Incentivizing (Un)sustainable Intensification? Evidence from Zambia's Input Subsidy Program

Stephen N. Morgan, Nicole M. Mason, N. Kendra Levine, and Olipa Zulu-Mbata

Prepared for the 2017 Midwest International Economic Development Conference

21 April 2017

Acknowledgements

This research was supported by Michigan State University and by the U.S. Agency to International Development (USAID) through funding to the USAID Mission to Zambia and the Innovation Lab for Food Security Policy.

MICHIGAN STATE

UNIVERSITY

INNOVATION LAB FOR FOOD SECURITY POLICY

Overview of Input Subsidy Programs (ISPs)

- Spending on ISPs has topped
 \$1 billion/year in 10 countries
- Fairly low yield gains and value:
 - 1.88 kg of maize for 1kg fertilizer (Zambia)
 - Benefit Cost Ratio = 0.92
- We highlight two constraints on success:
 - Poor soil quality
 - Soil degradation

Source: Jayne & Rashid (2013), Jayne et al. (2015)

Soil Fertility Management (SFM)

- Fertilizer subsidies likely change farmer incentives and willingness to adopt SFM practices contributing to **sustainable intensification**
- Examples:
 - 1. Intercropping
 - 2. Crop Rotation
 - 3. Fallowing
 - 4. Animal Manure
 - 5. Agroforestry

Predicting the Effects of ISPs

- When SFM and inorganic fertilizer are viewed as **complements** we expect crowding-in
 - Decrease the relative price of fertilizer
 - Farmers can re-optimize production (Beaman et al. 2013)
- If SFM and inorganic fertilizer are viewed as **substitutes**, we expect crowding out (Tittonell and Giller 2013)
 - Household resource constraints matter
 - Vicious cycle of further soil degradation

Main Research Question

- Do fertilizer subsidies incentivize or disincentivize the use of other SFM practices?
 - Panel data from Zambia
 - Robust literature on fertilizer subsidies in SSA but only 3 other studies on this dimension
 - Holden & Lunduka (2012) Malawi
 - Vondolia et al. (2012) Ghana
 - Koppmair et al. (2016) Malawi

Zambia's fertilizer subsidy programs

- Fertilizer Support Program (FSP, 2002/03-2008/09)
 - Selected beneficiaries supposed to get 400 kg inorganic fertilizer, 20 kg hybrid maize seed but <u>highly variable</u>
 - Apply through co-op, approved by extension officer
 - Results based on 2002/03 and 2006/07 ag. seasons

	2002/03	2006/07
% of SH HHs participating	9%	11%
Subsidy rate	50%	60%

• Farmer Input Support Program (2009/10-present)

MICHIGAN STATE

Data

- "Supplemental Survey" nationally representative
- **3-wave panel**: 1999/2000, 2002/03, and 2006/07
- 4,286 SH HHs in all 3
- Info on FSP participation, use of SFM practices, farm & HH characteristics, etc.
- Combine with geospatial data on **rainfall**, **soils**, **slope**, etc.

SFM practices analyzed

- Fallowing
- Animal manure
- Intercropping
- Continuous Maize
- Maize Monocropping

- Dependent Variable:
 - Yes/No
 - Area under practice
 - Share of area

Nonseparable Agricultural Household Model

$$\underset{c_t, f_t^c, f_t^s, L_t^a, m_t, \phi_{it}}{\text{maximize}} U(c_t; z_t^c)$$

- Household maximizes utility by choosing:
 - Vector of Consumption Goods c_t
 - Purchased Fertilizer f_t^c
 - Subsidized Fertilizer f_t^s
 - Agricultural Labor L_t^a
 - Organic Fertilizer m_t
 - SFM practice ϕ_{it}

Selected Key Constraints

- SFM practice specific production function $y_{it} = y_{it}(x_t, f_t, m_t, \phi_{it}, L_t^a, f_t m_t \phi_{it}; \bar{A}, z_t^q)$
- Missing market for organic fertilizer

 $m_t \le h(\text{Liv})$

• FSP allocation policies

$$f_t^s \le \bar{f^s}(z_t^c, z_t^q)$$

• Soil fertility transition equation

$$x_{t+1} = g(x_t, f_t, m_t, \phi_{it})$$

Nonseparable AHM Solution

Solving the static model, we get the following equation: $\phi_{it}^* = \phi(x_t, f_t, m_t, L_t^a, p_t, w_t^f, s_t, w_t^l, \lambda, \mu, \eta, \bar{A}, z_t^c, z_t^q)$

Dynamic solution would differ for forward-looking farmers

- Drives a wedge between the marginal revenue and the marginal factor cost of adopting a given SFM practice
- Data intensive to estimate (e.g. Berazneva et al. 2014)

Empirical Model

- $P(SFM_{it} = 1 | FSP_{it}, \mathbf{A_{it}}, \mathbf{L_{it}}, \mathbf{p_{it}}, \mathbf{z_{it}}, \mathbf{m_{it}}, \mathbf{g_{it}}, \mathbf{d_{t}}, \mathbf{c_{i}}) =$
- $\Phi(\beta_0 + \beta_1 FSP_{it} + \mathbf{A_{it}}\beta_2 + \mathbf{L_{it}}\beta_3 + \mathbf{p_{it}}\beta_4 + \mathbf{z_{it}}\beta_5 + \mathbf{m_{it}}\beta_6 + \mathbf{g_{it}}\beta_7 + \mathbf{d_t} + \mathbf{c_i})$
- $\mathbf{SFM} = 1$ if HH adopts the practice
- FSP = kg of FSP
- $\mathbf{A} =$ Size of landholding
- **L** = Labor availability/ Household composition
- **p** = Variable input and expected output prices
- **z** = Household characteristics
- \mathbf{m} = Market characteristics and access to information
- \mathbf{g} = Land quality and agro ecological conditions

Potential Endogeneity of Subsidized Fertilizer

- Farmers self-select into the FSP program
- Employ results of last presidential election in the HH's constituency district as an IV (F>10) for FSP fertilizer receipt (Mason and Jayne 2013)
- Leverage control function (CF) approach to test for endogeneity
 - Fail to reject the null hypothesis of exogeneity at the 5% level in all cases

Fallowing Results

S	FM Practice	Estimator	APE * 200	Sig	Effect Size
General	=1 if used practice	CRE Probit	-0.031	* * *	-0.062
	Area (ha)	CRE Tobit	-0.086	* * *	-0.056
	Share	CRE Frac. Resp.	-0.017	* * *	-0.071
Improved	=1 if used practice	CRE Probit	-0.010	* * *	-0.164
	Area (ha)	CRE Tobit	-0.011		-0.187
	Share	CRE Frac. Resp.	-0.003		-0.311
Natural	=1 if used practice	CRE Probit	-0.024	**	-0.048
	Area (ha)	CRE Tobit	-0.077	* * *	-0.050
	Share	CRE Frac. Resp.	-0.015	**	-0.061

*, **, *** represent p-vals of ≤ 0.1 , ≤ 0.05 , ≤ 0.01 , respectively

Intercropping Results

	SFM Practice	Estimator	APE * 200	Sig	Effect Size
General	=1 if used practice	CRE Probit	-0.017		-0.042
	Area (ha)	CRE Tobit	-0.015		-0.025
	Share	CRE Frac. Resp.	-0.007		-0.040
Legume	=1 if used practice	CRE Probit	-0.006		-0.021
	Area (ha)	CRE Tobit	-0.005		-0.009
	Share	CRE Frac. Resp.	-0.003		-0.022

*, **, *** represent p-vals of ≤ 0.1 , ≤ 0.05 , ≤ 0.01 , respectively

Organic Fertilizer

SFN	1 Practice	Estimator	APE * 200	Sig	Effect Size
Animal manure	=1 if used practice	CRE Probit	-0.001		-0.003
	Area (ha)	CRE Tobit	-0.007		-0.011
	Share	CRE Frac. Resp.	-0.003		-0.016
	de dade destade				

*, **, *** represent p-vals of ≤ 0.1 , ≤ 0.05 , ≤ 0.01 , respectively

Low power: Low adoption 6.8% adoption across all households 80% of population don't own cattle

17

Continuous Maize & Maize Monocropping

	Practice	Estimator	APE * 200	Sig	Effect Size
Continuous	=1 if used practice	CRE Probit	0.017	*	0.034
	Area (ha)	CRE Tobit	0.047	*	0.053
	Share	CRE Frac. Resp.	0.008		0.021
Monocrop	=1 if used practice	CRE Probit	0.070	* * *	0.162
	Area (ha)	CRE Tobit	0.190	* * *	0.210
	Share	CRE Frac. Resp.	0.024	* * *	0.075

*, **, *** represent p-vals of ≤0.1, ≤0.05, ≤0.01, respectively

Assessing the Overall Effect

		Estimator	APE * 200	Sig	Effect Size
Number of Practices	Count of Practices (Fallow, Intercrop, Manure)	CRE Poisson	-0.04	*	-0.049

- Sustainable intensification may require adopting a combination of practices
- Think about how to combine or count SFM practices

Conclusions & Policy Implications

- **FSP** appears to have incentivized
 - Less fallowing
 - More continuous maize cultivation over time
 - More maize monocropping within a given year
- While the program marginally raised maize yields, it may have incentivized <u>un</u>sustainable intensification
- Making FISP less maize-centric and improving
 R&D and extension on SFM might ↓ these
 unintended consequences and ↑ returns to FISP

