Megatrends Transforming Africa's Agri-food Systems

T.S. Jayne, with Milu Muyanga, Kwame Yeboah, Ayala Wineman, Nicholas Sitko, Lulama Traub

> USAID Bureau for Food Security Seminar, Washington, DC 21 June, 2017

Africa's rapid population growth

Sub-Saharan Africa
Rest of world

Sub-Saharan Africa: only region of world where rural population continues to rise past 2050

Total Rural Population (millions)

Source: UN 2013

SSA Total Food Imports from 7 to 40 billion USD (2001-2015) (intra SSA trade from 1 to 10 billion USD)

Net cereal exports, Sub-Saharan Africa

Source: FAOSTAT, 2016

Net cereal exports, East Africa Region

Source: FAOSTAT, 2016

Significance:

"Currently, sub-Saharan Africa (SSA) is amongst the (sub)continents with the largest gap between cereal consumption and production, whereas its projected tripling demand between 2010 and 2050 is much greater than in other continents. We show that nearly complete closure of the gap between current farm yields and yield potential is needed to maintain the current level of cereal selfsufficiency (approximately 80%) by 2050. For all countries, such yield gap closure requires a large, abrupt acceleration in rate of yield increase. If this acceleration is not achieved, massive cropland expansion with attendant biodiversity loss and greenhouse gas emissions or vast import dependency are to be expected."

Significance:

"Currently, sub-Saharan Africa (SSA) is amongst the (sub)continents with the largest gap between cereal consumption and production, whereas its projected tripling demand between 2010 and 2050 is much greater than in other continents. Nearly complete closure of the gap between current farm yields and yield potential is needed to maintain the current level of cereal self-sufficiency (approximately 80%) by 2050. For all countries, such yield gap closure requires a large, abrupt acceleration in rate of yield increase. If this acceleration is not achieved, massive cropland expansion with attendant biodiversity loss and greenhouse gas emissions or vast import dependency are to be expected."

Significance:

"Currently, sub-Saharan Africa (SSA) is amongst the in rate of yield increase. If this acceleration is not achieved, massive cropland expansion with attendant biodiversity loss and greenhouse gas emissions or vast import dependency are to be expected."

Van Ittersum et al, Proceedings of National Academy of Sciences, 2016

Relationship between % of rural population on degrading agricultural land and pop density

- Roughly 28% of rural population in SSA live on degrading agricultural land.
- 43 million additional people living on DAL between 2000-2010

R HIGH 6

Employment trends

Changes in the share of total jobs in farming, non-farm and off-farm agrifood systems, among the working age population (15–64 years)

Changes in the share of total jobs in farming, non-farm and off-farm agrifood systems, among the working age population (15–64 years)

Changes in farm structure in Tanzania (2008-2012), National Panel Surveys

	Number of farn	ns (% of total)	% growth in number of farms between initial and latest year	% of total operated land on farms between 0-100 ha		
Farm size	2008	2012		2008	2012	
0 – 5 ha	5,454,961 (92.8)	6,151,035 (91.4)	12.8	62.4	56.3	
5 – 10 ha	300,511 (5.1)	406,947 (6.0)	35.4	15.9	18.0	
10 – 20 ha	77,668 (1.3)	109,960 (1.6)	41.6	7.9	9.7	
20 – 100 ha	45,700 (0.7)	64,588 (0.9)	41.3	13.8	16.0	
Total	5,878,840 (100%)	6,732,530 (100%)	14.5	100.0	100.0	

Share of farmland on farms 5-100 ha from 38% to 44% in 4 years

Changes in farm structure in Ghana (1992-2013)

Ghana	Number of farms		% growth in number of farms	9	% of total cultivate area			d	
	1992	2013			1992		2013		
0-2 ha	1,458,540	1,582,034	8.5		25.1		14.2		
2-5 ha	578,890	998,651	72.5		35.6		31.3		
5-10 ha	116,800	320,411	174.3		17.2		22.8		
10-20 ha	38,690	117,722	204.3		11.0		16.1	_	51.1%
20-100 ha	18,980	37,421	97.2		11.1		12.2		
>100 ha		1,740	-				3.5		
Total	2,211,900	3,057,978	38.3		100		100		

Source: Ghana GLSS Surveys, 1992, 2013, Jayne et al., 2016, using data from Ghana GLSS Surveys I and IV.

Changes in farm structure in Zambia (2001-2012)

Farm size category	Number of farms		% growth in number of farms		% of total cultivated area					
	2001	2012				2001		2012		
0 – 2 ha	638,118	748,771		17.3		34.1		16.2		
2 – 5 ha	159,039	418,544	163.2		163.2		45		31.7	
5 – 10 ha	20,832	165,129		692.6		14.3	ſ	25.0		
10 – 20 ha	2,352	53,454		2272.7		6.6		15.0	52.1%	
20 – 100 ha		13,839	na				12.1			
Total	820,341	1,399,737				100		100		

Source: Zambia MAL Crop Forecast Surveys, 2001 and 2012

Average land area allocated to each land use, by category of landholding size, Tanzania

Source: Agricultural Sample Census, 2008

Characteristics of "emergent farmers"

Rise of the medium-scale farmers

Three sub-categories of medium scale farmers (Kenya, Zambia, Ghana)

Rise of the medium-scale farmers

Three sub-categories of medium scale farmers: Kenya, Zambia, Ghana

Rise of the medium-scale farmers

Three sub-categories of medium scale farmers: Kenya, Zambia, Ghana

Type 1: Urban-based investor farmer

	Mode of entry to medium-scale farming status: acquire farm using non-farm income				
	Zambia		Kenya		
		(n=164)	(n=180)		
% of cases		58	60		
% men		91.4	80		
Year of birth		1960	1947		
Years of education of head		11	12.7		
Have held a job other than farmer (%)		100	83.3		
Formerly /currently employed by the public sector (%)		59.6	56.7		
Current landholding size (ha)		74.9	50.1		
% of land currently under cultivation		24.7	46.6		
Decade when land was acquired					
1969 or earlier		1.1	6		
1970-79		5.1	18		
1980-89		7.4	20		
1990-99		23.8	32		
2000 or later		63.4	25		

Type 2: Rural-based 'elite' farmer

	Mode of entry into medium-scale farming status: expansion of rural elite			
	Zambia	Kenya		
	(n=118)	(n=120)		
% of cases	42	40		
% men	92.9	82.5		
Year of birth	1966	1945		
Years of education of head	8.2	7.5		
Have held a job other than as a farmer (%)	32.9	17.5		
Landholding size when operator started own household (ha)	10.7	16.2		
Current landholding size (ha)	38.2	32.7		
% of land currently under cultivation	46.9	54.1		
Decade when land was acquired				
1969 or earlier	3.9	29		
1970-79	6.7	24		
1980-89	14.8	20		
1990-99	32.2	18		
2000 or later	42.0	9		

Source: MSU, UP, and ReNAPRI Retrospective Life History Surveys, 2015

% of National Landholdings held by Urban Households

Source: Demographic and Health Surveys, various years between 2004-2014.

% of National Landholdings held by Urban Households

Nominal value of tractor imports to Sub-Saharan Africa (excluding South Africa), 2001-2015

Source: vanderWesthuisen, forthcoming

36
Nominal value of tractor imports in selective Sub-Saharan African countries (2001-2015)

Rise of large-scale traders

Large-scale traders purchases from smallholder farmers are rising rapidly

- Zambia: nationally representative smallholder survey data shows that between 2012 and 2015, maize sales to large-scale traders (LSTs) increased from 23% to 41%
- Kenya: no sales to LSTs in 2004 → 21% of maize sales by volume in 2007 → 37% in 2014
- Tanzania: 34% of maize sales by volume in 2016

GINI coefficients in farm landholding

	Period	Movement in Gini coefficient:
Ghana (cult. area)	1992 → 2013	0.54 → 0.70
Kenya (cult. area)	1994 → 2006	0.51 → 0.55
Tanzania (landholdings)	2008 → 2012	0.63 → 0.69
Zambia (landholding)	2001 → 2012	0.42 → 0.49

Five inter-related trends

Output and factor price indices, northern Tanzania

Output and factor price indices, western Tanzania

Output and factor price indices, rural Malawi, 2004-2013

Sources: IHS for land and wages; FEWSNET for urea and maize

Five inter-related trends

Share of labor force in farming is declining most rapidly where agricultural productivity growth is highest

Source: Yeboah and Jayne, 2016

Non-farm labor productivity growth linked to lagged agricultural productivity growth

Table 1. Factors associated with changes in proportion of labor force in farming, 11-country annual pooled data, 1995-2011

	Fixed effect model	
	(i)	(ii)
Log lag labor productivity in agriculture	-0.133*	-0.284**
	(-2.15)	(-2.77)
Log lag labor productivity in non-agriculture	-0.0121	-0.176
	(-0.23)	(-1.89)
Other covariates		
Index of governance (lagged)	-0.0205	0.0698
	(-0.45)	(1.06)
Time trend	-0.00961***	-0.00458
	(-4.62)	(-0.96)
Population density	-0.00181	-0.00475
	(-1.51)	(-1.89)
Road density	-	-0.000260
	-	(-0.21)
Constant	-0.519**	0.0690
	(-3.07)	(0.20)
Number of observations	161	78
Number of Countries	11	10
Adjusted/Overall R-square	0.71	0.87
Time period	1995-2011	1995-2011

48

Conclusions

- Performance of agriculture will continue to exert major influence on job growth and income growth in overall economy
- 2. Agricultural productivity growth will be the cornerstone of any comprehensive youth livelihoods strategy:
 - Ag productivity growth influences
 - pace of labor force exit out of farming
 - Labor productivity in broader economy

Non-farm labor productivity growth linked to lagged agricultural productivity growth

Conclusions (cont.)

- 3. Important changes in the distribution of farm sizes
 - Decline in share of farmland under 5 hectare farms
 - Rise of medium-scale farms
 - Rising inequality of farmland distribution
 - Growing land scarcity driven by middle/high income urban people seeking to acquire land – not just for farming
 - speculation, housing/properties, farming
 - Rise of new towns converting formerly remote land into valued property

Conclusions (cont.)

- Ag sector policies must anticipate and respond to
 - rising land prices, decline of inheritance, market as increasingly important mode of acquiring land
 - Resources needed for youth to succeed in farming (access to land, finance)
 - Distinguish between "trying to keep youth in agriculture" vs. "giving youth viable choices"

Conclusions

- 4. Investments that raise productivity / profitability of farming:
 - Agricultural R&D and extension systems
 - Improved seed + fertilizer: crucial but incomplete
 - Farm management "best practices"
 - Well resourced public agricultural-nutrition institutions
 - Local policy institutes
 - Access to finance
 - Policy/enabling environment to attract private investment
- 5. Education: 300 million youth need access to skills, training
 - Malawi example
 - Ethiopia: 3,000 PhDs per year in 1995; now over 100,000 per year

Conclusions

Bottom line:

Economic transformation in SSA will require

- inclusive agricultural productivity growth
- improved access to education
- strengthening of African public institutions

Governments hold the key!

