Measuring food price transmission

Nicholas Minot (IFPRI)

Presented at the Comesa training course on "Food price variability: Causes, consequences, and policy options" on 28-29 January 2010 in Maputo, Mozambique under the Comesa-MSU-IFPRI African Agricultural Markets Programme (AAMP)

Outline

- What is price transmission?
- Why does price transmission occur?
- What is an elasticity of price transmission?
- How do we measure price transmission?
 - Simple percentage changes
 - Correlation analysis
 - Regression analysis
 - Non-stationarity and co-integration analysis
- Summary

- Spatial price transmission occurs because of flows of good between markets 14.00
 Maize prices in Maputo and Chokwe
- If price gap > marketing costs, trade flows will narrow gap
- If price gap < marketing cost, no flows
- Therefore, price gap <= marketing cost

Why does price transmission occur?

 Vertical price transmission occurs because of flows of goods along marketing channel

Why does price transmission occur? Cross-Price of maize and rice in Maputo commodity 25.00 price transmission 20.00 Rice occurs because of substitution in 15.00 consumption 10.00 and/or Maize production 5.00 0.00 4 2003 7 2003 10 2004 1 2004 4 2004 1 2006 1 2005 1 2006 1 2005 1 2006 1 2006 1 2006 1 2006 1 2006 1 2006 1 2007 1 2008 1

What is an elasticity of price transmission?

- Price transmission elasticity: % change in one price for each 1% increase in the other price
- Example: if a 10% increase in the world price of maize causes a 3% increase in the local price of maize, then price transmission elasticity is 0.03/0.10 = 0.3

How do we measure price transmission?

- Ratio of percentage changes between two time periods
- Correlation coefficient
- Regression analysis
- Co-integration analysis
- Other methods

Ratio of percentages

Ratio of percentage changes between two time periods
 Price of US

3			Price of US
		Price of	No 2
		maize in	yellow
		Dar in	maize in
		US\$/ton	US\$/ton
	June 2007	120	165
	June 2008	239	287
	Percent		
	change	99%	75%

• Elasticity of transmission is 1.32 (=.99/.75)

Ratio of percentages

 Very crude method: only uses two points in time, does not take trends into account

Correlation coefficient

- Correlation coefficient measures the degree of relatedness of two variables
- In Excel: =correl(range1, range2)
- Advantage: easy to calculate and understand
- Disadvantage: only considers relationship between prices at same time, does not take into account lags
- **Exercise**
 - 1) In "correlation" worksheet, change b9 and look at effect on correlation in graph
 - 2) In "Data" worksheet, calculate correlation coefficient of two prices

400

Regression analysis

- Multiple regression analysis finds equation that best fits data: Y = a + b*X₁ + c*X₂...
- Advantages
 - Gives information to calculate transmission elasticity
 - Can test relationships statistically
 - Can take into account lagged effects, inflation, and seasonality; can analyze relationship of >2 prices
- Disadvantages
 - Awkward to do in Excel
 - (easier with Stata or SPSS)
 - Misleading results if data are non-stationary

Regression analysis

- Using Excel 2003 for regression analysis (method 1)
 - Mark columns with two prices
 - 2) Insert/Chart/XY(Scatter) /Finish
 - Chart/Add trendline/ Linear
 - 4) Click "Options", then "Display equation"

- Using Excel 2007 for regression analysis (method 1)
 - Mark columns with two prices
 - 2) Insert/Scatter graph
 - Chart tools/Layout/ Trendline/More trendline options
 - Click box for "Display equation on chart"

Note: only one "x" allowed with this method

Regression analysis

- Using Excel for regression analysis (method 2)
 - 1) =linest(y range, x range, 1, 1)
 - 2) Mark 5x2 block around formula
 - 3) F2 shift-control-enter

Note: Can use multiple x's with this method

					b	а	
=linest(=linest(Coef	0.999	236.3	
				SE	0.354	81.26	
				R2	0.119	137.8	
					7.98	58.00	
					155	1,112	

Regression analysis

- Calculating transmission elasticity from regression coefficient
 - Regression coefficient b = ΔP2/ΔP1
 - Transmission elasticity is (ΔP2/P2) / (ΔP1/P1)
 - So transmission elasticity = b*(P1/P2)
 - where b = regression coefficient
 - P2 = price on left side (Y variable)
 - P1 = price on right side (X variable)

• Exercise

- In "Regression" worksheet, change green cells and examine effect on results and graph
- In "Data" worksheet, use regression analysis to analyze relationship between two prices

Non-stationarity - definition

- What is a non-stationary variable?
 - A variable that does not tend to go back to a mean value over time, also called "random walk"

Stationary variable	Non-stationary variable				
Tends to go back toward mean	Does not tend to go back to mean				
Finite variance	Infinite variance				
Regression analysis is valid	Regression analysis is misleading				
400 350 250 150 150 150 150 150 150 150 150 150 150 159 13172125293337414549535761 Month	$ \begin{array}{c} 700 \\ 600 \\ 400 \\ 400 \\ $				

Non-stationarity - diagnosis

- How do you identify non-stationarity?
 - Several tests, most common one is the Augmented Dickey-Fuller test
 - Cannot easily be done in Excel, but Stata and SPSS can do it easily
 - Price data are usually non-stationary
 - Of 62 staple food prices tested, most (60%) were non-stationary

Non-stationarity - solution

- How do you analyze non-stationary prices?
 - Simple approach (with Excel)
 - First differences ($\Delta P = P_t P_{t-1}$) are generally stationary
 - Regress ΔP_1 on $\Delta P_{2,}$, possibly with lags
 - Co-integration analysis (with Stata)
 - Test to see if prices are co-integrated, meaning that P2-b*P1-a is stationary
 - If prices are co-integrated, run error correction model (ECM)
 - ECM gives estimates of
 - 1) Long-run transmission
 - 2) Short-run transmission
 - 3) Speed of adjustment to long-run equilibrium

Non-stationarity - solution

• Exercise

- Use "Stationarity 2" worksheet to see that regressing ΔP_1 and ΔP_2 correctly shows no relationship
- Examine "Stationarity 3" to see how regressing ΔP_1 and ΔP_2 correctly shows a relationship that exists
- Use "Data" to calculate first differences in two price and regress ΔP_2 on ΔP_1

Summary

- Price transmission occurs between markets, between stages of a market channel, and between commodities... but not always
- · Correlation coefficient is easy but gives limited info
- Regression analysis
 - Can be done in Excel but easier in Stata
 - · Gives estimate of price transmission
 - Can take into account lagged effects
 - · But is misleading if prices are non-stationary
- Non-stationarity
 - Means prices follow a "random walk"
 - Can be tested with Stata
 - If prices are non-stationary, need to
 - At minimum, regress first-differences (can be done in Excel)
 - Preferably, carry out co-integration analysis (requires Stata)