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IAPRI-MSU Technical Training	
	

Intro	to	Applied	Econometrics:		
Basic	theory	and	Stata	examples	

	
Training	materials	developed	and	session	facilitated	by		

Nicole	M.	Mason	
Assistant	Professor,	Dept.	of	Agricultural,	Food,	&	Resource	Economics	

Michigan	State	University	
	

10:00	AM	–	1:00	PM,	25	June	2018	
Indaba	Agricultural	Policy	Research	Institute	

Lusaka,	Zambia	

   Why this training? 

•  Requested	by	IAPRI	

•  Systematic	introduction	for	non-economist	and	recently	
hired	economist	team	members	

•  Refresher	for	interested	veteran	economist	team	members	

–  It	has	been	a	while	since	we	last	covered	these	topics		
(2012-2013)!	
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Outline & some questions I hope you’ll be able to 
answer by the end of today’s session 

1.  What	is	econometrics	and	why	is	it	useful	for	IAPRI’s	work?	
2.  The	simple	linear	regression	model	

a.  How	is	it	set	up?		
b.  What	are	the	key	underlying	assumptions?		
c.  How	do	we	interpret	it?	
d.  How	do	we	estimate	it	in	Stata?	
e.  How	do	we	use	it	to	test	hypotheses	(in	general	&	Stata)?	

3.  (Time-permitting)	Another	applied	econometrics	topic	of	
your	choice	(e.g.,	panel	estimators,	IV/2SLS,	etc.)	

What is econometrics? 
•  What	comes	to	mind	when	you	hear	the	word?	
•  Econometrics	is	the	use	of	statistical	methods	for:	

– “Estimating	economic	relationships”	
– “Testing	economic	theories”	
–  	Evaluating	policies	and	programs	

•  Econometrics	is	statistics	applied	to	economic	data	
	

•  Why	is	econometrics	useful	for	IAPRI?	

Source:	Wooldridge	(2002,	p.	1)	
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A great resource (this or an earlier version) 

Steps in econometric analysis 
For	those	of	you	that	have	done	a	paper	that	uses	econometrics,		what	
are	some	steps	you	went	through	in	going	from	your	research	question(s)/
hypothesis(es)	through	to	the	analysis	and	inference?	
		

1.  Research	question(s)	
2.  Economic	model	or	other	conceptual/theoretical	framework	
3.  Operationalize	#2	à	econometric	model	
4.  Specify	hypotheses	to	be	tested	in	#3	
5.  Collect	and	clean	data;	create	variables		
6.  Inspect	&	summarize	data	
7.  Estimate	econometric	model	
8.  Interpret	results;	hypothesis	testing	&	statistical	inference	

	Source:	Wooldridge	(2002,	p.	1)	
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Economic model vs. econometric model 
•  What’s	the	difference?	
•  Economic	model	=	“a	relationship	derived	from	economic	

theory	or	less	formal	economic	reasoning”	
–  Examples?	

•  Econometric	model	=	“an	equation	relating	the	dependent	
variable	to	a	set	of	explanatory	variables	and	unobserved	
disturbances,	where	unknown	population	parameters	
determine	the	ceteris	paribus	effect	of	each	explanatory	
variable”	
–  Examples?	

Source:	Wooldridge	(2002,	p.	794)	

Economic model vs. econometric model (cont’d) 
EX)	Modeling	demand	for	beef		
What	does	economic	theory	tell	us	are	likely	to	be	some	critical	factors	affecting	an	
individual’s	demand	for	beef?	
•  Let:	

–  qbeef	=	beef	quantity	demanded	
–  pbeef	=	beef	price	
–  pother	=	a	vector	of	other	prices	(complements,	substitutes,	etc.)	
–  income	=	income	
–  Z	=	tastes	&	preferences	(proxies	in	case	of	econometric	model)	

•  How	could	we	write	down	a	general	function	(economic	model)	relating	beef	quantity	
demanded	and	the	factors	likely	to	affect	it?	
–  qbeef	=	f(pbeef,	pother,	income,	Z)	

•  What	would	this	look	like	it	we	were	writing	it	down	as	an	econometric	model		
(e.g.,	a	multiple		linear	regression	model)?	
–  qbeef	=	β0	+	β1pbeef	+	potherβ2	+	β3income	+	Zβ4	+	u	

We’ll	go	through	notation/	
interpretation	in	a	few	minutes	
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The simple linear regression model: Motivation 
•  Let	y	and	x	are	two	variables	that	represent	some	population		
•  We	want	to	know:		

–  How	does	y	change	when	x	changes?		
– What	is	the	causal	effect	(ceteris	paribus	effect)	of	x	on	y?		

•  Examples	of	y	and	x	(in	general	or	in	your	research)?	

y	 x	
Beef	demand	 Beef	price	
Maize	yield	 Qty	of	fertilizer	used	

Child	nutrition	 HH	receives	social	cash	transfer	
Crop	diversification	 HH	receives	FISP	e-voucher	
Forest	conservation	 Community	forest	mgmt.	program	

Anatomy of a simple linear regression model 
y	=	β0	+	β1x	+	u	

•  u	is	the	error	term	or	disturbance	
– u	for	“unobserved”	
– Represents	all	factors	other	than	x	that	affect	y	
– Some	use	ε	instead	of	u	

•  Terminology	for	y	and	x?	
y	 x	

Dependent	variable	 Independent	variable	
Explained	variable	 Explanatory	variable	
Response	variable	 Control	variable	
Predicted	variable	 Predictor	variable	

Regressand	 Regressor	
Outcome	variable	 Covariate	

β0	(intercept)	and		
β1	(slope)	are	the	

population	parameters	
to	be	estimated	
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To use data to get unbiased estimates of β0 and β1, we have to 
make some assumptions about the relationship b/w x and u   

y = β0 + β1x + u 
1.  E(u) = 0   (not restrictive if have an intercept, β0) 
2.  *** E(u|x) = E(u)  (i.e. the average value of u does 

not depend on the value of x) 
#1 & #2 à E(u|x) = E(u) = 0     (zero conditional mean) 
•  If this holds, x is “exogenous”; but if x is 

correlated with u, x is “endogenous” (we’ll come 
back to this later) 

What does this assumption imply below?  
•  yield = β0 + β1fertilizer + u, where u is unobserved land quality 

(inter alia) 
•  wage = β0 + β1educ + u, where u is unobserved ability (inter alia) 

When is this assumption reasonable? 
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Spurious correlations 
http://www.tylervigen.com/spurious-correlations		

What is E(y|x) if we assume E(u|x)=0? 
y = β0 + β1x + u 

  

What is ∂E( y | x)
∂x

 and how 

do we interpret this result?

  

∂E( y | x)
∂x

= β1  

 What is the interpretation of  β0?

  

Interpretation: β0  is the expected 
value of y when x = 0 (intercept)

E(y|x) = β0 + β1x 

Hint: Apply 
the rules for 
conditional 
expectations. 

  

Interpretation: β1  is the expected
change in y given a one unit 
increase in x,  ceteris paribus (slope)

y

x	
1

	
2

	
3

0β

1β slope 

intercept 

  E( y | x) = β0 + β1x
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Why is it called linear regression?  
y = β0 + β1x + u 

 

•  Linear in parameters, β0 and β1 

•  Does NOT limit us to linear relationships 
between x and y  

•  But rules out models that are non-linear in 
parameters, e.g.: 

 

 

y = 1
β0 + β1x

+ u

y = Φ β0 + β1x( ) + u

y =
β0

β1

x + u

Estimating β0 and β1  
y = β0 + β1x + u 

•  Suppose we have a random sample of size N 
from the population of interest. Then can write: 

yi = β0 + β1xi + ui ,     i = 1, 2, 3, …, N 
We don’t know 
β0 and β1 but 
want to estimate 
them. 
 

How does linear 
regression use 
the data in our 
sample to 
estimate  
β0 and β1? 
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(Ordinary) least squares (OLS) approach 
•  The estimated values of β0 and β1 are the values 

that minimize the sum of squared residuals 
•  “Fitted” values of y and residuals: 

  

Fitted (estimated, predicted) 
values of y:    ŷi = β̂0 + β̂1xi

Source: Wooldridge (2002) 

  

Residuals:
ûi = yi − ŷi

   = yi − β̂0 − β̂1xi

  

OLS: 
Choose β̂0  and β̂1  to minimize:

ûi
2

i=1

N
∑ = yi − β̂0 − β̂1xi( )2

i=1

N
∑

yi = β0 + β1xi + ui 

The OLS estimators for β0 and β1   

  

β̂1 =
(xi − x )( yi − y)

i=1

N
∑

(xi − x )2

i=1

N
∑

  β̂0 = y − β̂1x
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If	x	is	2,	what	is	your	
estimate	of	y	(i.e.,	
what	is	the	fitted	value	
for	y,	y-hat)?		

  

Fitted (estimated, predicted) 
values of y:    ŷi = β̂0 + β̂1xi

Basic Stata commands 
–  regress	y	x 	 				Linear	regression	of	y	on	x	

•  EX)	regress	wage	educ	

–  predict	newvar1,	xb 											Compute	fitted	values	

•  EX)	predict	wagehat,	xb				(I	just	made	up	the	name	wagehat)	

–  predict	newvar2,	resid						Compute	residuals	

•  EX)	predict	uhat,	resid							(I	just	made	up	the	name	uhat)	
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Obtaining OLS estimates – example (Stata) 
Wooldridge (2002) Example 2.4: Wage and education 
Use Stata to run the simple linear regression of wage (y) on 
educ (x).  
 

Command:  regress wage educ   (or: reg wage educ) 

  β̂1

  β̂0

 wagei = β0 + β1educi + ui

  What  are β̂0  and  β̂1  below?

Practice time! 
1.  Open	the	dataset	“WAGE1.DTA”	in	Stata	

a.  Type	the	command	“describe”	to	see	what	variables	are	in	the	
dataset	

b.  Estimate	the	model	on	the	previous	slide	(reg	wage	educ)	
c.  Find	and	interpret	(put	in	a	sentence!)	the	estimates	of	β0	and	β1	in	

the	regression	output	
2.  Open	the	dataset	“RALS1215_training.dta”	in	Stata	

a.  Use	“describe”	to	see	what	variables	are	in	the	dataset	
b.  Regress	the	variable	for	gross	value	of	crop	production	on	the	

variable	for	landholding	size	
c.  Find	and	interpret	(put	in	a	sentence!)	the	estimates	of	β0	and	β1	in	

the	regression	output	
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Total, explained, & residual sum of squares, R2 

  
SST ≡ ( yi − y)2

i=1

N
∑Total sum of squares:  

  
SSE ≡ ( ŷi − y)2

i=1

N
∑Explained sum of squares:  

  
SSR ≡ ûi

2

i=1

N
∑Residual sum of squares:  

 SST = SSE+ SSR
Coefficient of determination or R2:  

  R
2 = SSE / SST = 1− (SSR / SST )

Proof is on p. 39 of Wooldridge (2002) 

Interpretation?  
The proportion of the 
sample variation in y 
that is explained by x  

SST (total SS), SSE (explained SS), SSR 
(residual SS), and R2 in Stata 

  R
2 = SSE / SST = 1− (SSR / SST ) SST = SSE+ SSR

 SSE

 SSR

 SST



6/25/18	

13	

Practice time! 
Look	at	the	output	from	your	RALS-based	regression:	
1.  What	is	the	SSE?		
2.  What	is	the	SSR?	
3.  What	is	the	SST?	
4.  What	is	the	R-squared?	(Find	the	actual	number	and	then	check	that	it	

equals	SSE/SST)	
5.  Interpret	the	R-squared	(put	it	in	a	sentence)	

	

Why is it called R2?  
•  Letter R sometimes used to refer to correlation 

coefficient (others use ρ, which is “rho”) 

  R
2  is the squared sample correlation coefficient between yi  and ŷi
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Practice time! 
Immediately	after	your	RALS	regression	command,	use	the	previous	slide	as	a	
guide	and:	
1.  Compute	the	predicted	values	of	gvharv,	calling	them	gvharvhat	
2.  Compute	the	correlation	coefficient	between	gvharv	and	gvharvhat	
3.  Square	this	correlation	coefficient	(using	the	Stata	“display”	command)	
4.  Compare	the	R-squared	you	just	computed	“by	hand”	to	the	Stata-

generated	R-squared	in	the	regression	output.	Do	they	match?	

	

“My R-squared it too low!” 

Does	a	low	R2	mean	the	regression	results	are	
useless?	Why	or	why	not?	

  ŷ = β̂0 + β̂1x

  β̂1 may still be good (unbiased) 
estimate of ceteris paribus (causal) 
effect of x on y even if R2 is low 
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Unbiasedness & assumptions needed for it 
•  What	does	it	mean	for	an	estimator	to	be	unbiased?		
	

•  What	assumptions	do	we	need	to	make	in	order	for	the	
OLS	estimator	to	be	unbiased?	(Hint:	we	talked	about	
the	key	assumption	earlier	today.)	

  E(β̂1) = β1   and   E(β̂0 ) = β0

Unbiasedness of OLS (simple linear regression) 
If the following 4 assumptions hold, then OLS is unbiased. 
(OLS is also consistent under these assumptions, and 
under slightly weaker assumptions à AFRE 835.) 
 

SLR.1. Linear in parameters: 

SLR.2. Random sampling 

**SLR.3. Zero conditional mean (exogeneity): 

 

SLR.4. Sample variation in x 

 

 y = β0 + β1x + u

  E(u | x) = E(u) = 0

  

β̂1 =
(xi − x )( yi − y)

i=1

N
∑

(xi − x )2

i=1

N
∑Why necessary?   Hint:  
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Can’t estimate slope parameter if no variation in x 

Source:	Wooldridge	(2002)	

OLS estimators for β0 and β1 are unbiased 
under SLR.1-SLR.4  

•  What does unbiasedness mean in plain 
language? 

•  The key assumption is E(u|x) = E(u) = 0  
(zero conditional mean/exogeneity) – SLR.3 
•  Under SLR.1-SLR.4, OLS estimate of β1 is the  

causal effect (ceteris paribus effect) of x on y 
•  If E(u|x) ≠ E(u), then x is endogenous to y à OLS 

estimates biased à need to take other measures to 
deal with this (IV/2SLS, panel data methods, etc.) 

  E(β̂1) = β1   and   E(β̂0 ) = β0
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If make one more assumption -  
homoskedasticity (SLR.5) - then OLS is “BLUE” 

Let	V(u)	=	σ2 
SLR.5. Homoskedasticity (constant variance): 
	

  V (u | x) =V (u) =σ 2

Which	implies:	

  V ( y | x) =V (u | x) =σ 2

Homoskedasticity 

Source:	Wooldridge	(2002)	

Heteroskedasticity 
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If SLR.1 through SLR.5 hold, then OLS is “BLUE” 

•  Best	(most	efficient,	i.e.,	smallest	variance)	

•  Linear	(linear	function	of	the	yi)	

•  Unbiased	

•  Estimator	

Also,	if	homoskedastic,	then	the	“regular”	variance	formulas	for	OLS	
estimators	are	correct	(i.e.,	are	unbiased	estimators	for	true	variances).	
(If	heteroskedastic,	then	these	formulas	and	the	regular	standard	errors	
reported	by	Stata	biased	à	too	small.)	Why	is	this	a	problem?		

In Stata 

  V̂ (β̂i ),  i = 0,1

   σ̂
2

  σ̂

  
σ̂

β̂ j
a.k.a.	
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Practice time! 
Locate	the	standard	errors	for	your	estimates	in	the	RALS-
based	regression	
	
Question:	Why	do	we	need	these	standard	errors?	How	
will	we	use	them?		

The sampling distributions of the OLS estimators 
•  By the Central Limit Theorem, under 

assumptions SLR.1-SLR.5, the OLS estimators 
are asymptotically (i.e., as Nà∞) normally 
distributed  

•  If we add one more assumption, then we can 
obtain the sampling distribution of the OLS 
estimators in finite samples 

SLR.6. Normality: The population error, u, is 
independent of x and is normally distributed 
with E(u)=0 and V(u)=σ2, i.e.: 

  u ~ Normal(0,σ 2 )
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SLR.1-SLR.6 = “classical linear model assumptions” 

•  CLM = SLR.1-SLR.6 

•  CLM assumptions imply    y | x ~ Normal(β0 + β1x,  σ 2)

Source:	Wooldridge	(2002)	

By	adding	SLR.6,	we	can	
do	hypothesis	testing	
using	t-statistics	even	in	
finite	samples	

**t	distribution	
converges	to	
standard	
normal	as	d.f.								
					à	∞	

  

T =
β̂ j − β j

V̂ (β̂ j )
~ t  with N − 2 d.f.

T-statistic refresher 
Under	SLR.1-SLR.6	(simple	linear	regression	case):	
	

  
σ̂

β̂ j

Replace	βj	with	the	value	
under	the	null	hypothesis	

  
e.g., H0 :β j = 0, H1 :β j ≠ 0
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P-value refresher 
What	is	a	p-value?	
•  “The	smallest	significance	level	at	which	the	null	hypothesis	can	

be	rejected”	(Wooldridge	2002,	p.	800)	
•  Significance	level	=	P(Type	I	error)		

=	P(reject	the	null	when	the	null	is	actually	true)	
•  Suppose	you	are	conducting	your	hypothesis	test	using	the	10%	

significance	level	as	your	cut-off	for	statistical	significance		
•  What	do	you	conclude	if	p-value	>	0.10?	Do	you	reject	the	null	

hypothesis	of	fail	to	reject	it?		
•  What	do	you	conclude	if	p-value	<	0.10?	
	

Type I vs. Type II error refresher 

Type	I	error:	reject	H0	when	H0	is	true		
Probability:	α	(significance	level)	

Type	II	error:	fail	to	reject	H0	when	H0	is	false	
	Probability:	β		(1-	β	=	power	of	the	test)	–	different	β!		
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T-statistics and p-values in Stata output 

  
The p-values reported by Stata are for H0 :β j = 0  vs.   H1 :β j ≠ 0

Practice time! 
Using	your	RALS-based	regression	output:	
	
1.  What	is	the	value	of	the	t-statistic	that	you	would	use	to	test		

H0:	βland=0	vs.	H1:	βland≠0?	Find	it	in	the	regression	output	and	also	
calculate	it	using	the	formula	a	few	slides	back.	

2.  Conduct	this	hypothesis	test	at	the	10%	level	(using	the	p-value	reported	
in	Stata).	What	do	you	conclude?		

3.  What	does	this	mean	in	practice?		
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95% confidence intervals in Stata output 

Interpretation	of	95%	confidence	interval	(CI):	”If	random	samples	were	obtained	
over	and	over	again,	with	βjL	and	βjU	computed	each	time,	then	the	(unknown)	
population	value	βj	would	lie	in	the	interval	[βjL,	βjU]	for	95%	of	the	samples.	
Unfortunately,	for	the	single	sample	that	we	use	to	construct	the	CI,	we	do	not	know	
whether	βj	is	actually	contained	in	the	interval.	We	hope	we	have	obtained	a	sample	
that	is	one	of	the	95%	of	all	samples	where	the	interval	estimate	contains	βj,	but	we	
have	no	guarantee.”	(Wooldridge	2002,	p.	134)	

Confidence interval interpretation 

βj	

Twenty	(20)	95%	CIs	for	βj	
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95% confidence intervals in Stata output 

95%	CIs	are	useful	for	testing	hypotheses	at	the	5%	sig.	level	about	values	of	βj	under	
the	null	other	than	zero	(against	the	corresponding	2-sided	alternative	hypothesis)	
	
If	the	value	of	βj	under	the	null	falls	within	the	95%	CI,	what	would	you	conclude?		
•  Fail	to	reject	the	null	in	favor	of	the	alternative	at	the	5%	level	
If	the	value	of	βj	under	the	null	is	outside	of	the	95%	CI,	what	would	you	conclude?	
•  	Reject	the	null	in	favor	of	the	alternative	at	the	5%	level	

Practice time! 
	
Use	the	95%	CI	in	your	RALS-based	regression	output	to	test	a	null	
hypothesis	of	your	choice	for	βj	(against	its	corresponding	2-sided	alternative	
hypothesis).	Conduct	your	hypothesis	test	at	the	5%	significance	level.	What	
do	you	conclude?		
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(Time-permitting) What else do you want to cover? 

Thank you for your attention & participation! 
	
Nicole	Mason	(masonn@msu.edu)		
Assistant	Professor	
Department	of	Agricultural,	Food,	&	Resource	Economics	(AFRE)	
Michigan	State	University	(MSU)	
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Main reference 
•  Wooldridge,	J.	(2002).	Introductory	econometrics:	A	
modern	approach	(2nd	edition).	Cincinnati,	OH:	South-
Western	College	Pub.	

EXTRA SLIDES 
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Aside: NPR “Hidden Brain” example of a 
natural experiment, and when it might be 
reasonable to assume E(u|x)=E(u) 
•  Listen for the following: 

•  What is the dependent variable? 
•  What is the main explanatory variable of interest? 
•  Why might it be reasonable to assume E(u|x)=E(u) here? 
•  What is a natural experiment? 

•  Dependent variable: cognitive function of elderly 
•  Main explanatory variable: wealth 
•  E(u|x)=E(u) might be reasonable – Congress 

computational mistake – people in one cohort got higher 
benefits that next cohort (level of benefits shouldn’t be 
correlated with unobservables) 

Aside: Natural experiments 
A	natural	experiment	occurs	when	some	exogenous	event—
often	 a	 change	 in	 government	 policy—changes	 the	
environment	 in	 which	 individuals,	 families,	 firms,	 or	 cities	
operate.	A	natural	experiment	always	has	a	control	group,	
which	is	not	affected	by	the	policy	change,	and	a	treatment	
group,	which	is	thought	to	be	affected	by	the	policy	change.	
Unlike	with	a	true	experiment,	where	treatment	and	control	
groups	are	randomly	and	explicitly	chosen,	 the	control	and	
treatment	 groups	 in	 natural	 experiments	 arise	 from	 the	
particular	policy	change.	(Wooldridge,	2002:	417)	
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Putting it all together: simple linear regression 

  

β̂1 =
(xi − x )( yi − y)

i=1

N
∑

(xi − x )2

i=1

N
∑

  β̂0 = y − β̂1x
 y = β0 + β1x + u

OLS	estimators	
for	β0	and	β1:		

Expected	values	(under	
SLR.1-SLR.4):	   E(β̂1) = β1  and E(β̂0 ) = β0

  

V̂ (β̂1) = σ̂ 2

(xi − x )2

i=1

N
∑

  

V̂ (β̂0 ) =
σ̂ 2N −1 xi

2

i=1

N
∑

(xi − x )2

i=1

N
∑

Sample	variances	(under	SLR.1-SLR.5):	

  
where σ̂ 2 = 1

N − 2
ûi

2

i=1

N
∑ = SSR

N − 2

  
σ̂  is the standard error
of the regression

A useful cheat-sheet for interpreting  
models with logged variables 

	

	

Source:	Wooldridge	(2002)	

 
β1 =

Δy
Δx

  

β1

100
= Δy

%Δx

  
100β1 =

%Δy
Δx

  
β1 =

%Δy
%Δx

 y = β0 + β1x + u
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