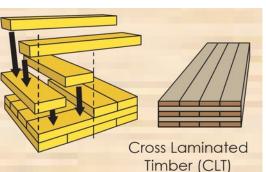
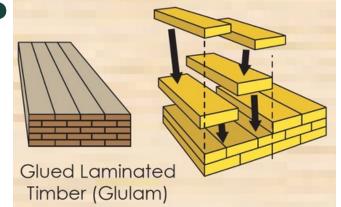
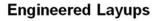
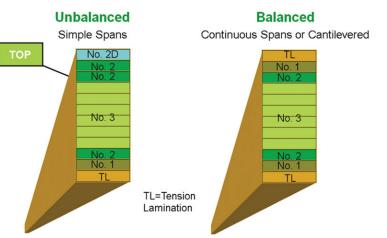
Life Cycle Emissions Considerations for Mass Timber Construction

George H. Berghorn, PhD, LEED AP BD+C, CGP Assistant Professor of Construction Management Adjunct Assistant Professor of Forestry Michigan State University

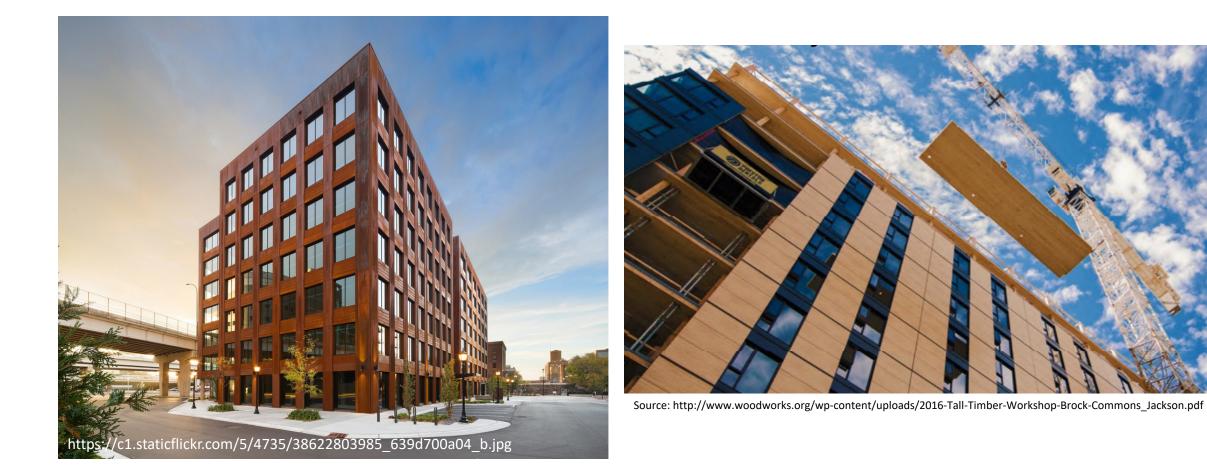

Image Source: https://c1.staticflickr.com/1/895/39309537140_07240b9d5c_b.jpg


OK OTA


What is Mass Timber Construction?



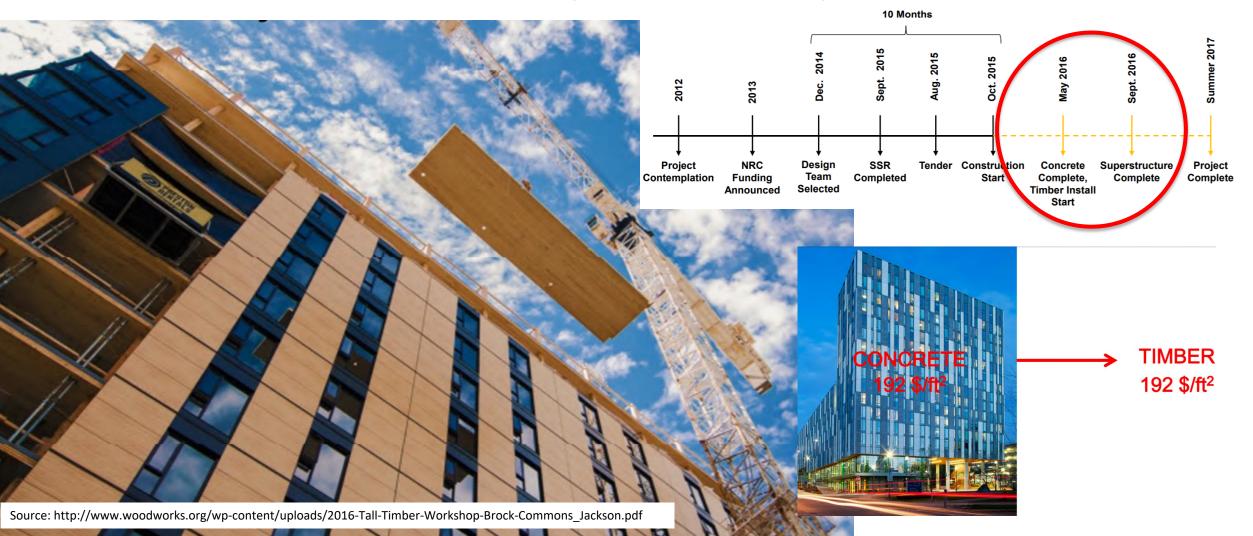
A structural panel consisting of three, five, or seven layers of dimensional lumber that are able to bear loads in and out of plane, which can be used as floor or wall system.



What is Mass Timber Construction?

MICHIGAN STATE

What is Mass Timber Construction?


Source: http://www.woodworks.org/wp-content/uploads/4-Story-CLT-Hotel-WoodWorks-Case-Study-Redstone-Arsenal-01-05-16.pdf

Mass Timber Construction – Time and Cost Benefits

MICHIGAN STATE

Brock Commons – UBC, Vancouver, BC

Difference

+14%

-43%

-37%

-44%

+75%

-20%

Redstone Arsenal

(Actual)

62,688

10 (peak 11)

78

8.203

803 sf

12 months

(Actual*)

54,891

18 (peak 26)

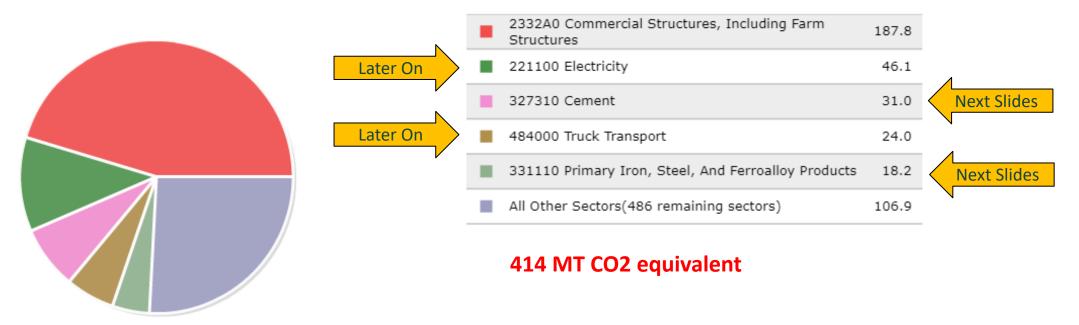
123

14,735

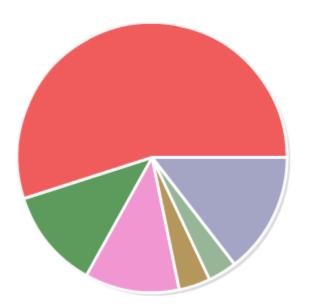
460 sf

15 months

Candlewood Suites – Redstone Arsenal, AL



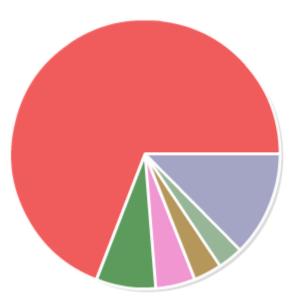
Source: http://www.woodworks.org/wp-content/uploads/4-Story-CLT-Hotel-WoodWorks-Case-Study-Redstone-Arsenal-01-05-16.pdf


Metric Tons of CO2 Equivalent (MTCO2E) used in : Commercial Structures, Including Farm Structures

Per **1 million dollars** of US commercial building construction activity:

Metric Tons of CO2 Equivalent (MTCO2E) used in : Primary Iron, Steel, And Ferroalloy Products

Per **1** million dollars of US iron, steel, and ferroalloy manufacturing:

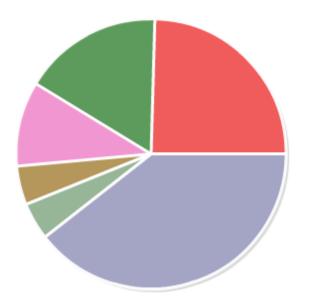


331110 Primary Iron, Steel, And Ferroalloy Products	5 758.2
221100 Electricity	165.4
212100 Coal	156.3
221200 Natural Gas	51.7
484000 Truck Transport	47.7
All Other Sectors(486 remaining sectors)	200.7

1,380 MT CO2 equivalent

Metric Tons of CO2 Equivalent (MTCO2E) used in : Ready-Mix Concrete

Per **1 million dollars** of US ready-mix concrete manufacturing:



327310 Cement	1.5K
221100 Electricity	160.2
327320 Ready-Mix Concrete	106.7
2123A0 Sand, Gravel, Clay, Phosphate, Other Nonmetallic Minerals	75.3
484000 Truck Transport	67.9
All Other Sectors(486 remaining sectors)	281.8

2,240 MT CO2 equivalent

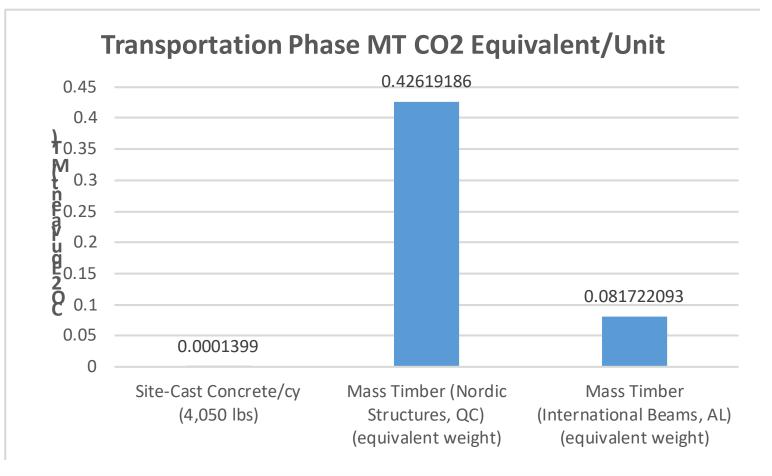
Metric Tons of CO2 Equivalent (MTCO2E) used in : Veneer, Plywood, And Engineered Wood

Per **1** million dollars of US veneer, plywood, and engineered wood manufacturing:

221100 Electricity	108.5
3219A0 Veneer, Plywood, And Engineered Wood	74.0
484000 Truck Transport	44.8
221200 Natural Gas	20.7
331110 Primary Iron, Steel, And Ferroalloy Products	19.8
All Other Sectors(486 remaining sectors)	174.2

442 MT CO2 equivalent

Environmental Impacts – Vehicle Usage

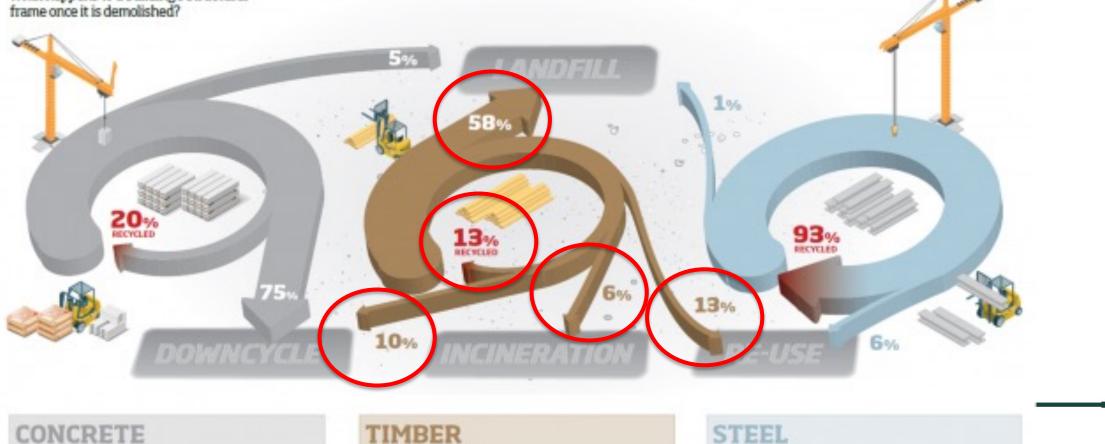

Redstone Arsenal Example:

- 45 fewer days (37% reduction) for structure
- 8 fewer workers onsite (43% reduction)
- 2006 Tier 3 emission standards capped engines >135 kW at 3.5 grams of CO/kWh
- This could mean, minimally:

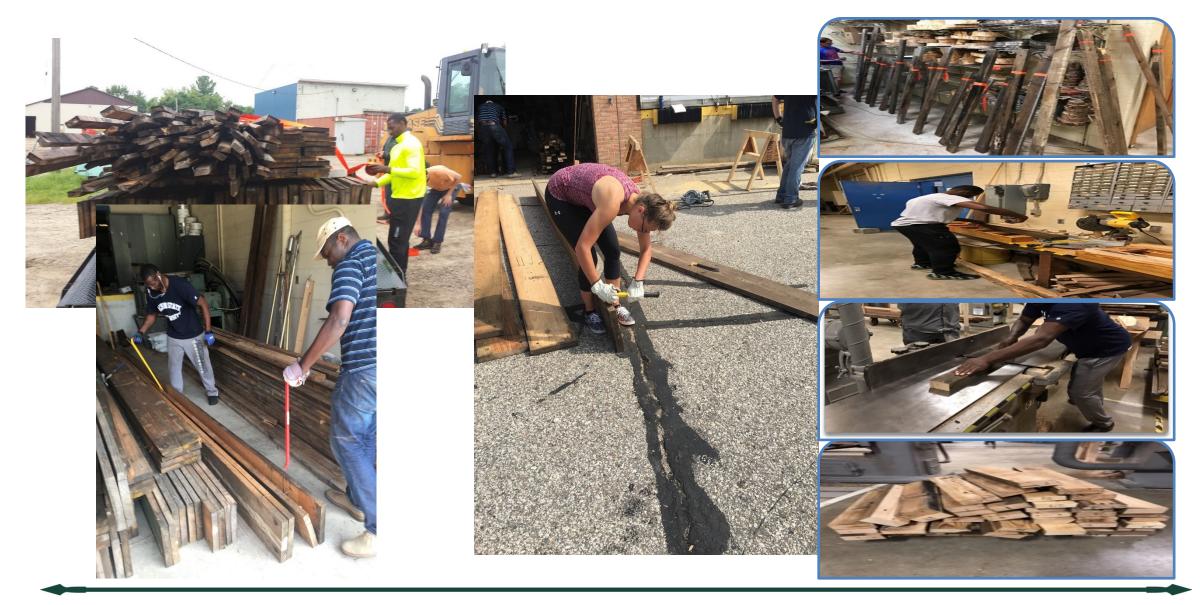
duration

- 0.00126 MT CO reduced from cranes (without downsizing)
- 0.00084 MT CO reduced from fewer crew vehicles over 3 month shorter

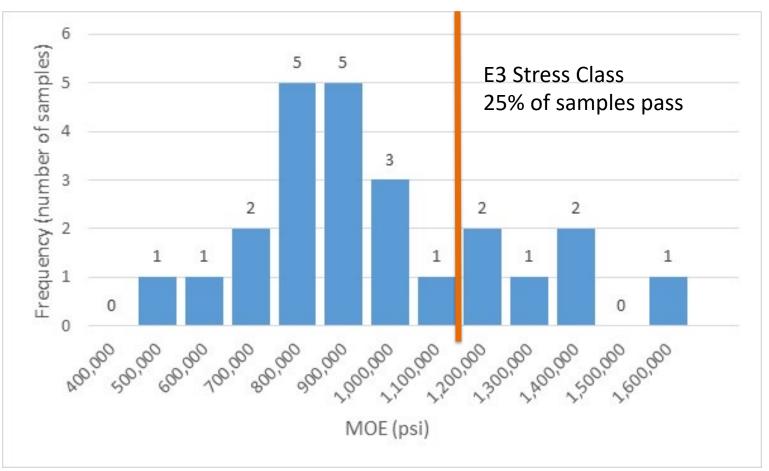
Environmental Impacts – Transportation


Mass Timber Construction – Benefits of Salvaged Lumber

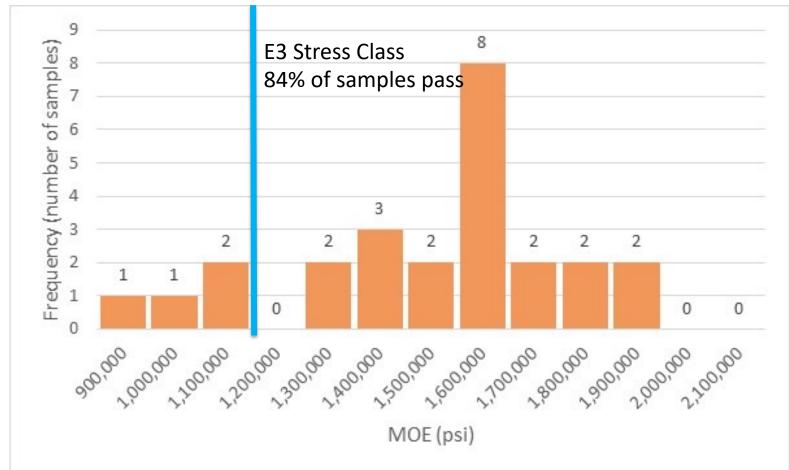
Mass Timber Construction – Benefits of Salvaged


END-OF-LIFE SCENARIOS

What happens to a building's structural frame once it is demolished?



CONCRETE TIMBER Source: http://www.steelconstruction.info/Life_cycle_assessment_and_embodied_carbon


MICHIGAN STATE

1902 Home – Larch Spp.

~1954 Home - Spruce and Pine Spp.

D

 \times

- -

Mass Timber Construction – Benefits of Salvaged

👱 WARM

File

🖸 🛛 🖓 🚱 🕹 🟠

🗄 Home 🛛 📚 *Data Entry - Unsaved 🛛 📚 Report 🖾

Waste Reduction Model (WARM) Summary Report (MTCO2E)

GHG Emissions Analysis - Summary Report

GHG Emissions Waste Management Analysis for Prepared by: **Hypothetical Lansing House Deconstruction** Project Period for this Analysis: to

	Baseline Scenario					Alternative Scenario								
Material	Tons Recycled	Tons Landfilled	Tons Combusted	Tons Composted	Tons Anaerobically Digested	Total MTCO2E	Tons Source Reduced	Tons Recycled	Tons Landfilled	Tons Combusted	Tons Composted	Tons Anaerobically Digested	Total MTCO2E	Change (Alt-Base) MTCO2E
Dimensional Lumber	0.00	8.60	0.00	N/A	N/A	-8.69	5.00	1.00	1.00	1.60	N/A	N/A	-14.77	-6.07
						-8.69							-14.77	
 a) For explanation of methodology b) Emissions estimates provide c) The GHG emissions results e GHG emissions from the waste accrue over the long-term. There time. d) The equivalency values includ presented as an example of pot Equivalencies Calculator websit 	d by this model are inten estimated in WARM indica management pathways, fore, one should not inte led in the box to the right ential equivalencies. Add	ded to support volunta ate the full life-cycle be (e.g., avoided landfilli rpret the GHG emission were developed base itional equivalencies of	enefits waste managen ng and increased recyc ons implications as oc d on the EPA Greenhou	nent alternatives. Due cling), the actual GHG curring all in one year, use Gas Equivalencies	to the timing of the implications may but rather through s Calculator and are		This is equivalent to Removing annual e Conserving 683 Ga	missions from 1 Pas	senger Vehicles	peques				
2/6/2019	-				FCWG	Learning E	Exchange S	eries					1	9

Innovation in Materials Reuse

- That's about:
- 181 million end tables
- 9 million dining tables
- 4.5 million picnic tables
- 531 Brock Commons projects!
- MSU's work focuses on increasing the yield of high-volume, lowvalue materials

	Number of	Approximate Volume	
Location	Abandoned Homes	of Salvageable Lumber	Equivalent # of Trees
Michigan <	225,946	903,784,000 BF	1,246,598
Midwestern US	1,379,720	5,518,880,000 BF	7,612,248
United States	5,813,286	23,253,144,000 BF	32,073,302

Data Sources and Notes:

- MSU Center for Community and Economic Development (2016). Muskegon, Michigan Deconstruction Economic Cluster Feasibility Study.
- US Census Bureau (2016). American Community Survey, Vacant Housing Units.
- BF=board foot = a piece of lumber 12"x12"x1"
- Tree equivalent is a tree of 24" diameter producing 4 16' logs

Mass Timber Construction – Use Phase Energy Benefits

- Benefits Hypothetical 1,000sf building module located in upper Midwest
- Design options are glulam/CLT and concrete and steel and concrete
- Modeled using eQuest with the DOE2 simulation engine
- CLT/Concrete
 - Total annual BTUs: 108,568,458
- Steel/Concrete
 - Total annual BTUs: 116,376,573
- Total Difference
 - Mass Timber consumes 7,808,115 BTUs less per year
 - 6.7% savings

Future Research

- Predictive time and cost tool development (currently USFS funded)
- Full LCA model development for mass timber building prototypes
- Crane usage model

MICHIGAN STATE

Thank You!

Questions?

berghorn@msu.edu

