The Potential Economic Impact of Guinea-Race Sorghum Hybrids in Mali: A Comparison of Research and Development Paradigms

Alpha Kergna, Melinda Smale, Amidou Assima, Abdoulaye Diallo, Eva Weltzien, and Fred Rattunde

5th International Conference of the African Association of Agricultural Economists, Addis Ababa, Ethiopia, 23-26 September 2016
Motivation

• Sorghum is a major food staple
• Low average yield growth rate (0.49%)
• Guinea race hybrids for high yield increase and preferred traits (grain et panicles)
• Two research and diffusion approaches
• Compare potential returns to investment
Context

<table>
<thead>
<tr>
<th>Previous approach (FPB-S)</th>
<th>Current approach (PPB-F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Initially, exotic introductions, purification of superior landraces</td>
<td>• Farmer participatory selection, on-farm trials</td>
</tr>
<tr>
<td>• Later, successful improved varieties</td>
<td>• Improved varieties and first hybrids largely based on Guinea landraces</td>
</tr>
<tr>
<td>• State-managed, centralized seed supply</td>
<td>• Linkage to local farmer associations, decentralized</td>
</tr>
</tbody>
</table>
Context

- Rattunde et al. (2013) found that individual Guinea-race sorghum hybrids yielded 17 to 47% over the local check, with the top three hybrids averaging 30% based on farmer field trials.
Methods

• Census of 58 villages and 2430 farm families to inventory sorghum varieties

• Economic surplus model
 – Ex ante
 – Limitation: parameters constant

• @Risk to introduce variability in parameters
 – Triangular distributions
Assumptions

• Closed economy for sorghum in Mali - augmented economic surplus model

• Triangular distributions of parameter values based on literature and expert opinion
Temporal distribution of costs and benefits

Benefits path when adoption begins immediately after variety release with 10 years of R&D

Total lags of 10 and 15 years

Benefits path with lag of 5 additional years before adoption begins and constraints to adoption that reduce adoption ceiling
% of sorghum area by type of variety

<table>
<thead>
<tr>
<th></th>
<th>(% of total sorghum area)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2009</td>
</tr>
<tr>
<td>hybrids</td>
<td>1.21</td>
</tr>
<tr>
<td>improved varieties</td>
<td>18.5</td>
</tr>
<tr>
<td>local varieties</td>
<td>80.3</td>
</tr>
<tr>
<td>all sorghum varieties</td>
<td>100</td>
</tr>
</tbody>
</table>
Comparison of NPV for Scenario PPB-F and FPB-S
Factors influencing variation in NPV

PPB-F

FPB-S
Comparison of IRR for Scenario PPB-F and FPB-S
Conclusions

• PPB-F on sorghum hybrids in Mali is a sound investment: NPV and IRR are superior

• Total surplus variability depends more on yield advantages and price elasticity of supply in either paradigm
Implications

• To continue large-scale diffusion of hybrids throughout the Sudan Savanna
 – continued support for a decentralized farmer-managed seed system
 – close research collaboration
 – enlarge the network of farmer unions engaged in seed production and dissemination
 – encourage exchange and coordination among the growing number of seed producers