

Demand for Antibiotic Treatment in Dairying

David A. Hennessy, Yanan Jia, Hongli Feng All Dept. of Agriculture, Food & Resource Economics Michigan State University

Part funded by Elton Smith Endowment, Michigan State University

Motivation

- Antibiotics have been widely applied in animal agriculture, for
 - A. Growth promotion
 - B. Disease prevention
 - C. Disease treatment
- Through much of world, efforts to reduce applications. US FDA Veterinary Feed Directive has sought to eliminate Purpose A and reduce B-C
- In dairying, A is not an issue and C is the major issue for mastitis purposes

Purpose

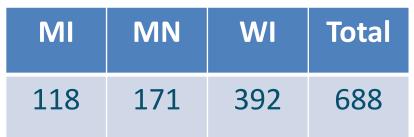
- Our focus is managerial economics of farm-level antibiotics CONGE choices. Research reveals
 - strong pressures on human medicine doctors to overprescribe antibiotics (e.g., Linder et al. 2017)
 - As with others, evidence that farmers may, through rational inattention or irrationality, mismanage their inputs (e.g., Perry et al. 2017) and risk protection (Du et al. 2017)
- We seeks to understand whether opportunities exist for behavioral (non-traditional) economics approaches to reduce antibiotics demand on dairy farms

THE 5[™] INTERNATIONAL

Graphical Perspective

Antibiotics quantity used

Actual (????), due to decisionmaking and related issues
Privately best accounting only for farm profit
Socially best, accounting for risk to human medicines


Survey

Source: <u>https://hoards.com/article-20125-calf</u> -feeding-changes-are-on-the-way.html

- Lake State Dairy Farm Business Viability Survey sent to farmers in Wisconsin, Minnesota + Michigan. Paper and web versions, March-September 2017, 21% response rate
- Section on antibiotics asks
 - how used,
 - what costs,
 - willingness to pay for treatment

How used

Do you have written protocols?

87.7%

Size	<100 co	OWS	100-499 cows	500+ cows	Organic	Total	
Yes	50).4%	74.4%	88.2%	51.9%	60.9%	
No	49	0.6%	25.6%	11.8%	48.1%	39.1%	
Total		355	153	76	52	636	
Function							
T	Uses Treat current infection Prevention			on			

70.3%

62.7%

Nature of		Median cost per case			
Losses		Diagnosis	\$5	health CONGRESS	
		Therapeutics	\$30	Data	
Mean loss per cow per year if can't use		Non-saleable milk	\$80	Data comparable	
		Veterinary service	\$15	to Rollin et al	
Small	\$1,834	Labor	\$15		
Medium	\$462	Death loss	\$34	Therapeutics	
Large	\$454	Lost future milk	\$200	as share	
Average	\$1,252	Premature culling	\$200	<5%	
		Lost future reproduction	\$100		

Willingness to Pay for Antibiotics Treatment

Cow not performing optimally. You isolate. There is a probability she can be cured by antibiotics and a loss avoided if she is. What are you WTP?

	Loss					
×		\$100	\$150	\$200	\$250	
ility	0.40	\$103	\$127	\$117	\$102	
Probability	0.55	\$137	\$131	\$122	\$138	
	0.70	\$154	\$153	\$166	\$196	
	0.85	\$169	\$172	\$196	\$198	
Only WTP not significantly larger						
than expected loss avoided						

THE 5TH INTERNATIONAL

healt

CONGRESS

HEALTH PLATFORM

Fitted Model, what do farmers worry about?

Fitted quadratic model, 0.9 WTP = f(prob., loss avoided)0.8 0.7 Probability Classic expected loss model, 0.2 $WTP = prob. \times loss avoided$ 0.1 0 150 200 250 300 350 100 Loss avoided

*Figure shows how probability and loss avoided trade off to keep <u>WTP at \$100.</u> *Fitted curve shallower than expected loss curve *Farmers are more keen to increase probability of loss avoided than to increase magnitude of loss avoided

THE 5[™] INTERNATIONAL

Further Evidence

Please identify most & least IMPORTANT factors	⁰∕₀	⁰∕₀
for your operation in regard to managing mastitis	most	least
Increasing prob. treatment successful	59.8	12.8
Managing treatment cost	7.0	64.3
Reducing loss if cow infected & treatment effective	33.1	22.9
Total	513	507

THE 5[™] INTERNATIONAL

Four Policy Points

- Direct question suggests tax on antibiotics use would be ineffective. Cost very small compared with other costs.
 Bureaucracy + linking with vet time likely more effective
- WTP model suggests increasing loss avoided (e.g., with premium for better quality milk) may not increase demand for antibiotics much when compared with more effective antibiotics
- Farmers keen to reduce risk of loss but not so cost focused may over-apply, even from private optimum stand-point (diagram)
- Farmers may be WTP for better diagnostics to increase probability of success and this need not increase demand for antibiotics

References

- Du X, H Feng, DA Hennessy. 2017. Rationality of choices in subsidized crop insurance markets. Amer. J. Agric. Econ. 99(3), 732-756.
- Linder JA. 2017. Influencing antibiotic prescribing behavior: Outpatient practices. Presentation, Feinberg Sch. Med., Northwestern Univ., Sept. 9.
- Perry E, G Moschini, DA Hennessy. 2017. Product formulation and glyphosate use: Confusion or rational behavior? Selected paper, AAEA Annual Meetings, Chicago, IL.
- Rollin E, KC Dhuyvetter, MW Overton. 2015. The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Prev. Vet Med. 122(3), 257-262.