

Modeling Forest Management and Carbon: a Tool for State-Wide Planning and Action

Forest-Climate Working Group 2021-2022 Learning Exchange Series

May 4, 2022

Chad Papa, Michigan State University Kendall DeLyser, American Forests

Agenda

- Forest carbon modeling
- Our model: The CBM-CFS3
- Integrating FIA and US data into the CBM-CFS3

- Modeling carbon impacts of forest management and wood utilization
- Uses in state-wide planning and action

• Q&A

Forest Carbon Modeling Landscape

Two types of models

- Estimate carbon from empirically-derived data (statistical models)
- 2. Estimate carbon from photosynthetic processes (process-based models)

Hybrid simulation models: benefits and challenges

Benefits

- Empirical data lends strength to poorly constrained parameters in process models
- Simulating using process-based elements allows for advantages in projections
- Hybrid models can utilize the same data as operational foresters

<u>Challenges</u>

- Complex forest dynamics
- Both empirical models and process-based models can be poorly constrained
- Linkages to finance and HWP models

CBM-CFS3: a tool for state-wide planning

and action

Carbon Budget Model of the Canadian Forest Sector

- Combines strengths of both empirical and processbased modeling approaches
- IPCC Compliant: Tier 3 methods:
 - "One inventory plus change" method
 - The CBM-CFS3 tracks 10 biomass and 11 DOM C pools
 - Easy aggregation into IPCC pools for reporting
 - Spatially referenced model (GCBM for spatially explicit modeling)
 - Ease of data availability with data inputs

CBM-CFS3: a hybrid modeling framework to quantify forest carbon dynamics

Representation of Forest Disturbance

- Harvest
- Natural
- Land-use change

CBM-CFS3: Data inputs and model structure

Data Inputs

- Detailed forest inventory
 - Stands characteristics described by classifiers
- Empirically-derived growth-yield relations
- Disturbance representation
 - Harvest / management information
 - Natural disturbances
 - Land-use change

Model structure

- Volume to biomass conversions
- Process-based models for turnover
 - Climate / soil dependent

Forest Inventory and Analysis database at a glance

- National system for monitoring forests and forest change
 - 1999 revisions to methods and design
- Emerging applications:
 - rFIA
 - Advances in small area estimation
 - Advances in temporal queries
 - Improvements to carbon / biomass estimation

Figure 1. FIA Phase 2 plot diagram. See individual Phase 3 chapters for Phase 3 plot figures.

Deriving empirically-based estimates from FIA data • Applying estimators to generate age-

- Applying estimators to generate agebased forest inventories
 - Bechtold, Patterson, et al. 2005
- Applications of plot-level estimates for growth-yield model derivation

Integration and applications of US inventory data with the CBM modeling framework

- Streamline process of empirical data estimates, remotely-sensed metrics, and disturbance intensity data
- Flexibility in data inputs
 - i.e., disparate data sets can be utilized
- Customizable volume-to-biomass conversions
- Ease in post-processing results
 - User feedback
- Key linkages to both HWP and finance models
 - CBM-HWP modeling framework

Modeling carbon impacts of forest management

✓ Partners in 7 states (MD, PA, MN, MI, WI, OR, & CA)

Objectives:

- Model carbon impacts of forest management and wood utilization scenarios
 - Ecosystem + wood products + substitution + economics
- Understand climate mitigation potential of scenarios/practices
- Integrate carbon in forest management and planning
- Integrate forests as natural climate solutions in state climate planning

Modeling Scenarios

- ✓ Compare business-as-usual to broad range of forest management & wood utilization scenarios, such as:
 - Extending rotations
 - Controlling deer browse & promoting natural regeneration
 - Optimizing stocking levels
 - Timber stand improvements & resilience/restoration treatments
 - Afforestation & silvopasture
 - Reducing high grading & reducing deforestation
 - No harvest activities
 - Creating more mass timber or long-lived wood products
 - Using woody biomass for energy or transportation fuels

Our outputs provide various tools for state-wide planning:

- Current practices for all ownerships
- Yield curves for all forest types and age classes
- Projected trends under business-as-usual scenario
- Comparisons of scenario performance/potential
- Assessments of state-wide restoration & reforestation needs
- Assessments of projected future climate impacts

Potential policy targets and actions:

- Acreage targets to meet carbon goals
- Most effective practices for meeting forest and climate goals
- Consider current state capacity, funding, and programs to incentivize practices

Current Practices: Maryland

 Derived from FIA, RPA, TPO, NLCD, MTBS, Canham et al. 2013, and statelevel data

 $Proportion\ of harvested\ wood\ distributed\ to\ various\ product\ categories\ in\ Maryland$

Maryland business-as-usual baseline parameters									
Event	Classifiers	Practice	Intensity	Historical average, 2007-2019					
Land-use change	-	Forest loss	-	-7,386 acres/year					
	-	Forest gain	-	+6,909 acres/year					
Natural disturbance	-	Wildfire	Low intensity	436 acres/year					
	-	Insect defoliation	Low intensity	9,809 acres/year					
	-	Insect mortality		372 acres/year					
	-	Disease		28,090 acres/year					
	-	Abiotics	Low intensity	6,562 acres/year					
Forest management	-	Prescribed fire	~40% understory consumption	384 acres/year					
	State forests	Clearcut	90% removal	13,245 mt C/year 1,949,194 cu ft/year					
		Shelterwood cut (HW only)	50% removal	190 mt C/year 25,415 cu ft/year					
		Group selection/overstory removal (HW only)	30% removal	11,187 mt C/year 1,495,537 cu ft/year					
		Thinning	30% removal	923 mt C/year 135,833 cu ft/year					
	Private forests	Clearcut	90% removal	31,520 mt C/year 4,638,660 cu ft/year					
		Seed tree cut (HW only)	70% removal	32,390 mt C/year 7,507,083 cu ft/year					
		Diameter limit cut (HW only)	70% removal	23,839 mt C/year 7,589,854 cu ft/year					
		Shelterwood cut (HW only)	50% removal	84,136 mt C/year 3,013,165 cu ft/year					
		Group selection/overstory removal (HW only)	30% removal	10,842 mt C/year 3,068,538 cu ft/year					
		Thinning	30% removal	19,384 mt C/year 2,267,534 cu ft/year					

Mid-Atlantic modeling results

- Projections show whether forests will stay a net carbon sink or become a net carbon source over time
- Scenarios demonstrate how various practices can alter this trajectory

Cumulative annual emissions (ecosystem+HWP) from 2020-2100. Negative numbers represent additional carbon sequestered (a net carbon sink).

Mid-Atlantic scenario comparisons

	MARYLAND		PENNSYLVANIA		
0: 0:	Rank	Carbon Stocks per Acre	Carbon Fluxes per Acre per Year	Carbon Stocks per Acre	Carbon Fluxes per Acre per Year
2020- 2030	1	No harvest activities	Silvopasture	No harvest activities	Afforestation
	2	Extended rotations	Afforestation	Extended rotations	No harvest activities
	3	Reduce diameter limit cuts	Extended rotations	Restocking understocked stands	Silvopasture
	4	Control deer browse	Restocking understocked stands	Reduce diameter limit cuts	Extended rotations
	5	Afforestation	Control deer browse	Afforestation	Control deer browse
	6	Restocking understocked stands	No harvest activities	Control deer browse	Reduce deforestation
	7	Reduce deforestation	Reduce diameter limit cuts	Reduce deforestation	Restocking understocked stands
	8	Timber stand improvements	Reduce deforestation	Silvopasture	Timber stand improvements
	9	Silvopasture	Timber stand improvements	Timber stand improvements	Reduce diameter limit cuts
2020- 2050	1	No harvest activities	Silvopasture	No harvest activities	No harvest activities
	2	Extended rotations	Afforestation	Extended rotations	Afforestation
	3	Control deer browse	Extended rotations	Restocking understocked stands	Silvopasture
	4	Afforestation	Control deer browse	Control deer browse	Extended rotations
	5	Reduce diameter limit cuts	Restocking understocked stands	Reduce diameter limit cuts	Control deer browse
	6	Restocking understocked stands	No harvest activities	Afforestation	Reduce deforestation
	7	Reduce deforestation	Reduce diameter limit cuts	Reduce deforestation	Restocking understocked stands
	8	Timber stand improvements	Reduce deforestation	Timber stand improvements	Reduce diameter limit cuts
	9	Silvopasture	Timber stand improvements	Silvopasture	Timber stand improvements
	1	No harvest activities	Silvopasture	No harvest activities	Silvopasture
2020- 2100	2	Extended rotations	Afforestation	Extended rotations	Afforestation
	3	Control deer browse	Control deer browse	Control deer browse	Control deer browse
	4	Afforestation	Extended rotations	Restocking understocked stands	No harvest activities
	5	Restocking understocked stands	Reduce diameter limit cuts	Reduce diameter limit cuts	Reduce diameter limit cuts
	6	Reduce diameter limit cuts	Restocking understocked stands	Afforestation	Restocking understocked stands
	7	Reduce deforestation	Reduce deforestation	Reduce deforestation	Reduce deforestation
	8	Timber stand improvements	Timber stand improvements	Timber stand improvements	Extended rotations
	9	Silvopasture	No harvest activities	Silvopasture	Timber stand improvements

- Ranking scenarios by relative performance can help identify effective practices for meeting carbon goals
- Rankings differ when considering:
 - Carbon stocks vs carbon fluxes
 - Timeline

Color coding based on scenario rank for carbon **stocks** per acre – note reordering of scenarios when ranking by carbon **fluxes** per acre per year. Bolded scenarios (above dotted lines) have higher carbon stocks/fluxes than the BAU scenario.

Opportunities and takeaways for Mid-Atlantic forests

- Prioritize forest health and structure, rebalancing age distribution; focus on protecting natural regeneration
- Scale up ambition for tree planting
- Expand adoption of silvopasture
- Incentivize more sustainable management practices on private lands
- Prepare for potential negative impacts of climate change, especially from more pests and disease

Policy applications for the Mid-Atlantic

- Maryland's 2045 net zero goal
- Maryland Conservation Finance Act of 2022
- Maryland Tree Solutions Now Act of 2021
- RGGI & carbon markets
- Pennsylvania Climate Change Advisory Committee
- Pennsylvania Climate Action Plan
- Pennsylvania Forest Action Plan

The Greenhouse Gas Emissions Reduction Act

2030 GGRA Plan

Questions?

Kendall DeLyser Director, Climate Science kdelyser@americanforests.org

Chad Papa PhD Candidate papachad@msu.edu