Nelson,	1991;	Rosenfeld	&	Shelby,	2004).

Panda

Temperature activity Solar activity

Mean coherence Time lag (hours) Mean coherence Time lag (hours)

Mei	Mei	
(2010–2011)

0.56 18.03 0.64 21.19

Mei	Mei	
(2011–2012)

0.56 18.00 0.64 21.20

Pan	Pan 0.73 0.43 0.71 2.66

Zhong	Zhong 0.61 17.87 0.62 19.81

Chuan	Chuan 0.64 18.81 0.64 20.05

Long	Long 0.58 17.09 0.58 19.01

Mean	±	SD 0.61	±	0.07 15.03	±	7.18 0.64	±	0.04 17.32	±	7.23

Results	are	extracted	from	the	red	areas	corresponding	to	the	daily	scale	 in	the	wavelet	coherence	
analysis	of	Figures	4	and	5.
A	positive	time	lag	means	that	the	response	of	the	first	variable	is	before,	by	x	number	of	hours,	the	
response	of	the	second	variable.

TABLE  2 Relationship	between	activity	
level	of	GPS-	collared	giant	pandas	and	
weather	(temperature	and	solar	radiation).	
Mean	coherence	and	time	lag	were	
measured	on	a	daily	scale	(24	hr)
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Even	considering	the	multiple-	cycles/day	activity	pattern	of	pandas	
during	spring	and	winter,	pandas	still	displayed	a	common	diurnal	cycle	
across	seasons	 (the	only	exception	being	Mei	Mei	 in	her	first	month	
after	parturition)	 (Figure	1).	Although	we	cannot	 infer	 causality	 from	
our	 results,	 the	 coherency	 at	 the	24-	hr	band	 scale	between	activity	
level	and	temperature/solar	radiation	across	all	pandas	throughout	the	
study	period	(Figures	4,	5	and	Table	2)	suggests	that	there	may	be	a	re-
lationship	between	weather	cycles	and	panda	activity.	This	hypothesis	
is	supported	by	previous	analysis	of	this	same	dataset	using	GAMM	did	
not	detect	a	significant	effect	of	temperature	on	panda	activity,	but	did	
find	a	significantly	positive	correction	between	solar	radiation	and	ac-
tivity	level	for	four	(out	of	5)	of	the	studied	pandas	(Zhang	et	al.,	2015).

The	 giant	 panda’s	 simple	 behavioral	 habits	make	 the	 species	 an	
ideal	 study	subject	 for	wavelet	analysis,	but	 this	 is	also	a	constraint	
for	expanding	the	approach	to	other	wildlife	that	may	have	more	com-
plex	behavior	patterns	that	encompass	a	greater	number	of	behavior	
categories.	Further	research	is	needed	to	better	classify	ethograms	of	
wildlife	with	larger	numbers	of	behavioral	categories,	such	as	birds	and	
fish	 in	 a	way	 that	would	 allow	 for	 integration	with	wavelet	 analysis	
(Broell	 et	al.,	 2016;	 Nakamura	 et	al.,	 2011;	 Sakamoto	 et	al.,	 2009).	
And	more	empirical	studies	with	high-	resolution	and	 long-	term	data	
also	are	still	required	to	fully	explore	relationships	between	cycles	in	
animal	behavior	and	concurrent	cycles	 in	environmental	characteris-
tics	(Wittemyer,	Polansky,	et	al.,	2008).	We	also	suggest	that	research	

F IGURE  5 Wavelet	coherency	between	activity	level	of	five	giant	pandas	(a:	Mei	Mei	(2010-2011),	b:	Mei	Mei(2010-2011),	c:Pan	Pan,	d:	
Zhong	Zhong,	e:	Chuan	Chuan,	f:	Long	Long)	monitored	using	GPS	collars	and	solar	radiation.	The	5%	significance	level	against	red	noise	is	
shown	as	a	black	contour,	the	color	bar	indicates	the	strength	of	correlation,	and	the	direction	of	the	arrow	indicates	phase	information	or	the	
type	of	correlation	(right	directed—”in-	phase	or	positive”;	left	directed—”antiphase	or	negative,”;	down—X	leading	Y	by	90°;	up—”Y	leading	X	by	
90°).	The	x-	axis	indicates	the	date,	while	the	y-	axis	indicates	the	timescale	in	hours.	Mei	Mei’s	data	were	divided	into	two	subsets	which	were	
from	April	2010	to	March	2011,	and	from	April	2011	to	March	2012,	respectively
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into	the	relationship	between	physiological	strategies	and	phase	dif-
ferences	 between	 rhythmic	 activity	 modes	 (e.g.,	 daily	 and	 seasonal	
activity,	breeding	cycles)	should	be	extended	to	more	empirical	stud-
ies.	 Future	 studies	 could	 also	 integrate	 activity	 data	 together	 with	
movement	data	to	draw	stronger	conclusions	about	changes	in	animal	
behavior	under	varying	internal	and	external	conditions.	Additional	re-
search	should	consider	the	influence	of	periodic	human	activities	(e.g.,	
seasonal	resource	collection)	on	animals’	behavior,	as	the	competition	
over	resources	and	space	between	humans	and	wildlife	is	increasingly	
intense	 in	 today’s	human-	dominated	world	 (Wittemyer,	Elsen,	Bean,	
Burton,	&	Brashares,	2008;	Woodroffe,	Thirgood,	&	Rabinowitz,	2005).
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