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Michigan State University, Forest Carbon and Climate Program (FCCP) has conducted 
plot-level statistical analysis with the following objectives:  

1) identifying covariates that best predict harvest likelihood (HL) and harvest 
intensity (HI) on non-industrial private forestland in northern Michigan, 
Minnesota, and Wisconsin (Ecoregion 212) for the three forest type groups 
(FTGs) of interest (Aspen/ Birch [AB]; Maple/ Beech/Birch [MBB]; 
White/Red/Jack Pine [Pine]);  

2) identifying appropriate subregions for donor pool selection; and  
3) identifying tiers of plot-level carbon potential according to key indicators  

(to inform potential caps or funding tiers).   
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Statistical Methods 
To conduct the plot-level analysis key predictors of HL and HI, we developed a 
random forest (RF) model. In this section, we detail briefly what a random forest 
model is and why this approach was selected.  

Machine learning is a widely used technique to automate both supervised and 
unsupervised classifications in order to identify patterns within datasets. Specifically, 
RF models, a type of machine learning algorithm and an extension of classification 
and regression trees (CART) techniques, are a suite of non-parametric models that 
utilize decision trees to classify datasets. RF models split observations in a pairwise 
hierarchical manner based on an algorithm-generated basic rule that minimizes 
within-group variation and maximizes between-group variation (Breiman, 2001). This 
enables rapid classification and estimation of importance for dependent variables 
(Ziegler and Konig, 2014). RF models have grown in popularity due to ease of 
parameter tuning (i.e., an analyst needs only to determine input variables, number of 
trees to generate, and the number of variables to sample at each decision step) and 
model insensitivity to variable magnitudes and distribution (i.e., models do not require 
data rescaling) (Wager et al., 2014). 

RF offers advantages over other parametric approaches (such as generalized linear 
models or logistic regression models), including handling residual noise for predictions 
and probability estimates for multi-category dependent variables (Ziegler and Konig, 
2014). RF models can be prone to overfitting, since models inherently reduce variance 
and mean square error through complex model building processes that can generate 
many trees. However, bootstrapping samplers and bootstrap aggregation inherent to 
RF model techniques minimize overfitting; additionally, straight-forward checks of 
model results can limit bias and increase validity (Ziegler and Konig (2014). RF model 
estimates characterize error, strength, and correlation and can also be used to 
measure variable importance (Breiman, 2001), including for high-dimensional 
problems involving many features (Ziegler and Konig, 2014). 

Data Description 
Here, we provide a description of the input used in the statistical analyses.  

We derive all input data (i.e., predictors and response) from:  

1. The US Department of Agriculture, Forest Inventory and Analysis: 
https://www.fia.fs.usda.gov/ (using the rFIA R package: 
https://rfia.netlify.app/) 

2. US Census: https://www.census.gov/data/datasets/time-
series/demo/popest/2010s-counties-total.html  

3. Mill location data [provided by state DNRs]:  
- Michigan:https://midnr.maps.arcgis.com/apps/webappviewer/index.htm

l?id=a75cedbbefc547dca4e1c340d65ee3cb)  
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- Minnesota: 
https://webapps15.dnr.state.mn.us/timber_producers/companies 

- Wisconsin: https://dnr.wisconsin.gov/topic/forestbusinesses/industries  

We consider only plots encompassing privately-owned forestland in our analyses 
(including tribal lands). See `src/summarizeVariables.R` for the procedures used to 
summarize condition-level FIA data. 

We exclude any plot not meeting the following conditions: 

• Plot falls exclusively on private forestland 
• Single condition is present, and its attributes are constant through time (e.g., 

has always been recorded as a red pine plantation) 
• Trees present at least one plot visit (e.g., post-clearcut is considered non-treed 

forestland) 
• Annual-to-Annual plot, i.e., same plot design used at all visits 

Input data are stored in `results/plot_vars.csv`. Variable definitions are as follows: 

Dependent Variables (Harvest Indicators)  

Harvest intensity:   

- `REMV_NETVOL_ACRE`: (numeric) average annual net merchantable volume 
(cu.ft.) per acre harvested during the remeasurement interval. We compute HI 
for all remeasured plots (most have been remeasured multiple times) in terms 
of a percentage of net merchantable volume removed that can be attributed to 
tree harvesting across all plot visits (i.e., sum across remeasurements).  

 Harvest (binary): 

- `HARVESTED`: (factor/ binary) binary code indicating if tree harvesting 
occurred on the plot between the remeasurement interval (`HARESTED=1` 
when harvesting occurred, and `HARVESTED=0` otherwise) 

Independent Variables (Predictors/ Co-Variates)  

- `FORTYPCD`: (factor) code for forest types 
- `SITECLCD`: (factor) code for site productivity classes 
- `STDORGCD`: (factor) binary code indicating clear evidence of artificial 

regeneration (i.e., plantation status) 
- `PHYSCLCD`: (factor) code for physiographic classes 
- `ECOSECCD`: (factor) code for ecoregion  
- `STATECD`: (factor) code for state 
- `RDDISTCD`: (factor) code for straight-line distance to nearest improved road  
- `SLOPE`: (numeric) slope of condition (%) 
- `ASPECT`: (numeric) aspect of condition (degrees) 
- `ELEV`: (numeric) elevation of condition 
- `PREV_BAA`: (numeric) live tree basal area per acre at initial measurement 
- `PREV_QMD`: (numeric) live tree quadratic mean diameter at initial measurement 
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- `PREV_NETVOL_ACRE`: (numeric) net merchantable volume at initial 
measurement 

- `GSSTK`: (numeric) initial stocking of growing stock (absolute value 0-167%) 
- `prop.forest`: (numeric) proportion of landscape within 10km of fuzzed plot 

locations that is classified as forestland (derived from [National Land Cover 
Database 2016: https://www.mrlc.gov/national-land-cover-database-nlcd-2016]).  

- `dist.to.mill`: (numeric) distance to nearest mill, calculated using fuzzed and 
swapped plot coordinates and mill coordinates.  

- `n.mills.50km`: (numeric) number of mills within a 50km radius  
- `pop.current`: (numeric) 2019 county population [US Census data] 
- `pop.growth`: (numeric) county population growth 2011-2019 [US Census data] 
- `prop.small.private`: (numeric) proportion of forestland within 1km of fuzzed plot 

location that is classified as private (family/small owner) ownership (derived from 
[Sass et al, 2020: https://www.nrs.fs.fed.us/pubs/61623]). 

Please see the FIA Database Documentation: 
(https://www.fia.fs.usda.gov/library/database-
documentation/current/ver90/FIADB%20User%20Guide%20P2_9-0-1_final.pdf) for 
definitions associated with forest type, site productivity, stand origin, and 
physiographic class codes.  

Covariate Importance Results 
To assess variable importance associate with the HL and HI models, we calculated the 
loss in predictive accuracy associated with the removal of each variable. To calculate 
model predictive accuracy, we used a 5-fold cross validation technique to evaluate 
out-of-sample performance (that is, we systematically and sequentially removed a 
portion of the plots and tested the ability of the model to predict results on those 
plots). Figure 1 and Figure 2 visualize the results of both the HL and HI analyses, 
respectively.    
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Figure 1. Variable importance in harvest probability model. 

 

 
Figure 2. Variable importance in harvest intensity model (RF). 
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Geographic Variations in Predicted  
Harvest Likelihood and Harvest Intensity 
Should the geographic variation prove useful for strategic landowner recruitment, we 
used the random forest model to predict HL and HI across all FIA donor plots 
(ecoregion 212). Figure 3 and Figure 4 visualize these results.   

 

 
Figure 3. Predicted Harvest Likelihood. 

 

 

 
Figure 4. Predicted Harvest Intensity. 
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Subregions for Donor Pool Selection 
To create more appropriate and refined donor pools, we binned discrete groups of 
USFS Ecological Sections (Cleland et al. 2007) based on trends in forest condition 
and harvest behavior.  

Per Figure 5, we initially identified three distinct groups based on the prevalence and 
management behavior of the three FTGs of interest: an AB dominated group largely 
centered in Minnesota, a MBB dominated group largely centered in Wisconsin, and an 
AB group largely centered in Michigan. We did not consider grouping Minnesota and 
Michigan ecological sections despite their similar FTG makeup due to differing 
common management regimes (for aspen, in particular).  

Ultimately, we opted to merge the Minnesota and Wisconsin groups as not doing so 
would have left too few plots of the minority FTG in each of the respective sub-
regions. Specifically, both MBB in MN and AB in WI would have had insufficient donor 
plots from which to draw within their sub-region. Per the approved FFCP 
methodology, in the case of insufficient donor plots within the subregion, the donor 
pool moves to the larger ecoregion (in the case of the Northwoods, this was all of 
ecoregion 212); this was seen as less preferred given MI’s distinct aspen growth and 
management practices. Figure 6 visualizes the two sub-region groupings that were 
determined most appropriate.  

 
Figure 5. Three forest type groups of interest in USFS ecoregion 212.  
Source: USFS (2005)—LANDSAT and MODIS 
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Figure 6. Selected ECOSUBCD Groupings  

 

Tiers (to Inform Caps and/or Payment Structures) 
With an aim of informing potential 1) landowner and donor pool caps (e.g., cutoffs to 
program participation) and 2) tiered payment structures, we systematically assessed 
how caps on each covariate and groups of covariate caps influenced HL and HI. The 
objective was to identify covariates whose caps might most efficiently increase 
predicted HL and HI (i.e., without unduly reducing the donor pool).  

Our process was to first determine initial, or “100%”, cap selections for each of the 
covariates (below or above which plots would be deemed ineligible), and then to 
experiment with the impact on HL and HI as those caps became systematically 
stricter and looser. We determined the initial cap selections for each covariate based 
on partial dependence plots (PDP), histograms, and knowledge about the FTG-
specific harvesting practices (see Appendix I for all PDPs and histograms). The PDPs 
help visualize predicted HL at different levels of the covariate of interest, while the 
histograms help visualize the effect different caps have on the donor pool (n). 
Combing these sources of information, we identified data-driven, theoretically 
relevant caps for each of the covariates.  

Once initial caps were selected, we experimented with variations in cap groupings to 
maximize both impact and efficiency (i.e., we assessed the impact on n, HI, and HL by 
applying different mixes of covariates’ caps). Because many of the covariate of 
interest were highly correlated, there was no value added (in terms of n, HL, or HI) in 
including all variable caps. Through a series of systematic assessments, we identified 
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the Quadratic Mean Diameter (QMD) and Merchantable Volume caps as driving 
impact on n, HL, and HI.  

The tables and figures below demonstrate both what those caps represent (in each 
covariate’s unit of analysis) and their impact on n, HL, and HI for each FTG in the two 
subregions. To facilitate table and figure comprehension: when caps are set at 0%, no 
cap has been applied to the donor pool; 100% caps represent the initially determined 
cap. As intended, all subregions and FTGs reveal the same general trajectory, albeit at 
different rates, of increasing HL and HI and decreasing n as caps increase in intensity. 
This suggests that landowners with higher QMD and Merchantable Volume levels 
stand to have more of a carbon impact on the landscape, though excluding 
landowners below identified levels would have a negative impact on the number of 
eligible donor and participant plots.  

Aspen-Birch 
Table 1. Quadratic Mean Diameter (QMD) and Merchantable Volume Caps Impacts on Donor Pool (n), 
Harvest Likelihood (HL), and Harvest Intensity (HI) for Aspen-Birch 

 

  

Variable Cap Used 0% 25% 50% 75% 100% 125%
QMD (inches) 0 0 0 0 0 0

Merchantable Vol (cu.ft/ ac) 0 250 625 750 1000 1250

Result Indicator
n 450 272 181 112 67 36

Predicted Harvest Likelihood 0.024 0.034 0.039 0.052 0.066 0.084
Predicted Harvest Intensity 54.781 75.908 99.765 134.039 147.735 194.009

n 198 135 92 58 24 17
Predicted Harvest Likelihood 0.019 0.025 0.030 0.028 0.046 0.045
Predicted Harvest Intensity 72.957 81.519 98.342 113.396 189.205 221.554

Aspen-Birch

Caps and Results by Cap Intensity 

Group 1 (MN; WI)

Group 2 (MI)
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Figure 7. Predicted harvest intensity for Aspen-Birch, Group 1 (MN, WI). 

 

 
Figure 8. Predicted harvest intensity for Aspen-Birch, Group 2 (MI). 
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Maple/Beech/Birch 

 

 

Variable Cap Used 0% 25% 50% 75% 100% 112.5% 125% 137.5%
QMD (inches) 0 1.75 3.5 5.25 7 7.875 8.75 9.625

Merchantable Vol (cu.ft/ ac) 0 125 250 375 500 562.5 625 687.5

Result Indicator
n 776 759 720 515 228 140 91 51

Predicted Harvest Likelihood 0.041 0.041 0.043 0.046 0.054 0.055 0.066 0.075
Predicted Harvest Intensity 58.661 60.082 60.575 67.576 75.017 77.364 76.850 85.521

n 346 339 315 199 97 62 34 20
Predicted Harvest Likelihood 0.043 0.045 0.045 0.051 0.063 0.062 0.070 0.071
Predicted Harvest Intensity 72.597 72.857 75.355 86.496 103.996 111.366 132.238 133.882

Maple/ Beech/ Birch

Caps and Results by Cap Intensity 

Group 1 (MN; WI)

Group 2 (MI)

Table 2. Quadratic Mean Diameter (QMD) and Merchantable Volume Caps Impacts on Donor Pool (n), 
Harvest Likelihood (HL), and Harvest Intensity (HI) for Maple/Beech/Birch 

Figure 9. Predicted harvest intensity for Maple/Beech/Birch, Group 1 (MN, WI). 
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White/Red/Jack Pine 
Table 3. Quadratic Mean Diameter (QMD) and Merchantable Volume Caps Impacts on Donor Pool (n), 
Harvest Likelihood (HL), and Harvest Intensity (HI) for White/Red/Jack Pine 

 

Variable Cap Used 0% 25% 50% 75% 100% 125%
QMD (inches) 0 0 0 0 0 0

Merchantable Vol (cu.ft/ ac) 0 125 250 375 500 625

Result Indicator
n 90 85 74 60 49 41

Predicted Harvest Likelihood 0.025 0.027 0.028 0.034 0.035 0.034
Predicted Harvest Intensity 56.896 60.323 63.049 67.871 77.147 81.807

n 77 68 60 52 41 29
Predicted Harvest Likelihood 0.024 0.027 0.031 0.035 0.044 0.051
Predicted Harvest Intensity 75.804 79.358 81.554 88.357 90.886 106.400

White/ Red/ Jack Pine

Caps and Results by Cap Intensity 

Group 1 (MN; WI)

Group 2 (MI)

Figure 10. Predicted harvest intensity for Maple/Beech/Birch, Group 2 (MI). 
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Figure 11. Predicted harvest intensity for White/Red/Jack Pine, Group 1 (MN, WI). 

 

 
Figure 12. Predicted harvest intensity for White/Red/Jack Pine, Group 2 (MI). 
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Appendix I: Histograms and Partial Dependence  
Plots for Initial Cap Selection  
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