## Toward a Holistic Sustainable Intensification Strategy in Sub-Saharan Africa

T.S. Jayne, Michigan State University Panelist remarks Invited session on "Sustainable Intensification in Africa: How to make it happen" Global Food Security Conference, 3 December 2017 Cape Town, South Africa

## **Objectives:**

- 1. To explore options for sustainably raising inorganic fertilizer use
- 2. To consider the role of input subsidy programs (ISPs) in an effective / comprehensive program of sustainable productivity growth?
  - What would such a holistic program look like?
  - How to achieve it?

#### Three sections:

- To understand the socio-political context of FSPs
  - Why has technical analysis had such limited impact?
- 2. Evidence on "smart" subsidy programs
- 3. Given that FSPs will continue, how to raise their benefits?

## Section 1: socio-political context

- 1. How did we get from 1995 to 2015?
  - over \$1.05 billion per year in 7 countries alone?

4

#### **Expenditures of Input Subsidy Programs**

| Country  | Annual Program Cost<br>(USD million) | % of Ag Budget      |
|----------|--------------------------------------|---------------------|
| Malawi   | 152 to 275                           | 47 to 71%           |
| Tanzania | 92 to 135                            | 39 to 46%           |
| Zambia   | 101 to 135                           | 21 to 40%           |
| Senegal  | 36 to 42                             | 26 to 31%           |
| Ghana    | 53 to 112                            | 20 to 31%           |
| Nigeria  | 108 to 190??                         | ?? (officially 26%) |
| Kenya    | 22 to 81                             | 9 to 26%            |

# I. How did we get to where we are now in 2015?

- 1. Budget constraint relaxed
  - HIPC / shift from conditionality to budget support
- 2. Multi-party democracies / populist ag policies
- 3. "Malawi miracle"
  - NYT David and Goliath story
  - Effective PR by the advocates
- 4. Rise in global food prices since 2007
- Shift in WB position support for "smart" subsidy programs
  - WB and other basket donors financed many African countries with the biggest FSPs



## Perceptions of FSPs among international researchers

1. There is a role for ISPs in most SSA countries: true or false?

#### There is a role for ISPs in most SSA countries: true: 69%

#### 2. Do you feel that ISPs in most SSA countries need:

9

- A: no changes to design
- B: small tweaks
- C: major reforms/improvements
- D: should be discontinued

#### 2. Do you feel that ISPs in most SSA countries need:

- A: no changes to design: **0%**
- B: small tweaks: 4%
- C: major reforms/improvements: 81%
- D: should be discontinued: 15%

- 3. What should be the primary rationale for input subsidy programs:
  - A: Increasing food supplies / food self-sufficiency
  - **B:** Poverty reduction
  - C: Dynamic economic growth
  - D: Others

- 3. What should be the primary rationale for input subsidy programs:
  - A: Increasing food supplies / self-sufficiency: 27%
  - B: Poverty reduction: 12%
  - C: Dynamic economic growth: 38%
  - D: Other: 23%

- 4. Do you feel that ISPs in SSA should be:
  - A: Scaled up?
  - B: Are at about the right level of expenditure
  - C: Should be downsized

- 4. Do you feel that ISPs in SSA should be:
  - A: Scaled up? 8%
  - B: Are at about the right level of expenditure: **0%**
  - C: Should be downsized: 92%

#### **Conclusion #1:**

 Highly variable achievement of targeting criteria: often not superior to random targeting

#### **Conclusion #2:**

- Crowding out of commercial distribution:
  - Of the total quantity of fertilizers distributed through FSPs, the increase in national fertilizer was between 40-70% of this
  - In two cases, Nigeria and areas of Zambia where private firms did not operate, evidence of "crowding in"

- FSPs will contribute more to additional fertilizer use if targeted:
  - To households that are not already purchasing fertilizer and using at relatively high intensity
    - Relatively poor households
    - Female-headed households
  - 2. where private sector presence is low
  - **3.** where  $AP_{fert} > P_{fert}$  for most farmers

**Conclusion #3:** 

Significant effects on food production

#### **Conclusion #4:**

- Small / transitory effects on hh incomes
  - Effects tend to decay after farmers graduate

#### **Conclusion #5:**

- Little effect on food price levels
  - Malawi
  - Zambia
  - Nigeria

- Highly variable achievement of targeting criteria: often not superior to random targeting
- 2. Crowding out -- a problem
- **3.** Significant effects on food production
- 4. Small / transitory effects on hh incomes
- 5. Little effect on food prices

### Section 3: What to do?

- FSPs are likely to continue how can they be made more effective.
  - Targeting differently

#### Maize/fertilizer price ratios, Kenya, 1985-2014



23

#### Maize/fertilizer price ratios, Zambia, 1994-2014



24

### Five conclusions:

- 1. Population growth leading to land scarcity  $\rightarrow$  smaller farm sizes for most rural people
- 2. Fallows slowly being eliminated in areas of high population density
- 3. Continuous cultivation with limited nutrient recycling  $\rightarrow$  "soil mining"



P. Drechsel et al. / Ecological Economics 38 (2001) 251-258

26

## Five conclusions:

- Population growth leading to land scarcity → smaller farm sizes for most rural people
- 2. Fallows slowly being eliminated in areas of high population density
- 3. Continuous cultivation with limited nutrient recycling leading to "soil mining"
- 4. Soil degradation



- Soil and land degradation a huge concern
  - Major conclusion of Montpellier Panel report
  - Extent of already damaged land:
    - 65% of arable land
    - ➢ 30% of grazing land
    - ≥ 20% of forests
  - Burden disproportionately carried by smallholders



## Five conclusions

- 1. Population growth leading to land scarcity  $\rightarrow$  smaller farm sizes for most rural people
- 2. Fallows slowly being eliminated in areas of high population density
- Continuous cultivation with limited nutrient recycling → "soil mining"
- 4. Soil degradation
- 5. Evidence of low and declining crop response rates to inorganic fertilizer application

## Review of maize-fertilizer response rates on farmer-managed fields

| Study                        | country      | Agronomic response rate<br>(kgs maize per kg N) |
|------------------------------|--------------|-------------------------------------------------|
| Morris et al (2007)          | W/E/S Africa | 10-14                                           |
| Sheahan et al (2013)         | Kenya        | 14-21                                           |
| Marenya and Barrett (2009)   | Kenya        | 17.6                                            |
| Liverpool-Tasie (2015)       | Nigeria      | 8.0                                             |
| Burke (2012)                 | Zambia       | 9.6                                             |
| Snapp et al (2013)           | Malawi       | 7.1 to 11.0                                     |
| Holden and Lunduka (2011)    | Malawi       | 11.3                                            |
| Pan and Christiaensen (2012) | Tanzania     | 8.5 to 25.5                                     |
| Minten et al (2013)          | Ethiopia     | 11.7                                            |

Highly variable crop response rates – even among farmers in same areas in same seasons

#### Variation in farmers' efficiency of fertilizer use on maize, Agroecological Zone IIa, Zambia



Note: Zone IIa is a relatively high-potential zone suitable for intensive maize production; mean national NUE = 9.6 kgs maize per kg nitrogen (Burke, 2012).

African farming systems in densely settled areas commonly display 4 forms of unsustainable land intensification

- 1. Soil mining
- Inadequate recycling of organic matter
  → loss of SOC
- 3. Demise of fallows
- 4. Limited profitability of using fertilizer at full market prices

# Factors depressing NUE of inorganic fertilizer use:

- 1. Low soil organic matter
  - significant decline in SOM over past 20 years in Malawi (Mpeketula and Snapp)

# Fertilizer response rates in degraded areas

#### Maize yields as a function of plot soil carbon content



Source: Marenya & Barrett 2009

## Fertilizer response rates in degraded

#### areas

## Estimated marginal value product of nitrogen fertilizer conditional on plot soil carbon content



Source: Marenya & Barrett 2009

# Factors depressing NUE of inorganic fertilizer use:

#### 1. Low soil organic matter

 significant decline in SOM over past 20 years in Malawi (Mpeketula and Snapp)

37

#### 2. Acidification

#### From Larson and Oldham, Mississippi State University Extension Service, 2008.

5.3



Photo courtesy of Dingi Banda, Lusaka Province, Zambia

# Factors depressing NUE of inorganic fertilizer use:

#### 1. Low soil organic matter

 significant decline in SOM over past 20 years in Malawi (Mpeketula and Snapp)

40

#### 2. Acidification

3. Micro-nutrient deficiencies

Everyone agrees that inorganic fertilizer use must go up – why isn't it happening?



41

Everyone agrees that inorganic fertilizer use must go up – why isn't it happening?



42

## Cumulative distribution of average product of fertilizer used in Zambia (2004,2008)



Source: Burke, 2012

#### Factors affecting N use efficiency

- 1. Soil organic carbon
- 2. Acidification (pH) mainly affects basal
- 3. Micronutrients
- 4. Soil moisture N response on irrigated > rainfed fields
- 5. Timing of fertilizer application
- 6. Timely and sufficient weeding
- 7. Rotation of crops on a given plot
- 8. Contours / ridging to prevent erosion on sloped fields
- $\rightarrow$  Fixation with N
- → ISPs need to be part of a more holistic approach so that N can get sufficiently high crop response

#### Focus on making inputs profitable → effective demand

Profitable use (main drivers):

- output price
- input prices
- crop response rates

## **Elements of a holistic strategy:**

- 1. R&D (national ag research systems)
- 2. Extension programs / soil testing
- 3. Programs to help farmers restore soil quality
- 4. Conservation agricultural practices
- 5. Physical infrastructure
- 6. Reducing costs in input supply chains

46

7. More appropriate fertilizer use recommendations

## **Oft-asked policy question:**

- Given that ISPs will continue, what concrete guidance can be identified to improve their effectiveness?
- We identify 3 proposals:
  - **1.** Holistic approach that regards ISP as one component of an integrated sustainable intensification campaign
  - 2. Target poor farmers to achieve more equitable development impacts
  - 3. Redouble political will to reduce corruption

**Proposal 1:** Raise public investment in agronomic research and extension programs to enable farmers to use fertilizer more efficiently **Proposal 2:** Reconsider targeting guidelines to achieve more equitable development impacts

| Total area<br>cultivated<br>(maize + all<br>other crops) | Number of<br>farms | % of farms | % of<br>farmers<br>receiving<br>FISP<br>fertilizer | kg of FISP<br>fertilizer<br>received per<br>farm<br>household | % of<br>farmers<br>expecting<br>to sell<br>maize | Expected<br>maize sales<br>(kg/farm<br>household) |
|----------------------------------------------------------|--------------------|------------|----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
|                                                          | (A)                | (B)        | (C)                                                | (D)                                                           | (E)                                              | (F)                                               |
| 0-0.99 ha                                                | 616,867            | 41.9%      |                                                    |                                                               |                                                  |                                                   |
| 1-1.99 ha                                                | 489,937            | 33.3%      |                                                    |                                                               |                                                  |                                                   |
| 2-4.99 ha                                                | 315,459            | 21.4%      |                                                    |                                                               |                                                  |                                                   |
| 5-9.99 ha                                                | 42,332             | 2.9%       |                                                    |                                                               |                                                  |                                                   |
| 10-20 ha                                                 | 6,626              | 0.5%       |                                                    |                                                               |                                                  |                                                   |
| Total                                                    | 1,471,221          | 100%       |                                                    |                                                               |                                                  |                                                   |

| Total area<br>cultivated<br>(maize + all<br>other crops) | Number of<br>farms | % of farms | % of<br>farmers<br>receiving<br>FISP<br>fertilizer | kg of FISP<br>fertilizer<br>received per<br>farm<br>household | % of<br>farmers<br>expecting<br>to sell<br>maize | Expected<br>maize sales<br>(kg/farm<br>household) |
|----------------------------------------------------------|--------------------|------------|----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
|                                                          | (A)                | (B)        | (C)                                                | (D)                                                           | (E)                                              | (F)                                               |
| 0-0.99 ha                                                | 616,867            | 41.9%      | 14.3%                                              |                                                               |                                                  |                                                   |
| 1-1.99 ha                                                | 489,937            | 33.3%      | 30.6%                                              |                                                               |                                                  |                                                   |
| 2-4.99 ha                                                | 315,459            | 21.4%      | 45.1%                                              |                                                               |                                                  |                                                   |
| 5-9.99 ha                                                | 42,332             | 2.9%       | 58.5%                                              |                                                               |                                                  |                                                   |
| 10-20 ha                                                 | 6,626              | 0.5%       | 52.6%                                              |                                                               |                                                  |                                                   |
| Total                                                    | 1,471,221          | 100%       | 28.6%                                              |                                                               |                                                  |                                                   |

| Total area<br>cultivated<br>(maize + all<br>other crops) | Number of<br>farms | % of farms | % of<br>farmers<br>receiving<br>FISP<br>fertilizer | kg of FISP<br>fertilizer<br>received per<br>farm<br>household | % of<br>farmers<br>expecting<br>to sell<br>maize | Expected<br>maize sales<br>(kg/farm<br>household) |
|----------------------------------------------------------|--------------------|------------|----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
|                                                          | (A)                | (B)        | (C)                                                | (D)                                                           | (E)                                              | (F)                                               |
| 0-0.99 ha                                                | 616,867            | 41.9%      | 14.3%                                              | 24.1                                                          |                                                  |                                                   |
| 1-1.99 ha                                                | 489,937            | 33.3%      | 30.6%                                              | 69.3                                                          |                                                  |                                                   |
| 2-4.99 ha                                                | 315,459            | 21.4%      | 45.1%                                              | 139.7                                                         |                                                  |                                                   |
| 5-9.99 ha                                                | 42,332             | 2.9%       | 58.5%                                              | 309.7                                                         |                                                  |                                                   |
| 10-20 ha                                                 | 6,626              | 0.5%       | 52.6%                                              | 345.6                                                         |                                                  |                                                   |
| Total                                                    | 1,471,221          | 100%       | 28.6%                                              | 77.1                                                          |                                                  |                                                   |

| Total area<br>cultivated<br>(maize + all<br>other crops) | Number of<br>farms | % of farms | % of<br>farmers<br>receiving<br>FISP<br>fertilizer | kg of FISP<br>fertilizer<br>received per<br>farm<br>household | % of<br>farmers<br>expecting<br>to sell<br>maize | Expected<br>maize sales<br>(kg/farm<br>household) |
|----------------------------------------------------------|--------------------|------------|----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
|                                                          | (A)                | (B)        | (C)                                                | (D)                                                           | (E)                                              | (F)                                               |
| 0-0.99 ha                                                | 616,867            | 41.9%      | 14.3%                                              | 24.1                                                          |                                                  |                                                   |
| 1-1.99 ha                                                | 489,937            | 33.3%      | 30.6%                                              | 69.3                                                          |                                                  |                                                   |
| 2-4.99 ha                                                | 315,459            | 21.4%      | 45.1%                                              | 139.7                                                         |                                                  |                                                   |
| 5-9.99 ha                                                | 42,332             | 2.9%       | 58.5%                                              | 309.7                                                         |                                                  |                                                   |
| 10-20 ha                                                 | 6,626              | 0.5%       | 52.6%                                              | 345.6                                                         |                                                  |                                                   |
| Total                                                    | 1,471,221          | 100%       | 28.6%                                              | 77.1                                                          |                                                  |                                                   |

**Proposal 3:** greater political will for ensuring that the subsidies go to the intended beneficiaries

 Currently 1/3 of state resources for ISPs are diverted (Malawi and Zambia), more in other cases (pre-2011 Nigeria)

#### Ranking of Alternative Investments: Meta-Study Evidence from Asia and Africa

|                                 | The Economist | IFPRI study |
|---------------------------------|---------------|-------------|
| Policies                        |               |             |
| Infrastructure<br>investment    |               |             |
| Agricultural R&D                |               |             |
| Agricultural extension services |               |             |
| Credit subsidies                |               |             |
| Fertilizer subsidies            |               |             |
| Irrigation                      |               |             |

#### Ranking with respect to *agricultural growth:* Evidence from Asia

|                                 | The Economist | IFPRI |
|---------------------------------|---------------|-------|
| Policies                        | 1             |       |
| Infrastructure<br>investment    | 3             | 1     |
| Agricultural R&D                | 2             | 2     |
| Agricultural extension services | 5             |       |
| Credit subsidies                | 7             | 3     |
| Fertilizer subsidies            | 6             | 4     |
| Irrigation                      | 4             | 5     |

#### Ranking with respect to *poverty reduction:* Evidence from Asia

|                                 | The Economist | IFPRI |
|---------------------------------|---------------|-------|
| Policies                        | 1             |       |
| Infrastructure<br>investment    | 2             | 1     |
| Agricultural R&D                | 3             | 2     |
| Agricultural extension services | 4             | 3     |
| Credit subsidies                | 7             | 4     |
| Fertilizer subsidies            | 5             | 6     |
| Irrigation                      | 5             | 5     |

## Conclusions

- 1. ISPs are a powerful tool to quickly raise food production....
- 2. But if they account for too large a share of agricultural spending, they can crowd out other public investments required for sustainable development
- 3. Spending a large share of the ag budget on ISPs may *not be the most effective way* to promote the welfare of it citizens, but it is a *highly demonstrable way* to do so.

## Conclusions

- 4. ISPs would be more effective if adequate resources were allocated to complementary public investments
- More balanced public expenditure patterns could more effectively promote national policy objectives
- 6. There are concrete steps for improving ISP effectiveness related to
  - governance and political commitment to target effectively and reduce diversion
  - More holistic approach to sustainable intensification

III. Why are policy makers not more interested in the research evidence?

- 1. Mistrust of foreign technical assistance
  - USA / EU countries heavily subsidize...why shouldn't we?
- 2. Local policy analysts can be accused of being "unpatriotic"
  - Self-censorship?

## Bottom line for this symposium:

- Limited incentive so far for governments to agree to governance reforms
  - Very different ag policy environment between 1995 and 2015
- Where will the impetus for governance reform come from?
  - 1. Well educated local polity
  - 2. Promote mainstream debate
  - **3.** Strengthen African policy analysis units / civil society



## Thank you

SIC

62

# Survey data vs. researcher-managed trials

Reasons why researcher-managed trials tend to show 2-3 times higher NUE than in farmer-managed survey data:

- 1. trials often non-randomly select farmers known to extension agents, often "master farmer" types
- 2. Trials often instruct farmers to follow strict protocols that most farmers cannot adhere to on their own plots
- 3. "observer effect"
- 4. Trials often entail throwing out observations in which the plot incurred damage due to insects, disease, monkeys, flooding, etc