



#### Impacts of Improved Sorghum Varieties on Farm Families in Mali: A Multivalued Treatment Effects Approach

Amidou Assima, Melinda Smale, Alpha Kergna, Veronique Theriault, Eva Weltzien

5th International Conference of the African Association of Agricultural Economists, Addis Ababa, Ethiopia,23-26 September 2016









### Motivation

Sorghum is a major food staple
Investment in sorghum improvement since 1970s
Low adoption rates (10-30%)
Achieving yield gains difficult
First sorghum hybrids could change the situation

## Hypotheses

### **Working hypotheses**

Test

I: Mechanism of improved Examine factors influencing varieties diffusion may not be well-adapted

II: Improved varieties may not be superior to local varieties Measure impacts on farm families, including consumption and yields

### Data

- 58 villages in the Sudanian Savanna of Mali
- 10 farm families randomly selected per village
- + 48 farm families growing sorghum hybrids
- 628 households, 723 sorghum plots
- 4 survey rounds 2014-15

## **Empirical strategy**

**Ordered** logit

#### **Multivalued treatment**

- Plot-level variety choice
- Differentiates:
  - **0** = local varieties
  - 1 = improved varieties
  - 2 = hybrids

- Cattaneo (2010)
- Addresses selection bias
- ATE and percent of ATE
- 3 models for robustness

# **Empirical strategy**

#### Notation

- t = {local (0) improved (1) hybrid (2)} is treatment type
- y<sub>1i</sub> potential outcomes of adoption
- *y*<sub>0*i*</sub> potential outcomes of non-adoption
- *d<sub>i</sub>* denotes adoption status
- i= {1, . . ., n} is unit indexed

#### **Outcome model**

• 
$$y_i(t) = d_i(t)y_{1i}(t) + (1 -$$

# **Empirical strategy**

| Model                                                                | Profile                                                                |
|----------------------------------------------------------------------|------------------------------------------------------------------------|
| 1. Regression adjustment                                             | models the outcome variable<br>as a function of observables            |
| 2. Augmented, inverse-<br>probability weighted (AIPW)                | models both the outcomes<br>and adoption as function of<br>observables |
| 3. Inverse-probability<br>weighted, regression<br>adjustment (IPWRA) | models both the outcomes<br>and adoption as function of<br>observables |

### Outcomes

- Yield
- Household Dietary Diversity Score (HDDS) (freq)
- Share of sorghum harvest sold

### **Results: Ordered Logit**

|                      | Improvement status | Robust Std. Err |  |
|----------------------|--------------------|-----------------|--|
| individually-managed | -0.573*            | (0.327)         |  |
| wife                 | 0.882**            | (0.344)         |  |
| son                  | 0.407*             | (0.240)         |  |
| education            | 0.878***           | (0.204)         |  |
| location             | 0.00207            | (0.00363)       |  |
| erosion control      | -0.475**           | (0.204)         |  |
| assets               | 0.206***           | (0.0785)        |  |
| labor supply         | 0.191**            | (0.0826)        |  |
| cooperative          | -0.0147            | (0.353)         |  |
| market               | -0.154             | (0.197)         |  |
| Constant cut1        | $3.605^{***}$      | (1.143)         |  |
| Constant cut2        | 6.049***           | (1.148)         |  |
| Observations         | 728                |                 |  |

| Results: Multivalued treatment |          |             |            |            |  |  |
|--------------------------------|----------|-------------|------------|------------|--|--|
|                                |          |             |            |            |  |  |
|                                |          | RA          | AIPW MNL   | IPWRA MNL  |  |  |
| yield                          | improved | .3357052    | .2275826   | .3486967   |  |  |
|                                | hybrid   | .7880124**  | 1.025119** | 1.8005***  |  |  |
|                                |          |             |            |            |  |  |
| freqhdds                       | improved | .0369894    | 0077307    | 0073753    |  |  |
|                                | hybrid   | .1150511    | .0710718** | .0762431** |  |  |
|                                | v        |             |            |            |  |  |
| sharesold                      | improved | .937192**   | 1.242769** | 1.166684** |  |  |
|                                | hybrid   | 2.556126*** | 1.601737** | 1.614431** |  |  |
|                                |          |             |            |            |  |  |
|                                |          |             |            |            |  |  |

### Conclusions

- adoption determinants differ between collectively-and individually-managed plots
- plot manager characteristics are key determinants of adoption, in addition to household wealth and labor supply
- adopting new, guinea-race sorghum hybrids is associated with
  - o superior yields
  - o more diverse diet
  - o a higher share of sorghum sold

# **Policy Implications**

To encourage more widespread use of promising hybrids, attention will need to be paid to integrated seed systems, affordability, and a mechanism of diffusion for improved seed to incorporate not only the household head but also all economically active members of the EAF.

### **Future Research**

- Further calibration of these results with detailed soils data in the yield outcome model
- Enhanced measures of dietary diversity in the consumption model