Integrating Contagion and Human Behavior into Animal Health Economics

Inaugural Meeting of International Society for Economics & Social Sciences of Animal Health March 27-28, 2017 Aviemore, Cairngorms, Scotland David Hennessy Michigan State University

Motivation & Outline

- Potential area is, in my view, large and I will only seek to illustrate
- Emphasis on behavioral issues as they pertain to managing potentially contagious diseases
- Will start with a game setting and will move to comment on policies to manage behavior

• Point: if a grower thinks others will

- do their part then grower has strong <u>private</u> incentive to do so too
- slack off then grower has weak own incentive to act
- Disease manager's role: to coordinate/cajole to get everyone on the best same page, namely likely all taking the action. Share, communicate, trust

Another Way to Look at Keeping Disease Out

- Standard loss benefit analysis setting for a disease:

 a farmer faces loss at level *L* with probability *p* and can take an action at cost *c* to eliminate the risk of <u>direct</u> entry onto a farm.
- For a risk-neutral farmer, the action should be taken if and only if

$$pL \ge c$$

• But infectious diseases create externalities

What is the issue?

- Suppose now that there are two farms, A and B, in a region. Either can introduce a disease with probability *p* and pass it on to the other farm with (independent) probability *q*
- Now a given farm has two ways to get disease; directly with prob. *p* and indirectly with prob. *q*
- Expected loss is
 - $\square pL + pqL$ to each if neither act. Why?
 - \Box *c* to each if both act? Why?
 - \square *pqL* +*c* to a farm that acts when the other doesn't
 - \square *pL* to a farm that doesn't act when the other does

Static GameFor both farms, (Act,Act) is best
box to be whenever c < pL + pqL

• This can be put in a game theory payoff matrix as follows. All entries are losses, so high is bad.

- Left entry is payoff to farm A, right to B
- When farm B does not act then A acts if and only if $pqL+c \le pL + pqL$, i.e., $c \le pL$
- When farm B acts then A acts if and only if $c \leq pL$
- So neither acts whenever c > pL

Outcome

• If neither farm acts then loss to each is pL + pqL

• We ha	ve the follow	ving p pL +	p pqL	С
Botl & b	n act oth	Neither act	Neither act & neither	
shou	ıld	should act	should act	

• As infectiousness q increases, the problematic gap increases

Ising-type models, social interactions

- Bad equilibria and positive interactions can also be argued for endemic contagious disease
- Durlauf (1999) and Brock and Durlauf (2001) have adapted models seeking to explain polarity of magnets or the earth to cases where two effects matter for the outcome at a location in space.
- Each location receives independent shocks, and each receives reinforcement from neighbours.
- In contagious animal disease, these would be say disease carried in after distant travel and then aerosol/water local dispersion

Stable, unstable equilibria in Ising-type models

Voluntary Control Program: Participation Incentive

- The success of a voluntary program hinges on producer participation
- Most voluntary programs span multiple years, with evolving participation rates
- It is important to consider dynamic interactions among participant choices
- A great book is "Arresting Contagion," Olmstead & Rhode
- Below are 4 examples, all from US

Interesting Dynamics of Disease Control & Related Programs

- Texas Tick Fever
- National Animal Identification System
- NPIP (Nat. Poul. Imp. Prog.)
- Voluntary Johne's Disease Herd Status Program

Is Johne's Disease

• Good (Texas Tick Fever, NPIP) worked. Bad (USNAIS for bovines) failed. Ugly (Johnes) a grind

On behavioral Issues and multiple equilibria pL + pqLpL

both should

Both act & should

Neither act & Neither act & shouldn't

C

- What to do with the green area?
- Behavioral economics suggests the relevance of starting points and endowment effects
- Bounded self-control, imperfect optimization, etc., may explain why we have inertia when it seems costless to change, e.g., savings defaults, pension choices, government program uptake (Madrian 2014)
- Where am I going with this? I didn't come to UK to talk about getting NUDGE UNIT onto animal health

Nudging and other issues

- But, given difficulties encountered with controlling a variety of animal diseases, perhaps one could think about voluntary opt outs
 - Sign people up to participate in a control program and pay them \$150 for the hassle
 - Let them opt out (and back into earlier disease control rules) out if they want, no questions asked
 - See if they stick with the endowed position

Other possibilities for behavioral economics in animal health

- Much of behavioral economics in human medicine addresses unfortunate choices; diet, exercise, failure to follow health management regimes. Not so relevant to managing farmed animal diseases as we impose choices on animals
- But <u>antibiotics</u> use. Some evidence suggests that they are no longer of much use in parts of farming, but we persist in use
- The way we <u>process information</u>. Much of animal health management is about processing information

Thinking Fast

- Kahneman 'Thinking, Fast & Slow" sees two selves; one lazy, effort-conservating, associative, emotional and heuristic; the other calculating when aroused
- As far as animal health events go, there are cognitive issues
 - o can be rare with poorly understood causes
 o interconnected with behavior of others
 o may falls into box the 'heuristic self' deals with
- Availability bias: ascribe likelihood to events one can think of and so subjective probability declines as one goes further from last comparable event

& Seldom Slow

- Prone to anchoring and most likely anchor is normal year so edit out disease risk
- 'What You See Is All There Is,' ignoring information not presented to you. When told a story that someone is shy and bookish then assumed to be librarian, not factory worker even though far more of latter
- We like sorting out a simplistic narrative for cause and effect and going with it so that we can function in business
- We can be horrible at Bayesian statistics, which is a problem for insurance demand because we can't take conditional expectations

Insurance issues

- Kunreuther et al. (2013) document the following demand-side insurance anomalies in high income country markets
 - Failure to protect against low-probability, highconsequence events
 - Purchasing insurance after a disaster occurs
 - Cancelling insurance if there has been no loss
 - Preference for low deductibles
 - Status quo bias
 - Preference for insurance on highly salient events such as cancer and death/maimed while flying

Conclusion

- Lots of important issues to explore in
 - strategic dimensions to management of contagious diseases
 - behavioral economics of animal health, to do with heuristic rules for drug administration, information processing, insurance choices
 - Even in interface, when it comes to trust and coordination

THANK YOU

References

Anderson, D.P. 2010. The U.S. animal identification experience. J. Agric. & Appl. Econ. 42:543-550.

Barnes, A.P., A.P. Moxley, B. V. Ahmadi, & F.A. Borthwick. 2015The effect of animal health compensation on 'positive' behaviours towards exotic disease reporting and implementing biosecurity: A review, a synthesis and a research agenda. Prev. Veter. Med. 122:42-52.

Brock, W.A. & S.N. Durlauf. 2001. Discrete choice with social interactions. Rev. Econ. Stud. 68:235-260.

Durlauf, S.N. How can statistical mechanics contribute to social science? Proc. Nat. Acad. Sci. 96:10582-10584.

Kunreuther, H.C., M.V. Pauly, & S. McMorrow. 2013. Insurance & Behavioral Economics. Cambridge Univ. Press.

References

Madrian, B.C. 2014. Applying insights from behavioral economics to policy design. Annu. Rev. Econ. 6:663-688.

NAIS benefit-cost research team. 2010. NAIS Benefit-cost analysis of the NAIS, https://www.google.com/search?q=NAIS+Benefit-Cost+Research+Team+2009&ie=utf-8&oe=utf-8

Olmstead, A.L. & P.W. Rhode. 2015. Arresting Contagion. Harvard Univ. Press

Wang, T., & D.A. Hennessy. 2014. Modelling interdependent participation incentives: dynamics of a voluntary livestock disease control programme. Eur. J. Agric. Econ. 41:681-706.

Texas Tick Fever

- Texas tick fever was a major threat to the U.S. cattle industry from the Civil War until end of World War I
- Efforts to eradicate tick carriers started as early as 1898
 - Active resistance to the programs emerged after participation became mandatory in 1906
 - larger ranchers began to see the benefit as sources for re-infection diminished and returns on treated animals increased
 - a virtuous cycle of events led to a better equilibrium for those who could bear eradication costs
- By 1933 Texas fever was no longer a major problem for the cattle industry

National Animal Identification System (NAIS)

- Estimated benefit from NAIS implementation increases as participation levels increase
 - in event of F&M disease outbreak producer losses for a program with a 90% participation rate would be \$4.5
 billion less than a program with a 30% participation rate (NAIS Benefit-Cost Research Team 2009)
- Participation rates in the premises registration step reached only 18% for cattle, and stalled in mid 2000s
- For bovines this program was largely unsuccessful, due partly to failure by the USDA to communicate program benefits to producers (Anderson 2010)

NPIP

- Voluntary and set up in 1930's as a cooperative program between industry, state, and US federal government, initially to eliminate Pullorum Disease, widespread and could cause devastating losses
- Program later extended to testing/monitoring for other diseases, incl. AI
- Covers commercial hens and broilers, turkeys, waterfowl, show and backyard poultry, and birds for shooting
- Participation requires Annual P-T Testing, AI Testing, Annual Premises Inspection and Records Audit
- Widespread participation and has been very successful in cleaning up disease

Johne's disease

- Paratuberculosis, bovine disease U.S. government seeks to control through voluntary reporting scheme
- Infectious and eventually causes decreased productivity in beef and dairy cattle. Some concern about zoonotic implications
- Scheme involves voluntary testing by herd owner and test-based herd classification. Owner selling, e.g., dairy replacement heifers, can use this information to boost price or remain silent
- Silent herds: either *i*) don't test or *ii*) do & don't tell

State	Promises	Promises Registered	Percent
M	2 5 5 5		
Massachusetts	3,555	8,082	>100.0%
Wisconsin	51,373	62,802	>100.0%
Indiana	34,790	35,200	>100.0%
Idaho	18,/54	18,/52	100.0%
New York	25,559	22,441	87.8%
Utah	12,460	10,184	81.7%
Michigan	29,011	22,447	11.4%
Pennsylvania	42,302	30,749	12.1%
North Dakota	14,085	8,904	63.2%
Nevada	2,522	1,485	58.9%
Nebraska	30,841	17,606	57.1%
lowa	47,273	26,741	56.6%
West Virginia	17,670	9,509	53.8%
Illinois	30,046	15,094	50.2%
Delaware	1,553	661	42.6%
Colorado	22,951	8,650	37.7%
North Carolina	36,142	13,491	37.3%
Minnesota	44,193	15,593	35.3%
Alaska	354	117	33.1%
South Carolina	16,120	4,976	30.9%
Tennessee	68,010	20,577	30.3%
Hawaii	1,391	406	29.2%
Virginia	37,673	10.619	28.2%
New Mexico	11,250	3,102	27.6%
Arizona	5,170	1,425	27.6%
Florida	28,731	7,826	27.2%
Alabama	35,538	9,284	26.1%
Kentucky	61,251	15,565	25.4%
Arkansas	37,614	9,501	25.3%
South Dakota	22,356	5,549	24.8%
California	32,500	7,763	23.9%
Mississippi	29,312	6,751	23.0%
Wyoming	8,227	1,840	22.4%
Kansas	39,346	8,430	21.4%
Ohio	48,073	9,995	20.8%
Maryland	7,837	1,559	19.9%
New Jersey	5,315	1.041	19.6%
Missouri	79.018	15,166	19.2%
Texas	187,118	33.022	17.6%
Oklahoma	71.420	12.184	17.1%
Louisiana	19.677	3,307	16.8%
Georgia	35.431	5,108	14.4%
Maine	4.213	444	10.5%
Oregon	28.634	2.877	10.0%
Washington	22,001	2 131	9.6%
Vermont	4,438	389	8.8%
Montana	19 708	1 699	8.6%
Connecticut	2 539	164	6.5%
Rhode Island	504	15	3.0%
New Hampshire	2 277	61	2.7%
Subtotal	1 429 290	E21 204	24 00 25
Subtotal	1,430,200	331,204	30.7%

Table 3. NAIS Premises Registration Statistics, as of September 6, 2009

Momentum and markets, reverse lemons problem

Under plausible conditions, over time

i) mean disease-free rate of silent producers falls; *ii*) premium from program participation rises; *iii*) participation rate rises;

Or
$$r_0^S \equiv E[r] \ge r_1^S \ge r_2^S \ge \dots \ge r_\infty^S$$

 $I_0 \le I_1 \le I_2 \le \dots \le I_\infty$
 $\eta_0 \equiv 0 \le \eta_1 \le \eta_2 \le \dots \le \eta_\infty$

Problem: may be multiple equilibria (Wang & Hennessy, 2014)

Momentum on a Lattice

Hope it attains escape velocity

Think of a point lattice that extends indefinitely in 3D

nticipati ar next rate period, even smaller r_{t+1}^S larger premium I_{t} smaller disease-free rate r_t^S for silents

Bayes' Rule

follows

• Suppose that a farmer sees a signal on disease status as

	True state		
Signal	Healthy	Diseased	
Good	q	1- q	
Bad	1- q	q	

• Unconditional probability of being diseased is p and the signal is informative in that q > 0.5. Then

Pr(Dis | Bad) –
$$p = \frac{(2q-1)(1-p)p}{pq+(1-p)(1-q)}$$

• When we use information on health status, we don't understand how to adjust probabilities

Barnes et al. Review

- Little empirical research on infectious animal disease economics. Disease data limited/messy
- In economics literature, some highlighted items are
 - risk of public action crowding out private action, + concern about perverse response to excess payment. Latter is overblown; farmers face uncovered costs and still have 'skin in the game'
 - Condition payments on early reporting?
 - Importance of information and education
 - Scale economies and large-scale farming
 - Bureaucratic nightmare of being flagged as diseased herd can promote biosecurity
 - Insurance schemes operationally problematic
 - Need to think about how neighbors are thinking

Cumulative Prospect Theory

Cumulative Prospect Theory asserts that individuals

- like risk over losses and are averse to it over gains
- place too much/little weight on low/high probability events
- This leads to the fourfold pattern: people
 - Seek risk when faced with low-probability gains,
 - Averse to risk when faced with high-probability gains,
 - Averse to risk when faced with low-probability losses,
 - Seek risk when faced with high-probability losses
- Barnes and others have explored bonuses and incentives to report

Barnes et al. Prospect Theory

value • Prospect theory and loss averse behavior losses concave sector suggests problems for insurance as gains/ losses farmers may not point of reference demand it. Further, covering losses may deter gains farmers from aversion to loss convex sector

Barnes et al. Sociological Literature

- For disease reporting there is *habituation effect* (complacency over time) + unclear awareness of purpose
- For reporting, Elbers et al. interviewed Dutch pig farmers. Reasons for not reporting include
 - Don't know signs
 - Guilt, shame and fear of prejudice
 - Haven't bought into control measures in place in general and for reporting farms
 - Opaque reporting procedures
 - Distrust in government bodies

Barnes et al. Trust, Transparency and Cooperation

- Trust may be an issue
 - Are neighbours pulling weight?
 - Is government technically competent in design and management?
 - Is program designed for farmers like me or for other (e.g., larger, or more mainstream) farmers?
 - Have viewpoints of people like me been incorporated into program design?
 - Will indemnities be paid?
 - Has government other goals, such as seeking to impose environmental regulations, to tax or to steal?

Barnes et al. Trust

- Trust will be stronger when farmers
 - are better educated and technologically sophisticated,
 - are already embedded in complex production systems such as contracting, and
 - have evidence that schemes are effective
- Trust is a funny thing. If you are thrust into someone else's arms you may learn to trust, at least at a functional level. EU and US have used farm commodity subsidies and environmental payments to leverage cross-compliance on other issues